Skip to main content

Efficient False Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation

  • Chapter
  • First Online:
Deep Learning and Convolutional Neural Networks for Medical Image Computing

Abstract

In clinical practice and medical imaging research , automated computer-aided detection (CADe) is an important tool. While many methods can achieve high sensitivities, they typically suffer from high false positives (FP) per patient. In this study, we describe a two-stage coarse-to-fine approach using CADe candidate generation systems that operate at high sensitivity rates (close to \(100\%\) recall). In a second stage, we reduce false positive numbers using state-of-the-art machine learning methods, namely deep convolutional neural networks (ConvNet). The ConvNets are trained to differentiate hard false positives from true-positives utilizing a set of 2D (two-dimensional) or 2.5D re-sampled views comprising random translations, rotations, and multi-scale observations around a candidate’s center coordinate. During the test phase, we apply the ConvNets on unseen patient data and aggregate all probability scores for lesions (or pathology). We found that this second stage is a highly selective classifier that is able to reject difficult false positives while retaining good sensitivity rates. The method was evaluated on three data sets (sclerotic metastases, lymph nodes, colonic polyps) with varying numbers patients (59, 176, and 1,186, respectively). Experiments show that the method is able to generalize to different applications and increasing data set sizes. Marked improvements are observed in all cases: sensitivities increased from 57 to 70%, from 43 to 77% and from 58 to 75% for sclerotic metastases, lymph nodes and colonic polyps, respectively, at low FP rates per patient (3 FPs/patient).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://code.google.com/p/cuda-convnet.

References

  1. Organization, W.H (2014) Cancer Fact shee N297. WHO

    Google Scholar 

  2. Msaouel P, Pissimissis N, Halapas A, Koutsilieris M (2008) Mechanisms of bone metastasis in prostate cancer: clinical implications. Best Pract Res Clin Endocrinol Metab 22(2):341–355

    Article  Google Scholar 

  3. Wiese T, Yao J, Burns JE, Summers RM (2012) Detection of sclerotic bone metastases in the spine using watershed algorithm and graph cut. In: SPIE Medical Imaging, p 831512

    Google Scholar 

  4. Burns JE, Yao J, Wiese TS, Muñoz HE, Jones EC, Summers RM (2013) Automated detection of sclerotic metastases in the thoracolumbar spine at CT. Radiology 268(1):69–78

    Article  Google Scholar 

  5. Hammon M, Dankerl P, Tsymbal A, Wels M, Kelm M, May M, Suehling M, Uder M, Cavallaro A (2013) Automatic detection of lytic and blastic thoracolumbar spine metastases on computed tomography. Eur Radiol 23(7):1862–1870

    Article  Google Scholar 

  6. Seff A, Lu L, Cherry KM, Roth HR, Liu J, Wang S, Hoffman J, Turkbey EB, Summers RM (2014) 2D view aggregation for lymph node detection using a shallow hierarchy of linear classifiers. MICCAI. Springer, pp 544–552

    Google Scholar 

  7. Toews M, Arbel T (2007) A statistical parts-based model of anatomical variability. IEEE Trans Med Imaging 26(4):497–508

    Article  Google Scholar 

  8. Wu D, Lu L, Bi J, Shinagawa Y, Boyer K, Krishnan A, Salganicoff M (2010) Stratified learning of local anatomical context for lung nodules in CT images. 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2791–2798

    Google Scholar 

  9. Summers RM, Jerebko AK, Franaszek M, Malley JD, Johnson CD (2002) Colonic polyps: Complementary role of computer-aided detection in CT colonography. Radiology 225(2):391–399

    Article  Google Scholar 

  10. Ravesteijn V, Wijk C, Vos F, Truyen R, Peters J, Stoker J, Vliet L (2010) Computer aided detection of polyps in CT colonography using logistic regression. IEEE Trans Med Imaging 29(1):120–131

    Article  Google Scholar 

  11. van Ginneken B, Setio A, Jacobs C, Ciompi F (2015) Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 286–289

    Google Scholar 

  12. Firmino M, Morais AH, Mendoça RM, Dantas MR, Hekis HR, Valentim R (2014) Computer-aided detection system for lung cancer in computed tomography scans: review and future prospects. Biomed Eng Online 13(1):41

    Article  Google Scholar 

  13. Cheng HD, Cai X, Chen X, Hu L, Lou X (2003) Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recognit 36(12):2967–2991

    Article  MATH  Google Scholar 

  14. Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: NIPS

    Google Scholar 

  15. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural comput 1(4)

    Google Scholar 

  16. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  17. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385

  18. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

    Article  Google Scholar 

  19. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312

    Article  Google Scholar 

  20. Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM (2016) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 35(5):1170–1181

    Article  Google Scholar 

  21. Jones N (2014) Computer science: the learning machines. Nature 505(7482):146–148

    Article  Google Scholar 

  22. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  23. Turaga SC, Murray JF, Jain V, Roth F, Helmstaedter M, Briggman K, Denk W, Seung HS (2010) Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput 22(2)

    Google Scholar 

  24. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: MICCAI

    Google Scholar 

  25. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851

    Google Scholar 

  26. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: MICCAI

    Google Scholar 

  27. Roth HR, Lu L, Seff A, Cherry K, Hoffman J, Wang S, Liu J, Turkbey E, Summers RM (2014) A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland P, Hata N, Barillot C, Hornegger J, Howe R (eds) Medical image computing and computer-assisted intervention MICCAI 2014, vol 8673., Lecture Notes in Computer ScienceSpringer International Publishing, pp 520–527

    Google Scholar 

  28. Roth H, Yao J, Lu L, Stieger J, Burns J, Summers R (2015) Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications. In: Yao J, Glocker B, Klinder T, Li S (eds) Recent advances in computational methods and clinical applications for spine imaging, vol 20. Lecture Notes in Computational Vision and Biomechanics. Springer International Publishing, pp 3–12

    Google Scholar 

  29. Li Q, Cai W, Wang X, Zhou Y, Feng D.D, Chen, M (2014) Medical image classification with convolutional neural network. In: ICARCV

    Google Scholar 

  30. Tajbakhsh N, Gotway MB, Liang J (2015) Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks. In: Medical image computing and computer-assisted intervention–MICCAI 2015. Springer International Publishing, pp 62–69

    Google Scholar 

  31. Cherry KM, Wang S, Turkbey EB, Summers RM (2014) Abdominal lymphadenopathy detection using random forest. SPIE Med Imaging

    Google Scholar 

  32. Liu J, Zhao J, Hoffman J, Yao J, Zhang W, Turkbey EB, Wang S, Kim C, Summers RM (2014) Mediastinal lymph node detection on thoracic CT scans using spatial prior from multi-atlas label fusion. SPIE Med Imaging 43(7):4362

    Google Scholar 

  33. Summers RM, Yao J, Pickhardt PJ, Franaszek M, Bitter I, Brickman D, Krishna V, Choi JR (2005) Computed tomographic virtual colonoscopy computer-aided polyp detection in a screening population. Gastroenterology 129(6):1832–1844

    Article  Google Scholar 

  34. Barbu A, Bogoni L, Comaniciu D (2006) Hierarchical part-based detection of 3D flexible tubes: application to CT colonoscopy. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention MICCAI, pp 462–470

    Google Scholar 

  35. Lu L, Barbu A, Wolf M, Liang J, Bogoni L, Salganicoff M, Comaniciu D (2008) Simultaneous detection and registration for ileo-cecal valve detection in 3d CT colonography. In: Proceedings of European Conference on Computer Vision, pp 465–478

    Google Scholar 

  36. Lu L, Wolf M, Liang J, Dundar M, Bi J, Salganicoff M (2009) A two-level approach towards semantic colon segmentation: Removing extra-colonic findings. In: Medical image computing and computer-assisted intervention MICCAI, pp 1009–1016

    Google Scholar 

  37. Yao J, Li J, Summers RM (2009) Employing topographical height map in colonic polyp measurement and false positive reduction. Pattern Recognit 42(6):1029–1040

    Article  Google Scholar 

  38. Slabaugh G, Yang X, Ye X, Boyes R, Beddoe G (2010) A robust and fast system for ctc computer-aided detection of colorectal lesions. Algorithms 3(1):21–43

    Article  Google Scholar 

  39. Lu L, Devarakota P, Vikal S, Wu D, Zheng Y, Wolf M (2014) Computer aided diagnosis using multilevel image features on large-scale evaluation. In: Medical computer vision. Large data in medical imaging. Springer, pp 161–174

    Google Scholar 

  40. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580

  41. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  42. Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the international conference on machine learning (ICML-13)

    Google Scholar 

  43. Krizhevsky A (2014) One weird trick for parallelizing convolutional neural networks. arXiv:1404.5997

  44. Göktürk SB, Tomasi C, Acar B, Beaulieu CF, Paik DS, Jeffrey RB, Yee J, Napel Y (2001) A statistical 3-d pattern processing method for computer-aided detection of polyps in CT colonography. IEEE Trans Med Imaging 20:1251–1260

    Article  Google Scholar 

  45. Dou Q, Chen H, Yu L, Zhao L, Qin J, Wang D, Mok VC, Shi L, Heng PA (2016) Automatic detection of cerebral microbleeds from mr images via 3d convolutional neural networks. IEEE Trans Med Imaging 35(5):1182–1195

    Article  Google Scholar 

  46. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2016) Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. arXiv:1603.05959

  47. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2014) Going deeper with convolutions. CoRR arXiv:1409.4842

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the NIH Clinical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roth, H.R. et al. (2017). Efficient False Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Image Computing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-42999-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42999-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42998-4

  • Online ISBN: 978-3-319-42999-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics