Skip to main content

Multiscale Physics of Ion-Beam Cancer Therapy

  • Chapter
  • First Online:
Nanoscale Insights into Ion-Beam Cancer Therapy

Abstract

This is the most comprehensive review of the multiscale approach to the physics of radiation damage with ions. The approach allows one to predict survival probabilities for cells irradiated with ions based on the series of phenomena that take place on a variety of scales in time, space, and energy. The scenario of biodamage starting from ion entering tissue is the basis for an analytic synthesis of microscopic effects that comprise the macroscopic coefficients of the linear-quadratic model describing survival probabilities. The latter are calculated for both aerobic and hypoxic conditions at a variety of linear energy transfers. The oxygen enhancement ratio is obtained as a byproduct of these calculations. The calculated survival curves are compared with experiments on different cell lines and ready for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As of March 2016 [6].

  2. 2.

    Gesellschaft fĂĽr Schwerionenforschung, Darmstadt, Germany.

  3. 3.

    More detail on the OER calculations can be found in the Chapter by A.V. Verkhovtsev, E. Surdutovich and A.V. Solov’yov

  4. 4.

    The optimisation related to reducing dose deposition in healthy regions and treatment partitioning is left aside.

  5. 5.

    The only part that is not transferred is emitted as radiation. This part, in the case of ions interacting with tissue, is deemed to be insignificant.

  6. 6.

    The longitudinal scanning produces the so-called spread-out Bragg peak (SOBP).

  7. 7.

    This value corresponds to the kinetic energy of ions near the Bragg peak.

  8. 8.

    This is so because the energy is mostly transferred to electrons and other secondary particles, whose longitudinal ranges are many times smaller than the characteristic scale of x.

  9. 9.

    The relevant data are available for some biological molecules, such as the DNA bases and the sugar-phosphate backbone [75] and some amino acids [76] and others [77].

  10. 10.

    This is known as the continuous slowing down approximation (CSDA) range [84].

  11. 11.

    The SDCS are integrated over full solid angle of electron emission.

  12. 12.

    ICD is a type of non-radiative relaxation process, similar to the Auger effect, except in the case of the ICD the extra electron is emitted by the neighbouring molecule [107].

  13. 13.

    In this section only effects of secondary electrons are discussed. The situation may be different when radicals are included.

  14. 14.

    This number is a part of the integrand of Eq. (51).

  15. 15.

    These values correspond to conservative estimates (\(\varepsilon _0 = 3\) eV) [28]. They may be much lower if the actual thresholds appear to be smaller [58].

  16. 16.

    This corresponds to T3-DSB [101].

  17. 17.

    As can be seen from Eq. 80, constant \(\chi \) does not make the survival curve shouldered.

References

  1. Surdutovich E, Solov’yov A (2012) J Phys Conf Ser 373:012001

    Article  ADS  Google Scholar 

  2. Baccarelli I, Gianturco F, Scifoni E, Solov’yov A, Surdutovich E (2010) Eur Phys J D 60:1

    Article  ADS  Google Scholar 

  3. Amaldi U, Kraft G (2007) J Radiat Res 48:A27

    Article  Google Scholar 

  4. Schardt D, Elsässer T, Schulz-Ertner D (2010) Rev Mod Phys 82:383

    Article  ADS  Google Scholar 

  5. Durante M, Loeffler J (2010) Nat Rev Clin Oncol 7:37

    Article  Google Scholar 

  6. Particle therapy co-operative group. http://www.ptcog.ch/index.php/facilities-in-operation. Accessed May 2016

  7. Haettner E, Iwase H, Schardt D (2006) Rad Protec Dosim 122:485

    Article  Google Scholar 

  8. Sihver L, Schardt D, Kanai T (1998) Jpn J Med Phys 18:1

    Google Scholar 

  9. Pshenichnov I, Mishustin I, Greiner W (2008) Nucl Inst Methods B 266:1094

    Article  ADS  Google Scholar 

  10. Surdutovich E, Obolensky O, Scifoni E, Pshenichnov I, Mishustin I, Solov’yov A, Greiner W (2009) Eur Phys J D 51:63

    Article  ADS  Google Scholar 

  11. Scifoni E, Surdutovich E, Solovyov A (2010) Phys Rev E 81:021903

    Article  ADS  Google Scholar 

  12. Chatterjee A, Holley WR (1993) Adv Radiat Biol 17:181

    Article  Google Scholar 

  13. von Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, London

    Google Scholar 

  14. Surdutovich E, Gallagher DC, Solov’yov AV (2011) Phys Rev E 84:051918

    Article  ADS  Google Scholar 

  15. Sanche L (2005) Eur Phys J D 35:367

    Article  ADS  Google Scholar 

  16. BoudaĂŻffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Science 287:1658

    Article  ADS  Google Scholar 

  17. Huels MA, BoudaĂŻffa B, Cloutier P, Hunting D, Sanche L (2003) JACS 125:4467

    Article  Google Scholar 

  18. Sanche L (2010) In: Greenberg M (ed) Radical and radical ion reactivity in nucleic acid chemistry. Wiley, New York, p 239

    Google Scholar 

  19. Surdutovich E, Solov’yov AV (2012) Eur Phys J D 66:206

    Article  ADS  Google Scholar 

  20. McMahon S, Hyland W, Muir M, Coulter J, Jain S, Butterworth K, Schettino G, Dickson G, Hounsell A, O’Sullivan J, Prise K, Hirst D, Currell F (2011) Sci Rep 1:18

    Article  ADS  Google Scholar 

  21. Solov’yov A, Surdutovich E, Scifoni E, Mishustin I, Greiner W (2009) Phys Rev E 79:011909

    Article  ADS  Google Scholar 

  22. Cost action nano-ibct. http://mbnresearch.com/project-nanoibct. Accessed Feb 2016

  23. Surdutovich E, Solov’yov A (2009) Europhys. News 40/2:21

    Google Scholar 

  24. Surdutovich E, Scifoni E, Solov’yov A (2010) Mutat Res 704:206

    Article  Google Scholar 

  25. Toulemonde M, Surdutovich E, Solov’yov A (2009) Phys Rev E 80:031913

    Article  ADS  Google Scholar 

  26. Surdutovich E, Yakubovich A, Solov’yov A (2010) Eur Phys J D 60:101

    Article  ADS  Google Scholar 

  27. Surdutovich E, Solov’yov A (2010) Phys Rev E 82:051915

    Article  ADS  Google Scholar 

  28. Surdutovich E, Yakubovich AV, Solov’yov AV (2013) Sci Rep 3:1289

    Article  ADS  Google Scholar 

  29. de Vera P, Garcia-Molina R, Abril I, Solov’yov AV (2013) Phys Rev Lett 110:148104

    Article  ADS  Google Scholar 

  30. Surdutovich E, Solov’yov A (2014) Eur Phys J D 68:353

    Article  ADS  Google Scholar 

  31. Surdutovich E, Solov’yov A (2015) Eur Phys J D 69:193

    Article  ADS  Google Scholar 

  32. Verkhovtsev A, Surdutovich E, Solov’yov A (2016) Sci Rep 6:27654

    Article  ADS  Google Scholar 

  33. Frese MC, Yu VK, Stewart RD, Carlson DJ (2012) Int J Radiat Oncol 83:442

    Article  Google Scholar 

  34. Semenenko V, Stewart R (2006) Phys Med Biol 51:1693

    Article  Google Scholar 

  35. Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta FA (2006) Radiat Meas 41:1052

    Article  Google Scholar 

  36. Nikjoo H, Bolton C, Watanabe R, Terrisol M, O’Neill P, Goodhead D (2002) Radiat Prot Dosim 99:77

    Article  Google Scholar 

  37. Friedland W, Jacob P, Bernhardt P, Paretzke H, Dingfelder M (2003) Radiat Res 159:401

    Article  Google Scholar 

  38. Plante I, Cucinotta F (2010) Radiat Environ Biophys 49:5

    Article  Google Scholar 

  39. Alpen EL (1998) Radiation biophysics. Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto

    Google Scholar 

  40. Hall EJ, Giaccia AJ (2012) Radiobiology for radiologist. Lippincott Williams & Wilkins, Philadelphia, Baltimore, New York, London

    Google Scholar 

  41. Hawkins R (1996) Int J Radiat Biol 69:739

    Article  Google Scholar 

  42. Hawkins R (2009) Radiat Res 172:761

    Article  Google Scholar 

  43. Goodhead D, Thacker J, Cox R (1993) Int J Radiat Biol 63:543

    Article  Google Scholar 

  44. Goodhead D (2006) Radiat Prot Dosim 122:3

    Article  Google Scholar 

  45. Butts JJ, Katz R (1967) Radiat Res 30:855

    Article  Google Scholar 

  46. Katz R, Ackerson B, Homayoonfar M, Sharma SC (1971) Radiat Res 47:402

    Article  Google Scholar 

  47. Korcyl M, WaligĂłrski M (2009) Int J Radiat Biol 85:1101

    Article  Google Scholar 

  48. Cucinotta F, Nikjoo H, Goodhead D (1999) Radiat Environ Biophys 38:81

    Article  Google Scholar 

  49. Scholz M, Kraft G (1996) Adv Space Res 18:5

    Article  ADS  Google Scholar 

  50. Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M (2012) Int J Radiat Biol 88:103

    Article  Google Scholar 

  51. Pimblott S, Siebbeles L (2002) Nucl Inst Methods B 194:237

    Article  ADS  Google Scholar 

  52. Pimblott S, LaVerne J, Mozumder A (1996) J Phys Chem 100:8595

    Article  Google Scholar 

  53. Pimblott S, LaVerne J (2007) Radiat Phys Chem 76:1244

    Article  ADS  Google Scholar 

  54. Meesungnoen J, Jay-Gerin JP, Filali-Mouhim A, Mankhetkorn S (2002) Radiat Res 158:657

    Article  Google Scholar 

  55. Surdutovich E, Solov’yov AV (2012) Eur Phys J D 66:245

    Article  ADS  Google Scholar 

  56. Bug M, Surdutovich E, Rabus H, Rosenfeld AB, Solov’yov AV (2012) Eur Phys J D 66:291

    Article  ADS  Google Scholar 

  57. Park Y, Li Z, Cloutier P, Sanche L, Wagner J (2011) Radiat Res 175:240

    Article  Google Scholar 

  58. Smyth M, Kohanoff J (2012) J Am Chem Soc 134:9122

    Article  Google Scholar 

  59. Becker D, Adhikary A, Sevilla M (2010) Charged particle and photon interactions with matter recent advances, applications, and interfaces. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  60. Surdutovich E, Solov’yov AV (2013) J Phys Conf Ser 438:012014

    Article  ADS  Google Scholar 

  61. Bethe H (1930) Ann Phys 397:325

    Article  Google Scholar 

  62. Bloch F (1933) Z Phys A Hadrons Nucl 81:363

    Google Scholar 

  63. Bloch F (1933) Ann Phys 408:285

    Article  Google Scholar 

  64. Abril I, Garcia-Molina R, Denton C, Kyriakou I, Emfietzoglou D (2011) Radiat Res 175:247

    Article  Google Scholar 

  65. Obolensky O, Surdutovich E, Pshenichnov I, Mishustin I, Solov’yov A, Greiner W (2008) Nucl Inst Methods B 266:1623

    Article  ADS  Google Scholar 

  66. Rudd ME, Kim YK, Madison DH, Gay T (1992) Rev Mod Phys 64:441

    Article  ADS  Google Scholar 

  67. Landau L, Lifshitz E, Pitaevskii L (1984) Electrodynamics of continuous media, vol 8, 2nd edn. Butterworth-Heinemann, Burlington

    Google Scholar 

  68. Lindhard J (1954) K Dan Vidensk Selsk Mat Fys Medd 28:8

    Google Scholar 

  69. Tan Z, Xia Y, Zhao M, Liu X, Li F, Huang B, Ji Y (2004) Nucl Instrum Methods Phys Res B 222:27

    Article  ADS  Google Scholar 

  70. Altarelli M, Smith D (1974) Phys Rev B 9:1290

    Article  ADS  Google Scholar 

  71. Garcia-Molina R, Abril I, Kyriakou I, Emfietzoglou D (2012) Chap. 15. In: GĂłmez-Tejedor GG, Fuss MC (eds) Radiation damage in biomolecular systems. Springer, Dordrecht

    Google Scholar 

  72. Ritchie RH, Howie A (1977) Philos Mag 36:436

    Article  Google Scholar 

  73. Dingfelder M, Hantke D, Inokuti M, Paretzke H (1999) Radiat Phys Chem 53:1

    Article  ADS  Google Scholar 

  74. Emfietzoglou D (2003) Radiat Phys Chem 66:373

    Article  ADS  Google Scholar 

  75. Bernhardt P, Paretzke HG (2003) Int J Mass Spectrom 223–224:599

    Article  Google Scholar 

  76. Peudon A, Edel S, Terrisol M (2006) Radiat Prot Dosim 122:128

    Article  Google Scholar 

  77. Kim YK et al (2004) Electron-impact ionization cross section for ionization and excitation database (version 3.0). http://www.nist.gov/pml/data/ionization/index.cfm

  78. White DR, Griffith RV, Wilson IJ (1992) Photon, electron, proton and neutron interaction data for body tissues. International Commission on Radiation Units and Measurements (ICRU 46), Bethesda, MD

    Google Scholar 

  79. Wilson WE, Miller JH, Toburen LH, Manson ST (1984) J Chem Phys 80:5631

    Article  ADS  Google Scholar 

  80. Rudd M, Goffe T, DuBois R, Toburen L (1985) Phys Rev A 31:492

    Article  ADS  Google Scholar 

  81. Bolorizadeh MA, Rudd ME (1986) Phys Rev A 33:888

    Article  ADS  Google Scholar 

  82. Iriki Y, Kikuchi Y, Imai M, Itoh A (2011) Phys Rev A 84:052719

    Article  ADS  Google Scholar 

  83. Simons J (2007) Adv Quantum Chem 52:171

    Article  ADS  Google Scholar 

  84. Bichsel H (1988) Rev Mod Phys 60:663

    Article  ADS  Google Scholar 

  85. Dingfelder M, Inokuti M, Paretzke H (2000) Rad Phys Chem 59:255

    Article  ADS  Google Scholar 

  86. Garcia-Molina R, Abril I, de Vera P, Kyriakou I, Emfietzoglou D (2012) J Phys Conf Ser 373:012015

    Article  ADS  Google Scholar 

  87. Barkas WH (1963) Nuclear research emulsions I. techniques and theory, vol 1. Academic Press, New York, London

    Google Scholar 

  88. Schiwietz G, Grande PL (2001) Nucl Instr Methods B 175–177:125

    Article  Google Scholar 

  89. Kundrat P (2007) Phys Med Biol 52:6813

    Article  Google Scholar 

  90. Hollmark M, Uhrdin J, Belkic D, Gudowska I, Brahme A (2004) Phys Med Biol 49:3247

    Article  Google Scholar 

  91. Inokuti M (1971) Rev Mod Phys 43:297

    Article  ADS  Google Scholar 

  92. Schmidt-Böcking H, Schmidt L, Weber T, Mergel V, Jagutzki O, Czasch A, Hagmann S, Doerner R, Demkov Y, Jahnke T, Prior M, Cocke C, Osipov T, Landers A (2004) Radiat Phys Chem 71:627

    Article  ADS  Google Scholar 

  93. Tung C, Chao T, Hsieh H, Chan W (2007) Nucl Inst Methods B 262:231

    Article  ADS  Google Scholar 

  94. Chandrasekhar S (1943) Rev Mod Phys 15:1

    Article  ADS  MathSciNet  Google Scholar 

  95. Nikjoo H, Uehara S, Wilson WE, Hoshi M, Goodhead DT (1998) Int J Radiat Biol 73:355

    Article  Google Scholar 

  96. LaVerne J (1989) Radiat Phys Chem 34:135

    ADS  Google Scholar 

  97. Waligorski M, Hamm R, Katz R (1986) Nucl Tracks Radiat Meas 11:309

    Article  Google Scholar 

  98. Gerchikov LG, Ipatov AN, Solov’yov AV, Greiner W (2000) J Phys B 30:4905

    Article  ADS  Google Scholar 

  99. Nikjoo H, O’Neill P, Goodhead DT, Terrissol M (1997) Int J Radiat Biol 71:467

    Article  Google Scholar 

  100. Ward J (1995) Radiat Res 142:362

    Article  Google Scholar 

  101. Schipler A, Iliakis G (2013) Nucl Acid Res 41:7589

    Article  Google Scholar 

  102. Fabrikant II, Caprasecca S, Gallup GA, Gorfinkiel JD (2012) J Chem Phys 136:184301

    Article  ADS  Google Scholar 

  103. Becker D, Sevilla M (1993) In: Lett J (ed) Advances in radiation biology, vol 17. Academic Press, pp 121–180

    Google Scholar 

  104. Gianturco FA, Sebastianelli F, Lucchese RR, Baccarelli I, Sanna N (2008) J Chem Phys 128:174302

    Article  ADS  Google Scholar 

  105. Sanche L (2012) In: Garcia G, Fuss MC (eds) Radiation damage in biomolecular systems. Springer

    Google Scholar 

  106. Panajotovic R, Martin F, Cloutier P, Hunting D, Sanche L (2006) Radiat Res 165:452

    Article  Google Scholar 

  107. Cederbaum LS, Zobeley J, Tarantelli F (1997) Phys Rev Lett 79:4778

    Article  ADS  Google Scholar 

  108. Mucke M, Braune M, Barth S, Förstel M, Lischke T, Ulrich V, Arion T, Becker U, Bradshaw A, Hergenhahn U (2010) Nat Phys 6:143

    Article  Google Scholar 

  109. Bulanov SS, Brantov A, Bychenkov VY, Chvykov V, Kalinchenko G, Matsuoka T, Rousseau P, Reed S, Yanovsky V, Krushelnick K, Litzenberg DW, Maksimchuk A (2008) Med Phys 35:1770

    Article  Google Scholar 

  110. Adamcik J, Jeon JH, Karczewski KJ, Metzler R, Dietler G (2012) Soft Matter 8:8651

    Article  ADS  Google Scholar 

  111. Dang HM, Goethem MJV, Graaf ERVD, Brandenburg S, Hoekstra R, Schlathölter T (2011) Eur Phys J D 63:359

    Article  ADS  Google Scholar 

  112. Toulemonde M, Dufour C, Meftah A, Paumier E (2000) Nucl Inst Methods B 166–167:903

    Article  Google Scholar 

  113. Toulemonde M, Trautmann C, Balanzat E, Hjort K, Weidinger A (2004) Nucl Inst Methods B 216:1

    Article  ADS  Google Scholar 

  114. Skupinski M, Toulemonde M, Lindeberg M, Hjort K (2005) Nucl Inst Methods B 240:681

    Article  ADS  Google Scholar 

  115. Pawlak F, Dufour C, Laurent A, Paumier E, Perrière J, Stoquert JP, Toulemonde M (1999) Nucl Inst Methods B 151:140

    Article  ADS  Google Scholar 

  116. Toulemonde M, Assmann W, Dufour C, Meftah A, Studer F, Trautmann C (2006) Mat. Fys. Medd. 52:263

    Google Scholar 

  117. Dammak H, Lesueur D, Dunlop A, Legrand P, Morillo J (1993) Radiat Eff Defect Sol 126:111

    Article  ADS  Google Scholar 

  118. Mieskes HD, Assmann W, GrĂĽner F, Kucal H, Wang ZG, Toulemonde M (2003) Phys Rev B 67:155414

    Article  ADS  Google Scholar 

  119. Meftah A, Djebara M, Khalfaoui N, Toulemonde M (1998) Nucl Instr Methods B 146:431

    Article  ADS  Google Scholar 

  120. Katin V, Martinenko Y, Yavlinskii Y (1987) Sov Tech Phys Lett 13:276

    Google Scholar 

  121. Toulemonde M, Assmann W, Trautmann C, GrĂĽner F (2002) Phys Rev Lett 88:057602

    Article  ADS  Google Scholar 

  122. Meftah A, Brisard F, Costantini J, Hage-Ali M, Stoquert J, Studer F, Toulemonde M (1993) Phys Rev B 48:920

    Article  ADS  Google Scholar 

  123. Yakubovich AV, Surdutovich E, Solov’yov AV (2011) AIP Conf Proc 1344:230

    Google Scholar 

  124. Yakubovich AV, Surdutovich E, Solov’yov AV (2012) Nucl Instr Methods B 279:135

    Article  ADS  Google Scholar 

  125. Landau L, Lifshitz E (1987) Fluid dynamics, vol 6, 2nd edn. Reed-Elsevier, Oxford, Boston, Johannesburg

    Google Scholar 

  126. Zeldovich Y, Raiser Y (1966) Physics of shock waves and high-temperature hydrodynamic phenomena, vol 1, Oxford, New York

    Google Scholar 

  127. Chernyj G (1994) Gas dynamics. Nauka, Moscow

    Google Scholar 

  128. Niklas M, Abdollahi A, Akselrod M, Debus J, Jäkel O, Greilich S (2013) Int J Radiat Oncol Biol Phys 87:1141

    Article  Google Scholar 

  129. Jakob B, Scholz M, Taucher-Scholz G (2003) Radiat Res 159:676

    Article  Google Scholar 

  130. Tobias F, Durante M, Taucher-Scholz G, Jakob B (2010) Mutat Res 704:54

    Article  Google Scholar 

  131. Roos WP, Kaina B (2006) Trends Mol Med 12:440

    Article  Google Scholar 

  132. Ward J (1988) Prog Nucleic Acid Res Mol Biol 35:95

    Article  Google Scholar 

  133. Goodhead DT (1994) Int J Radiat Biol 65:7

    Article  Google Scholar 

  134. Malyarchuk S, Castore R, Harrison L (2009) DNA Repair 8:1343

    Article  Google Scholar 

  135. Malyarchuk S, Castore R, Harrison L (2008) Nucleic Acids Res 36:4872

    Article  Google Scholar 

  136. Sage E, Harrison L (2011) Mutat Res 711:123

    Article  Google Scholar 

  137. Amaldi U, Kraft G (2005) Rep Prog Phys 68:1861

    Article  ADS  Google Scholar 

  138. Zhang XD et al (2015) Sci Rep 5:8669

    Article  ADS  Google Scholar 

  139. McQuaid HN et al (2016) Sci Rep 6:19442

    Article  ADS  Google Scholar 

  140. Stewart R et al (2011) Radiat Res 176:587

    Article  Google Scholar 

  141. Tinganelli W et al (2015) Sci Rep 5:17016

    Article  ADS  Google Scholar 

  142. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell. Garland Science, Hamden, CT

    Google Scholar 

  143. Lewis N et al (2013) Nat Biotechnol 31:759

    Article  Google Scholar 

  144. Morgan D (2006) The cell cycle: principles of control. New Science Press

    Google Scholar 

  145. WĂ©ra AC, Riquier H, Heuskin AC, Michiels C, Lucas S (2011) Nucl Instrum Methods B 269:3120

    Article  ADS  Google Scholar 

  146. WĂ©ra AC, Heuskin AC, Riquier H, Michiels C, Lucas S (2013) Radiat Res 179:273

    Article  Google Scholar 

  147. Heuskin AC, Michiels C, Lucas S (2013) Phys Med Biol 58:6495

    Article  Google Scholar 

  148. Scholz M, Kellerer A, Kraft-Weyrather W, Kraft G (1997) Radiat Environ Biophys 36:59

    Article  Google Scholar 

  149. Weyrather WK, Ritter S, Scholz M, Kraft G (1999) Int J Rad Biol 75:1357

    Article  Google Scholar 

  150. Krämer M, Scifoni E, Wälzlein C, Durante M (2012) J Phys Conf Ser 373:012017

    Article  ADS  Google Scholar 

  151. Usami N et al (2008) Int J Radiat Biol 84:603

    Article  Google Scholar 

  152. Falk M, Lukasova E, Kozubek S (2012) In: GĂłmez-Tejedor GG, Fuss MC (eds) Biomolecular systems in radiation damage. Springer, New York

    Google Scholar 

  153. Friedland W, Kundrát P (2013) Mutat Res Genet Toxicol Environ 756:213

    Article  Google Scholar 

  154. Zheng Y, Hunting DJ, Ayotte P, Sanche L (2008) Radiat Res 169:19

    Article  Google Scholar 

  155. Bulanov SS, Esarey E, Schroeder CB, Bulanov SV, Esirkepov TZ, Kando M, Pegoraro F, Leemans WP (2016) Phys Plasmas 23:056703

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Garcia-Molina, M. Niklas, John Posa, I.M. Solovyeva, I.A. Solov’yov, P. de Vera, and A.V. Verkhovtsev for the assistance with figures, important advice, and insight, Center for Scientific Computing of Goethe University, and the support of COST Action MP1002 “Nano-scale insights in ion beam cancer therapy” and FP7 ITN-ARGENT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Surdutovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Surdutovich, E., Solov’yov, A.V. (2017). Multiscale Physics of Ion-Beam Cancer Therapy. In: Solov’yov, A. (eds) Nanoscale Insights into Ion-Beam Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-43030-0_1

Download citation

Publish with us

Policies and ethics