Skip to main content

Modelling Solar Energy Usage with Fuzzy Cognitive Maps

  • Chapter
  • First Online:
Intelligence Systems in Environmental Management: Theory and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 113))

Abstract

Solar energy is a reliable and sustainable energy resource but its usage is still limited. Modeling solar energy generation capacity can help increasing solar energy usage. In this chapter, the factors that affect solar energy usage and the relations among them are defined by a comprehensive literature review. These factors are complex and the relations between them are ambiguous. Fuzzy cognitive maps are used for modelling solar energy generation capacity. Fuzzy cognitive maps are excellent tools for modelling such complexity and ambiguity. The relations among the factors are defined based on the experts’ opinions. Different scenarios are developed and the changes in the solar energy generation capacity have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adaramola, M. (2015). Solar energy: application, economics, and Public Perception Apple Academic Press, Oakville, Canada.

    Google Scholar 

  • Agency IE. (2009). World energy outlook 2009. http://www.worldenergyoutlook.org/media/weowebsite/2009/WEO2009.pdf. Accessed April 11, 2016.

  • Ameta, S. C., Ameta, R. (2016). Solar energy conversion and storage: photochemical modes. Electrochemical energy storage and conversion. Boca Raton: CRC Press.

    Google Scholar 

  • Axelrod, R. M. (1976). Structure of decision: The cognitive maps of political elites. USA: Princeton University Press. doi:citeulike-article-id:10721833

    Google Scholar 

  • Bogetoft, P. O., & Ballebye, Henrik. (2007). Cooperatives and payment schemes: Lessons from theory and examples from Danish agriculture. Frederiksberg: Copenhagen Business School Press.

    Google Scholar 

  • BP: BP Statistical Review of World Energy. (2015). http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. Accessed 2016.

  • Bueno, S., Salmeron, J. L. (2009) Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst Appl, 36(3, Part 1):5221–5229. doi:10.1016/j.eswa.2008.06.072

  • Commision, E. (2003). World energy, technology and climate policy outlook 2030. https://ec.europa.eu/research/energy/pdf/weto_final_report.pdf. Accessed April 11, 2016.

  • Dickerson, J. A., & Kosko, B. (1994). Virtual worlds as fuzzy cognitive maps. Presence: Teleoperators & Virtual Environments, 3(2), 173–189.

    Article  Google Scholar 

  • Diffenbach, J. (1982). Influence diagrams for complex strategic issues. Strategic Management Journal, 3(2), 133–146.

    Article  Google Scholar 

  • EIA . (2016). USEIA: Glossary. http://www.eia.gov/tools/glossary/. Accessed April 11, 2016.

  • Haykin, (1998) S. Neural networks: A comprehensive foundation. USA: Prentice Hall PTR.

    Google Scholar 

  • Kahraman, C., Kaya, İ., & Cebi, S. (2009). A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy, 34(10), 1603–1616. doi:10.1016/j.energy.2009.07.008

    Article  Google Scholar 

  • Kalogirou, S. A. (2014a). Chapter 12—Solar economic analysis. In: Solar energy engineering (Second Edition). Boston: Academic Press, pp. 701–734. doi:10.1016/B978-0-12-397270-5.00012-1

  • Kalogirou, S. A. (2014b). Solar energy engineering (Second Edition).

    Google Scholar 

  • Kosko, B. (1986): Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1):65–75. doi:citeulike-article-id:6695197

    Google Scholar 

  • Kosko, B. (1997). Fuzzy engineering. Upper Saddle River, N.J.; London: Prentice Hall International.

    Google Scholar 

  • Lee, C. C. (1990) Fuzzy logic in control systems: fuzzy logic controller. II. Systems, Man and Cybernetics, IEEE Transactions on 20 (2):419–435.

    Google Scholar 

  • Mackay, M. E. (2015). Solar energy: An introduction. USA: Oxford University Press.

    Google Scholar 

  • Özesmi, U., & Özesmi, S. L. (2004). Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach. Ecological Modelling, 176(1–2), 43–64. doi:10.1016/j.ecolmodel.2003.10.027

    Article  Google Scholar 

  • REN21. (2015). REPNftsC: Renewables 2015 global status report. http://www.ren21.net/Portals/0/documents/e-paper/GSR2015KF/index.html#/8. Accessed 10 April 2016.

  • Silvi, C. (2008). History and future of renewable solar energy. Development, 51(3), 409–414. doi:10.1057/dev.2008.45

    Article  Google Scholar 

  • Sugeno, M. (1985). An introductory survey of fuzzy control. Information Sciences, 36(1):59–83. doi:10.1016/0020-0255(85)90026-X

  • Tsadiras, A. K. (2008). Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps. Information Sciences, 178(20), 3880–3894. doi:10.1016/j.ins.2008.05.015

    Article  Google Scholar 

  • Tsadiras, A. K., & Margaritis, K. G. (1997). Cognitive mapping and certainty neuron fuzzy cognitive maps. Information Sciences, 101(1–2), 109–130. doi:10.1016/S0020-0255(97)00001-7

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2016). Climate change. https://www3.epa.gov/climatechange/. Accessed April 7, 2016.

  • Xirogiannis, G., Glykas, M., & Staikouras, C. (2010) Fuzzy cognitive maps in banking business process performance measurement. In: M. Glykas (Ed) Fuzzy cognitive maps: Advances in theory, methodologies, tools and applications (pp. 161–200). Berlin: Springer. doi:10.1007/978-3-642-03220-2_7

  • Zhang, W. R., Chen, S. S., Bezdek, J. C. (1989). Pool2: A generic system for cognitive map development and decision analysis. IEEE Transactions on Systems, Man, and Cybernetics, 19(1):31–39. doi:10.1109/21.24529

  • Zhang, M., Zhou, D., & Zhou, P. (2014). A real option model for renewable energy policy evaluation with application to solar PV power generation in China. Renewable and Sustainable Energy Reviews, 40, 944–955. doi:10.1016/j.rser.2014.08.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veysel Çoban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Çoban, V., Onar, S.Ç. (2017). Modelling Solar Energy Usage with Fuzzy Cognitive Maps. In: Kahraman, C., Sari, İ. (eds) Intelligence Systems in Environmental Management: Theory and Applications. Intelligent Systems Reference Library, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-42993-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42993-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42992-2

  • Online ISBN: 978-3-319-42993-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics