Skip to main content

Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning

  • Chapter
  • First Online:
Deep Learning and Convolutional Neural Networks for Medical Image Computing

Abstract

Holistically detecting interstitial lung disease (ILD) patterns from CT images is challenging yet clinically important. Unfortunately, most existing solutions rely on manually provided regions of interest, limiting their clinical usefulness. We focus on two challenges currently existing in two publicly available datasets. First of all, missed labeling of regions of interest is a common issue in existing medical image datasets due to the labor-intensive nature of the annotation task which requires high levels of clinical proficiency. Second, no work has yet focused on predicting more than one ILD from the same CT slice, despite the frequency of such occurrences. To address these limitations, we propose three algorithms based on deep convolutional neural networks (CNNs). The differences between the two main publicly available datasets are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.research.rutgers.edu/minggao.

References

  1. Depeursinge A, Vargas A, Platon A, Geissbuhler A, Poletti P-A, Müller H (2012) Building a reference multimedia database for interstitial lung diseases. CMIG 36(3):227–238

    Google Scholar 

  2. Holmes III D, Bartholmai B, Karwoski R, Zavaletta V, Robb R (2006) The lung tissue research consortium: an extensive open database containing histological, clinical, and radiological data to study chronic lung disease. Insight J

    Google Scholar 

  3. van Tulder G, de Bruijne M (2016) Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines. TMI

    Google Scholar 

  4. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216

    Article  Google Scholar 

  5. Song Y, Cai W, Huang H, Zhou Y, Feng D, Wang Y, Fulham M, Chen M (2015) Large margin local estimate with applications to medical image classification. TMI 34(6):1362–1377

    Google Scholar 

  6. Song Y, Cai W, Zhou Y, Feng DD (2013) Feature-based image patch approximation for lung tissue classification. TMI 32(4):797–808

    Google Scholar 

  7. Hofmanninger J, Langs G (2015) Mapping visual features to semantic profiles for retrieval in medical imaging. In: CVPR, pp 457–465

    Google Scholar 

  8. Gao M, Bagci U, Lu L, Wu A, Buty M, Shin H-C, Roth H, Papadakis GZ, Depeursinge A, Summers RM, et al (2016) Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput Methods Biomech Biomed Eng Imaging Vis 1–6

    Google Scholar 

  9. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: NIPS, pp 1097–1105

    Google Scholar 

  10. Gao M, Xu Z, Lu L, Nogues I, Summers R, Mollura D (2016) Segmentation label propagation using deep convolutional neural networks and dense conditional random field. In: IEEE international symposium on biomedical imaging

    Google Scholar 

  11. Krähenbühl P, Koltun V (2011) Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS, pp 109–117

    Google Scholar 

  12. Boykov YY, Jolly M-P (2001) Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: Eighth IEEE international conference on proceedings, vol 1. IEEE, pp 105–112

    Google Scholar 

  13. Guillaumin M, Küttel D, Ferrari V (2014) Imagenet auto-annotation with segmentation propagation. IJCV 110(3):328–348

    Article  Google Scholar 

  14. Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: ECCV 2014. Springer, pp 392–407

    Google Scholar 

  15. Wei Y, Xia W, Huang J, Ni B, Dong J, Zhao Y, Yan S (2014) CNN: single-label to multi-label. arXiv preprint arXiv:1406.5726

  16. Gao M, Xu Z, Lu L, Harrison AP, Summers RM, Mollura DJ (2016) Multi-label deep regression and unordered pooling for holistic interstitial lung disease pattern detection. Machine learning in medical imaging

    Google Scholar 

  17. Zhen X, Islam A, Bhaduri M, Chan I, Li S (2015) Direct and simultaneous four-chamber volume estimation by multi-output regression. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 669–676

    Google Scholar 

  18. Zhen X, Wang Z, Islam A, Bhaduri M, Chan I, Li S (2014) Direct estimation of cardiac bi-ventricular volumes with regression forests. In: MICCAI, pp 586–593

    Google Scholar 

  19. Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-scale image classification. In: ECCV, pp 143–156

    Google Scholar 

  20. Depeursinge A, Van de Ville D, Platon A, Geissbuhler A, Poletti P-A, Muller H (2012) Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames. IEEE Trans Inf Technol Biomed 16(4):665–675

    Article  Google Scholar 

  21. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  22. Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531

  23. Vedaldi A, Lenc K (2015) MatConvNet: convolutional neural networks for MATLAB. In: Proceedings of the 23rd annual ACM conference on multimedia conference. ACM, pp 689–692

    Google Scholar 

  24. Mansoor A, Bagci U, Xu Z, Foster B, Olivier KN, Elinoff JM, Suffredini AF, Udupa JK, Mollura DJ (2014) A generic approach to pathological lung segmentation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingchen Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gao, M., Xu, Z., Mollura, D.J. (2017). Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Image Computing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-42999-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42999-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42998-4

  • Online ISBN: 978-3-319-42999-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics