Skip to main content

Fuzzy Neural Network (EFuNN) for Modelling Dissolved Oxygen Concentration (DO)

  • Chapter
  • First Online:
Intelligence Systems in Environmental Management: Theory and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 113))

Abstract

The aim of this research is to propose a new fuzzy neural network based model, called evolving fuzzy neural network (EFuNN) that extends existing artificial intelligence methods for modelling hourly dissolved oxygen concentration in river ecosystem. To demonstrate the capability and the usefulness of the EFuNN model, a one year period from 1 January 2014 to 31 December 2014, of hourly dissolved oxygen (DO) and Water quality variables data collected by the United States Geological Survey (USGS), were used for the development of the models. Two stations are chosen: the bottom (USGS station no: 420741121554001) and the top (USGS station no: 11509370), at Klamath River above Keno Dam nr Keno, Oregon, USA. For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The inputs variables used for the EFuNN and MLR models are water pH, temperature (TE), specific conductance (SC), and sensor depth (SD). In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE) and correlation coefficient (CC) statistics. The lowest RMSE and highest CC values were obtained with the EFuNN model. The results obtained in the current study demonstrate the potential applicability of the proposed modeling approach in modelling dissolved oxygen concentration in river ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, A., & Jain, L. (2005). Soft computing models for network intrusion detection systems. In S. Halgamuge, & L. Wang, (Eds.), Classification and clustering for knowledge discovery, studies in computational intelligence (pp. 191–207). Berlin, Germany: Springer-Verlag. doi:10.1007/11011620_13

  • Abraham, A., & Nath, B. (2001). A neuro-fuzzy approach for modelling electricity demands in Victoria. Applied Soft Computing, 1, 127–138. doi:10.1016/S1568-4946(01)00013-8

    Google Scholar 

  • Abraham, A., Steinberg, D., & Philip, N. S. (2001). Rainfall forecasting using soft computing model and multivariate adaptive regression splines, In IEEE Transaction on System, Man, Cybernetics Special Issue Fusion Software Computer Hard Computer Industrial Application (vol. 1, pp. 1–6), Feb. 2001.

    Google Scholar 

  • Akkoyunlu, A., Altun, H., & Cigizoglu, H. (2011). Depth-integrated estimation of dissolved oxygen in a Lake. ASCE Journal of Environmental Engineering, 137(10), 961–967. doi:10.1061/(ASCE)EE.1943-7870.0000376

    Google Scholar 

  • An, Y., Zou, Z., & Zhao, Y. (2015). Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1, 1) model. Journal of Environmental Sciences, 29, 158–164. doi:10.1016/j.jes.2014.10.005

    Article  Google Scholar 

  • Antanasijević, D., Pocajt, V., Perić-Grujić, A., et al. (2014). Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. Journal of Hydrology, 519, 1895–1907. doi:10.1016/j.jhydrol.2014.10.009

    Google Scholar 

  • Antanasijević, D., Pocajt, V., Povrenović, D., et al. (2013). Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Environmental Science and Pollution Research, 20(12), 9006–9013. doi:10.1007/s11356-013-1876-6

    Google Scholar 

  • Ay, M., & Kisi, O. (2012). Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. ASCE Journal of Environmental Engineering, 138(6), 654–662. doi:10.1061/(ASCE)EE.1943-7870.0000511

    Article  Google Scholar 

  • Basant, N., Gupta, S., Malik, A., et al. (2010). Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water-a case study. Chemometrics and Intelligent Laboratory Systems, 104, 172–180. doi:10.1016/j.chemolab.2010.08.005

    Article  Google Scholar 

  • Bayram, A., Uzlu, E., Kankal, M., et al. (2015). Modeling stream dissolved oxygen concentration using teaching-learning based optimization algorithm. Environmental Earth Science, 73, 6565–6576. doi:10.1007/s12665-014-3876-3

    Article  Google Scholar 

  • Chin, D. A. (2006). Water-quality engineering in natural systems. Wiley. ISBN-13: 978-0-471-71830-7 (cloth), p. 628. doi:10.1002/0471784559

  • Dhar, J., & Baghel, R. S. (2016). Role of dissolved oxygen on the plankton dynamics in Spatio-temporal domain. Modeling Earth Systems Environment, 2, 6. doi:10.1007/s40808-015-0061-y

    Article  Google Scholar 

  • Evrendilek, F., & Karakaya, N. (2014). Regression model-based predictions of diel, diurnal and nocturnal dissolved oxygen dynamics after wavelet denoising of noisy time series. Physica A, 404, 8–15. doi:10.1016/j.physa.2014.02.062

    Article  Google Scholar 

  • Evrendilek, F., & Karakaya, N. (2015). Spatiotemporal modeling of saturated dissolved oxygen through regressions after wavelet denoising of remotely and proximally sensed data. Earth Science Informatics, 8, 247–254. doi:10.1007/s12145-014-0148-4

    Article  Google Scholar 

  • Gopalakrishnan, k. (2011). Knowledge-based evolving connectionist systems for condition evaluation of sustainable roadways: A feasibility study. International Journal of Intelligent Engineering Informatics, 1(2), 125–141. doi:10.1504/IJIEI.2011.040175

    Article  MathSciNet  Google Scholar 

  • Heddam, S. (2014a). Generalized regression neural network (GRNN) based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA. Environmental Technology, 35(13), 1650–1657. doi:10.1080/09593330.2013.878396

    Article  Google Scholar 

  • Heddam, S. (2014b). Modelling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): A comparative study. Environmental Monitoring and Assessment, 186, 597–619. doi:10.1007/s10661-013-3402-1

    Article  Google Scholar 

  • Heddam, S. (2014c). Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS) based approach: Case study of Klamath River at miller island boat ramp, Oregon, USA. Environmental Science and Pollution Research, 21, 9212–9227. doi:10.1007/s11356-014-2842-7

    Article  Google Scholar 

  • Heddam, S. (2014d). Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: Case study of Connecticut River at Middle Haddam Station, USA. Environmental Monitoring and Assessment, 186, 7837–7848. doi:10.1007/s10661-014-3971-7

    Article  Google Scholar 

  • Heddam, S. (2016). Secchi disk depth estimation from water quality parameters: Artificial neural network versus multiple linear regression models? Environmental Process. doi:10.1007/s40710-016-0144-4

  • Heddam, S., Lamda, H., & Filali, S. (2016). Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: A comparative study. Environmental Process, 3(1), 153–165. doi:10.1007/s40710-016-0129-3

    Article  Google Scholar 

  • Inthasaro, P., & Wu, W. (2016). One-dimensional model of water quality and aquatic ecosystem/ecotoxicology in river systems. In L. K. Wang, C. T. Yang, & M.-H. S. Wang (Eds.), Advances in water resources management, handbook of environmental engineering, Vol. 16. doi:10.1007/978-3-319-22924-9_3

  • Kasabov, N. (2001). Evolving fuzzy neural networks for online supervised/unsupervised, Knowledge-based learning. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 31(6), 902–918. doi:10.1109/3477.969494

    Article  Google Scholar 

  • Kasabov, N. (2006). Adaptation and interaction in dynamical systems: Modelling and rule discovery through evolving connectionist systems. Applied Software Computing, 6, 307–322. doi:10.1016/j.asoc.2005.01.006

    Article  Google Scholar 

  • Kasabov, N. (2007). Evolving connectionist systems: The knowledge engineering approach (p. 465). New York: Springer. ISBN 978-1-84628-345-1. doi:10.1007/978-1-84628-347-5

  • Kasabov, N. (2015). Evolving connectionist systems for adaptive learning and knowledge discovery: Trends and directions. Knowledge-Based Systems, 80, 24–33. doi:10.1016/j.knosys.2014.12.032

    Article  Google Scholar 

  • Kayombo, S., Mbwette, T. S. A., Mayo, A. W., et al. (2000). Modelling diurnal variation of dissolved oxygen in waste stabilization ponds. Ecological Modelling, 127, 21–31. doi:10.1016/S0304-3800(99)00196-9

    Article  Google Scholar 

  • Kisi, O., Akbari, N., Sanatipour, M., et al. (2013). Modeling of dissolved oxygen in river water using artificial intelligence techniques. Journal of environmental informatics JEI, 22(2), 92–101. doi:10.3808/jei.201300248

    Article  Google Scholar 

  • Leppi, J. C., Arp, C. D., & Whitman, M. S. (2016). Predicting late winter dissolved oxygen levels in arctic lakes using morphology and landscape metrics. Environmental Management, 57, 463–473. doi:10.1007/s00267-015-0622-x

    Article  Google Scholar 

  • Mohan, S., & Pavan, Kumar K. (2016). Waste load allocation using machine scheduling: Model application. Environmental Process, 3(1), 139–151. doi:10.1007/s40710-016-0122-x

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., et al. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE & American Society of Agricultural and Biological Engineers, 50(3), 885–900.

    Google Scholar 

  • Najah, A., El-Shafie, A., Karim, O. A., et al. (2014). Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring. Environmental Science and Pollution Research, 21(3), 1658–1670. doi:10.1007/s11356-013-2048-4

    Article  Google Scholar 

  • O’Driscoll, C., O’Connor, M., Asam, Z. Z., et al. (2016). Forest clear felling effects on dissolved oxygen and metabolism in peatland streams. Journal of Environmental Management, 166, 250–259. doi:10.1016/j.jenvman.2015.10.031

    Article  Google Scholar 

  • Rafael Cavalcanti, J., Da Motta-Marques, D., & Fragoso, C. R. (2016). Process-based modeling of shallow lake metabolism: Spatio-temporal variability and relative importance of individual processes. Ecological Modelling, 323, 28–40. doi:10.1016/j.ecolmodel.2015.11.010

    Article  Google Scholar 

  • Ranković, V., Radulović, J., Radojević, I., et al. (2010). Neural network modeling of dissolved Oxygen in the Gruźa reservoir, Serbia. Ecological Modelling, 221, 1239–1244. doi:10.1016/j.ecolmodel.2009.12.023

    Article  Google Scholar 

  • Sancho, J., Iglesias, C., Piñeiro, J., et al. (2016). Study of water quality in a spanish river based on statistical process control and functional data analysis. Mathematical Geosciences, 48, 163–186. doi:10.1007/s11004-015-9605-y

    Article  MathSciNet  Google Scholar 

  • Schmid, B., & Koskiaho, J. (2006). Artificial neural network modeling of dissolved oxygen in a wetland pond: The case of Hovi Finland. ASCE Journal of Hydrology Engineering, 11(2), 188–192. doi:10.1061/(ASCE)-0699(2006)11:2(188)

    Article  Google Scholar 

  • Sullivan, A. B., Rounds, S. A., Asbill-Case, J. R. et al. (2013). Macrophyte and pH buffering updates to the Klamath River water-quality model upstream of Keno Dam, Oregon: U.S. Geological Survey Scientific Investigations Report 2013-5016, p. 52. http://pubs.usgs.gov/sir/2013/5016/

  • Sullivan, A. B., Rounds, S. A., Deas, M. L. et al. (2012). Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting-Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon: U.S. Geological Survey Open-File Report 2012-1101, p. 30. http://pubs.usgs.gov/of/2012/1101/

  • Sullivan, A. B., Sogutlugil, I. E., Rounds, S. A. et al. (2013). Modeling the water-quality effects of changes to the Klamath River upstream of Keno Dam, Oregon: U.S. Geological Survey Scientific Investigations Report 2013-5135, p. 60. http://pubs.usgs.gov/sir/2013/5135

  • Sun, W., Xia, C., Xu, M., et al. (2016). Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecological Indicators, 66, 306–312. doi:10.1016/j.ecolind.2016.01.054

    Article  Google Scholar 

  • U.S. Geological Survey. (2008). National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, Chaps. A1–A9 variously dated. Chapter A6, 6-2 dissolved oxygen, p 48. http://water.usgs.gov/owq/FieldManual/Chapter6/6.2_contents.html

  • Watts, M. (2009). A decade of Kasabov’s evolving connectionist systems: A review. IEEE Transaction on System Man Cybernetics, Part C: Applied Review, 39(3), 253–269. doi:10.1109/TSMCC.2008.2012254

    Article  Google Scholar 

  • Woodford, B. J. (2008). Evolving Neuro computing systems for horticulture applications. Applied Software Computing, 8, 564–578. doi:10.1016/j.asoc.2006.05.006

    Article  Google Scholar 

  • Yurdakul, M., Gopalakrishnan, K., & Akdas, H. (2014). Prediction of specific cutting energy in natural stone cutting processes using the neuro-fuzzy methodology. International Journal of Rock Mechanics and Mining Sciences, 67, 127–135. doi:10.1016/j.ijrmms.2014.01.015

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the staff of the United States Geological Survey (USGS) for providing the data that made this research possible. We would like to thank anonymous reviewers for their invaluable comments and suggestions on the contents of the manuscript which significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Heddam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heddam, S. (2017). Fuzzy Neural Network (EFuNN) for Modelling Dissolved Oxygen Concentration (DO). In: Kahraman, C., Sari, İ. (eds) Intelligence Systems in Environmental Management: Theory and Applications. Intelligent Systems Reference Library, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-42993-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42993-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42992-2

  • Online ISBN: 978-3-319-42993-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics