Skip to main content

Maritime Environmental Disaster Management Using Intelligent Techniques

  • Chapter
  • First Online:
Book cover Intelligence Systems in Environmental Management: Theory and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 113))

Abstract

The maritime environmental disasters are generally caused by collision, grounding, stranding heavy weather, explosion or fire. These disasters can cause spillage of oil, bunker, dirty water or chemical harmful substances. It is well known that the most known environmental disaster in maritime having serious impacts on marine life is oil spill. Although several intelligence techniques like heuristic search algorithms, machine learning, and fuzzy approach have been employed in maritime sector with various purposes, in the literature, applications of intelligent techniques for the solution of the maritime environmental disaster problems are quite limited. In this study, an intelligent system which consists of model-base, database, environmental disaster management actions, ship operation management actions, user interface, environmental disaster modelling, and decision support unit has been proposed. The proposed system, called as Maritime Intelligent Environmental Disaster Management (MIEDM), is aimed at strengthening operating mechanism along with the mitigation, preparedness, response, and recovery phases to eliminate the potential impacts of maritime environmental disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, Y. A., & Hasegawa, K. (2013). Automatic ship berthing using artificial neural network trained by consistent teaching data using nonlinear programming method. Engineering Applications of Artificial Intelligence, 26(10), 2287–2304.

    Article  Google Scholar 

  • Akyuz, E. (2015). A hybrid accident analysis method to assess potential navigational contingencies: The case of ship grounding. Safety Science, 79, 268–276.

    Article  Google Scholar 

  • Ali Ghorbani, M., Khatibi, R., Aytek, A., Makarynskyy, O., & Shiri, J. (2010). Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Computers & Geosciences, 36(5), 620–627.

    Article  Google Scholar 

  • Anyanwu, J. O. (2014). The causes and minimization of maritime disasters on passenger vessels. Global Journal of Researches in Engineering: Industrial Engineering, 14(2), Version 1.0.

    Google Scholar 

  • Bal Beşikçi, E., Arslan, O., Turan, O., & Ölçer, A. (2016). An artificial neural network based decision support system for energy efficient ship operations. Computers & Operations Research, 66, 393–401.

    Article  Google Scholar 

  • Bateman, J. A., Hois, J., Ross, R., & Tenbrink, T. (2010). A linguistic ontology of space for natural language processing. Artificial Intelligence, 174(14), 1027–1071.

    Article  Google Scholar 

  • Castillo, O., & Melin, P. (2014). A review on interval type-2 fuzzy logic applications in intelligent control. Information Sciences, 279, 615–631.

    Article  MathSciNet  Google Scholar 

  • Celik, M., & Topcu, Y. I. (2009). Use of an ANP to prioritize managerial responsibilities of maritime stakeholders in environmental incidents: An oil spill case. Transportation Research Part D, 14, 502–506.

    Article  Google Scholar 

  • Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.-P., & Langard, B. (2013). Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accident Analysis and Prevention, 59, 26–37.

    Article  Google Scholar 

  • Chen, S., & Chen, J. (2010). Forecasting container throughputs at ports using genetic programming. Expert Systems with Applications, 37(3), 2054–2058.

    Article  Google Scholar 

  • Dong, B., Zhu, L., Li, K., & Luo, M. (2015). Acceptance of the international compensation regime for tanker oil pollution—And its implications for China. Marine Policy, 61, 179–186.

    Article  Google Scholar 

  • Dongdong, L., Bin, L., Chenguang, B., Minghui, M., Yan, X., & Chunyan, Y. (2015). Marine oil spill risk mapping for accidental pollution and its application in a coastal city. Marine Pollution Bulletin, 96, 220–225.

    Article  Google Scholar 

  • EMSA. (2015). Annual overview of marine casualties and incidents, 2015.

    Google Scholar 

  • Engelmore, R. S., & Feigenbaum, E. (1993). Knowledge-based systems. In: Japan, WTEC Hyper-Librarian.

    Google Scholar 

  • Erkaymaz, O., Özer, M., & Yumuşak, N. (2012). Performance analysis of a feed-forward artificial neural network with small-world topology. Procedia Technology, 1, 291–296.

    Article  Google Scholar 

  • Escario, J., Jimenez, J., & Giron-Sierra, J. (2012). Optimisation of autonomous ship manoeuvres applying ant colony optimisation metaheuristic. Expert Systems with Applications, 39(11), 10120–10139.

    Article  Google Scholar 

  • French-McCay, D. P. (2004). Oil spill impact modeling: Development and validation. Environmental Toxicology and Chemistry, 23, 2441–2456.

    Article  Google Scholar 

  • García, T., Cancelas, N., & Soler-Flores, F. (2014). The artificial neural networks to obtain port planning parameters. Procedia—Social and Behavioral Sciences, 162, 168–177.

    Article  Google Scholar 

  • Garza-Gil, M. D., Suris-Regueiro, J. C., & Varela-Lafuente, M. M. (2006). Assessment of economic damages from the prestige oil spill. Marine Policy, 30(5), 544–551.

    Article  Google Scholar 

  • Gaur, S., & Deo, M. C. (2008). Real-time wave forecasting using genetic programming. Ocean Engineering, 35, 1166–1172.

    Article  Google Scholar 

  • Geng, J., Li, M., Dong, Z., & Liao, Y. (2015). Port throughput forecasting by MARS-RSVR with chaotic simulated annealing particle swarm optimization algorithm. Neurocomputing, 147, 239–250.

    Article  Google Scholar 

  • Ghodratnama, A., Tavakkoli-Moghaddam, R., & Azaron, A. (2015). Robust and fuzzy goal programming optimization approaches for a novel multi-objective hub location-allocation problem: A supply chain overview. Applied Soft Computing, 37, 255–276.

    Article  Google Scholar 

  • Goerlandt, F., & Montewka, J. (2015). A framework for risk analysis of maritime transportation systems: A case study for oil spill from tankers in a ship–ship collision. Safety Science, 76, 42–66.

    Article  Google Scholar 

  • Gómez-Vallejo, H. J., Uriel-Latorre, B., Sande-Meijide, M., Villamarín-Bello, B., Pavón, R., Fdez-Riverola, F., et al. (2016). A case-based reasoning system for aiding detection and classification of nosocomial infections. Decision Support Systems, 84, 104–116. doi:10.1016/j.dss.2016.02.005

    Article  Google Scholar 

  • Graham, P. (2012). Casualty and world fleet statistics at 01.01.2012. Communication presented at IUMI 2012. St Petersburg.

    Google Scholar 

  • Guo, W. J., Wang, Y. X., Xie, M. X., & Cui, Y. J. (2009). Modeling oil spill trajectory in coastal waters based on fractional Brownian motion. Marine Pollution Bulletin, 58, 1339–1346.

    Article  Google Scholar 

  • Hansen, H. L., Jepsen, J. R., & Hermansen, K. (2012). Factors influencing survival in case of shipwreck and other maritime disasters in the Danish merchant fleet since 1970. Safety Science, 50, 1589–1593.

    Article  Google Scholar 

  • Harish, N., Mandal, S., Rao, S., & Patil, S. (2015). Particle swarm optimization based support vector machine for damage level prediction of non-reshaped berm breakwater. Applied Soft Computing, 27, 313–321.

    Article  Google Scholar 

  • He, Y., Wu, T., Zhang, C., & Liang, Z. (2015). An improved MIP heuristic for the intermodal hub location problem. Omega, 57, 203–211.

    Article  Google Scholar 

  • IMO. (2005). Construction requirements for oil tankers—double hulls, 2005.

    Google Scholar 

  • ITOPF. (2015). Oil tanker spill statistics 2014. London: United Kingdom.

    Google Scholar 

  • Jiang, W. Y., Lin, Y., Chen, M., & Yu, Y. Y. (2015). A co-evolutionary improved multi-ant colony optimization for ship multiple and branch pipe route design. Ocean Engineering, 102, 63–70.

    Google Scholar 

  • Kim, K., & Moon, K. (2003). Berth scheduling by simulated annealing. Transportation Research Part B: Methodological, 37(6), 541–560.

    Article  Google Scholar 

  • Koch, P., Wagner, T., Emmerich, M. T. M., Back, T., & Konen, W. (2015). Efficient multi-criteria optimization on noisy machine learning problems. Applied Soft Computing, 29, 357–370.

    Article  Google Scholar 

  • Kosmas, O., & Vlachos, D. (2012). Simulated annealing for optimal ship routing. Computers & Operations Research, 39(3), 576–581.

    Article  Google Scholar 

  • Lazarowska, A. (2014). Ant colony optimization based navigational decision support system. Procedia Computer Science, 35, 1013–1022.

    Article  Google Scholar 

  • Lee, M., & Jung, J.-Y. (2015). Pollution risk assessment of oil spill accidents in Garorim Bay of Korea. Marine Pollution Bulletin, 100, 297–303.

    Article  Google Scholar 

  • Lee, J., & Kim, B. (2015). Industrial ship routing problem with split delivery and two types of vessels. Expert Systems with Applications, 42(22), 9012–9023.

    Article  Google Scholar 

  • Liu, X. (2010). Integrated modeling of oil spill response strategies: A coastal management case study. Environmental Science & Policy, 13, 415–422.

    Article  Google Scholar 

  • Liu, X., & Wirtz, K. W. (2006). Consensus oriented fuzzified decision support for oil spill contingency management. Journal of Hazardous Materials, A134, 27–35.

    Article  Google Scholar 

  • Lloyd Register Rulefinder. (2005). MARPOL—International Convention for the Prevention of Pollution from Ships Amended by Resolution MEPC.111(50) Amended by Resolution MEPC.115(51) Amended by Resolution MEPC.116(51), 2005.

    Google Scholar 

  • López, I., López, M., & Iglesias, G. (2015). Artificial neural networks applied to port operability assessment. Ocean Engineering, 109, 298–308.

    Article  Google Scholar 

  • Loureiro, M. L., Ribas, A., Lopez, E., & Ojea, E. (2006). Estimated costs and admissible claims linked to the prestige oil spill. Ecological Economics, 59(1), 48–63.

    Article  Google Scholar 

  • Lu, H. C., & Liu, H. K. (2013). Ant colony fuzzy neural network controller for cruising vessel on river. Applied Ocean Research, 42, 43–54.

    Google Scholar 

  • Luo, W., Moreira, L., & Guedes Soares, C. (2014). Manoeuvring simulation of catamaran by using implicit models based on support vector machines. Ocean Engineering, 82, 150–159.

    Article  Google Scholar 

  • Lupanov, A. I., Chermianin, S. V., & Logunov, K. V. (2013). The human factor in maritime disasters. Archives des Maladies Professionnelles et de l’Environnement, 74(5), 553–554.

    Article  Google Scholar 

  • Merritt, D. (1989). Building expert systems in prolog. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Molloy, M. S., Mulhern, J., & Gans, L. (2016). Maritime disasters. Ciottone’s disaster medicine (2nd ed., pp. 945–948). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Mostefa, M. (2014). The branch-and-bound method, genetic algorithm, and dynamic programming to determine a safe ship trajectory in fuzzy environment. Procedia Computer Science, 35, 348–357.

    Article  Google Scholar 

  • Musa, R., Arnaout, J., & Jung, H. (2010). Ant colony optimization algorithm to solve for the transportation problem of cross-docking network. Computers & Industrial Engineering, 59(1), 85–92.

    Article  Google Scholar 

  • Negro, M. G., Villasante, S., Penela, A. C., & Rodriguez, G. R. (2009). Estimating the economic impact of the prestige oil spill on the death coast (NW Spain) fisheries. Marine Policy, 33(1), 8–23.

    Article  Google Scholar 

  • Nishi, T., & Izuno, T. (2014). Column generation heuristics for ship routing and scheduling problems in crude oil transportation with split deliveries. Computers & Chemical Engineering, 60, 329–338.

    Article  Google Scholar 

  • Nova-Corti, I., Gonzalez-Laxe, F., & Pociovalisteanu, D.-M. (2015). The economic analysis of maritime catastrophes in sensitive areas: The assessment and calculation of damages in the environment and population’s way of life. Journal of Cleaner Production, 107, 267–278.

    Article  Google Scholar 

  • Patil, S., Mandal, S., & Hegde, A. (2012). Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater. Advances in Engineering Software, 45(1), 203–212.

    Article  Google Scholar 

  • Perez, J. (2003). Early socio-political and environmental consequences of the prestige oil spill in Galicia. Disasters, 27(3), 207–223.

    Article  Google Scholar 

  • Perry, R. I., Barange, M., & Ommer, R. E. (2010). Global changes in marine systems: A social-ecological approach. Process in Oceanography, 87(1), 331–337.

    Article  Google Scholar 

  • Praczyk, T. (2015). Using evolutionary neural networks to predict spatial orientation of a ship. Neurocomputing, 166, 229–243.

    Article  Google Scholar 

  • Puerto, J., Ramos, A., & Rodríguez-Chía, A. (2013). A specialized branch & bound & cut for single-allocation ordered median hub location problems. Discrete Applied Mathematics, 161(16–17), 2624–2646.

    Article  MathSciNet  MATH  Google Scholar 

  • Reed, M., Johansen, O., Brandvik, P. J., Daling, P., Lewis, A., Fiocco, R., et al. (1999). Oil spill modeling towards the close of the 20th century: Overview of the state of the art. Spill Science and Technology Bulletin, 5, 3–16.

    Article  Google Scholar 

  • Samuelides, M. S., Ventikos, N. P., & Gemelos, I. C. (2009). Survey on grounding incidents: Statistical analysis and risk assessment. Ships and Offshore Structures, 4(1), 55–68.

    Article  Google Scholar 

  • Satunin, S., & Babkin, E. (2014). A multi-agent approach to intelligent transportation systems modeling with combinatorial auctions. Expert Systems with Applications, 41(15), 6622–6633.

    Article  Google Scholar 

  • Song, D., & Dong, J. (2013). Long-haul liner service route design with ship deployment and empty container repositioning. Transportation Research Part B: Methodological, 55, 188–211.

    Article  Google Scholar 

  • Sterzik, S., & Kopfer, H. (2013). A Tabu search heuristic for the inland container transportation problem. Computers & Operations Research, 40(4), 953–962.

    Article  MathSciNet  Google Scholar 

  • Teymourian, E., Kayvanfar, V., Komaki, G. H. M., & Zandieh, M. (2016). Enhanced intelligent water drops and cuckoo search algorithms for solving the capacitated vehicle routing problem. Information Sciences, 334–335, 354–378.

    Article  Google Scholar 

  • Ting, C., Wu, K., & Chou, H. (2014). Particle swarm optimization algorithm for the berth allocation problem. Expert Systems with Applications, 41(4), 1543–1550.

    Article  Google Scholar 

  • Tirado, G., Hvattum, L., Fagerholt, K., & Cordeau, J. (2013). Heuristics for dynamic and stochastic routing in industrial shipping. Computers & Operations Research, 40(1), 253–263.

    Article  Google Scholar 

  • Tomera, M. (2014). Ant colony optimization algorithm applied to ship steering control. Procedia computer science, 35, 83–92.

    Google Scholar 

  • Turban, E., Sharda, R., Delen, D., & King, D. (2010). Business intelligence (2nd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Wirtz, K. W., Baumberger, N., Adam, S., & Liu, X. (2007). Oil spill impact minimization under uncertainty: Evaluating contingency simulations of the prestige accident. Ecological Economics, 61, 417–428.

    Article  Google Scholar 

  • Wirtz, K. W., & Liu, X. (2006). Integrating economy, ecology and uncertainty in an oil-spill DSS: The prestige accident in Spain, 2002. Estuarine, Coastal and Shelf Science, 70, 525–532.

    Article  Google Scholar 

  • Wu, Y., Luo, J., Zhang, D., & Dong, M. (2013). An integrated programming model for storage management and vehicle scheduling at container terminals. Research in Transportation Economics, 42(1), 13–27.

    Article  Google Scholar 

  • Yamada, T., & Febri, Z. (2015). Freight transport network design using particle swarm optimisation in supply chain–transport supernetwork equilibrium. Transportation Research Part E: Logistics and Transportation Review, 75, 164–187.

    Article  Google Scholar 

  • Yan, L., Jinsong, B., Xiaofeng, H., & Ye, J. (2009). A heuristic project scheduling approach for quick response to maritime disaster rescue. International Journal of Project Management, 27, 620–628.

    Article  Google Scholar 

  • Zhu, L., James, P., & Zhang, S. (2002). Statistics and damage assessment of ship grounding. Marine Structures, 15, 515–530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selcuk Cebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akyuz, E., Ilbahar, E., Cebi, S., Celik, M. (2017). Maritime Environmental Disaster Management Using Intelligent Techniques. In: Kahraman, C., Sari, İ. (eds) Intelligence Systems in Environmental Management: Theory and Applications. Intelligent Systems Reference Library, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-42993-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42993-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42992-2

  • Online ISBN: 978-3-319-42993-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics