Skip to main content

Plant Fungal Disease Management Using Nanobiotechnology as a Tool

  • Chapter
  • First Online:
Advances and Applications Through Fungal Nanobiotechnology

Abstract

Fungal diseases cause significant economic agricultural losses around the world and their control have been limited to chemical fungicide in an irrational manner. The majority of the fungal pathogenic species belongs to the Ascomycetes (genera: Alternaria, Fusarium, Verticillium) and Basidiomycetes (genera: Sclerotium, Rhizoctonia). Nanobiotechnology as a novel tool could improve actual delivering techniques to management common plant fungal diseases; for example, using chemicals nanoparticles to tag specific sites at the cellular levels. Nowadays, applications of nanoparticles that provide better efficacy for the control of plant diseases are nanoforms of carbon, silver, silica, alumino-silicates and chitosan. To understand the possible benefits of employing nanobiotechnology to agriculture, it is necessary to analyze the penetration and transport of nanoparticles in plants. Some of the current advances, challenges and potential of nanobiotechnology in fungal diseases management are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA, Alghuthaymi MA (2015) Nanobiofungicides: are they the next-generation of fungicides? J Nanotechnol Mater Sci 2(1):1–3

    Article  Google Scholar 

  • Abreu F, Oliveira EF, Paula HCB, de Paula RCM (2012) Chitosan/cashewgumnanogels for essential oil encapsulation. Carbohyd Polymer 89(4):1277–1282

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D et al (2002) Enzyme-mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Akira O (1987) Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annu Rev Phytopathol 25:125–143

    Article  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotech Biotec Eq 29(2):221–236

    Article  CAS  Google Scholar 

  • Amborabé BE, Bonmort J, Fleurat-Lessard P, Roblin G (2008) Early events induced by chitosan on plant cells. J Exp Bot 59:2317–2324

    Article  PubMed  CAS  Google Scholar 

  • Anusuya S, Sathiyabama M (2015) Foliar application of β–D-glucan nanoparticles to control rhizome rot disease of turmeric. International J Biol Macromol 72:1205–1212

    Article  CAS  Google Scholar 

  • Arya A (2010) Recent advances in the management of plant pathogens: botanicals in the fungal pest management. In: Arya A, Perello AE (eds) Management of fungal plant pathogens. CAB International, UK, pp 1–25

    Chapter  Google Scholar 

  • Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan Oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96(11):1188–1194

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. doi:10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64(2):120–127

    Google Scholar 

  • Benhamou N, Lafontaine PJ, Nicole M (1994) Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with Chitosan. Phytopatol 84(12):1432–1444

    Article  CAS  Google Scholar 

  • Ben-shalom N, Ardi R, Pinto R, Aki C, Fallik E (2003) Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot 22:285–290

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mat Sci Semicon Proc 32:55–61

    Article  CAS  Google Scholar 

  • Borovaya M, Pirko Y, Krupodorova T, Naumenko A, Blume Y, Yemets A (2015) Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotech Biotec Eq 29(6):1156–1163

    Article  CAS  Google Scholar 

  • Chang KF, Hwang SF, Conner RL, Ahmed HU, Zhou Q (2015) First report of Fusarium proliferatum causing root rot in soybean (Glycine max L.) in Canada. Crop Prot 67:52–58

    Article  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Tech 22:585–594

    Article  CAS  Google Scholar 

  • Chen L, Kung SK, Chen HH, Lin SB (2010) Evaluation of zeta potential difference as an indicator for antibacterial strength of low molecular weight chitosan. Carbohyd Polym 82:913–919

    Article  CAS  Google Scholar 

  • Choudhury SR, Nair KK, Kumar R et al (2010) Nanosulfur: a potent fungicide against food pathogen, Aspergillus niger. AIP Conf Proc 1276:154–157

    Article  CAS  Google Scholar 

  • Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Hortic Ecosyst 19(2):131–151

    Google Scholar 

  • ChunYing S, Sheng ML, Hai Z, Alain P, Hao LW, Bao Xi ZH (2015) Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Sci Hortic 181:81–88

    Article  CAS  Google Scholar 

  • Cintas NA, Webster RK (2001) Effects of rice straw management on Sclerotium oryzae inoculum, stem rot severity, and yield of rice in California. Plant Dis 85(11):1140e1144

    Article  Google Scholar 

  • Clarkson JP, Fawcett L, Anthony SG, Young C (2014) A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density. PLoS One 9(4):e94049–e94061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coates L, Johnson G (1997) Postharvest diseases of fruit and vegetables. In: Brown JF, Ogle HJ (eds) Plant pathogens and plant diseases. Rockvale Publications, Armidale, pp 533–548

    Google Scholar 

  • Coley-Smith JR, Cooke RC (1971) Survival and germination of fungal sclerotia. Annu Rev Phytopathol 9:65–92

    Article  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  Google Scholar 

  • Dhandhukia PC, Patel M, Thakker JN (2012) Biosynthesis of silver nanoparticles using a plant pathogenic fungus. Fusarium oxysporum f. Sp. Cubense. J Pure Appl Sci 20:10–14

    Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi. Curr Trends Appl 32:49–73

    CAS  Google Scholar 

  • Doorn RA, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E et al (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe- based system coupled with universal, high-throughput real-time PCR on Open- Arrays™. BMC Genomics 8:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Ghaouth A, Arul J, Grenier J, Asselin A (1992) Antifungal activity of chitosan on two postharvest pathogen of strawberry fruits. Phytopathology 82:398–402

    Article  Google Scholar 

  • El-Shanshoury R, Elsilk SE, Ebeid ME (2012) Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079 T. African J Biotech 11(31):7957–7965

    CAS  Google Scholar 

  • Enyiukwu DN, Awurum AN, Nwaner JA (2014) Efficacy of plant-derived pesticides in the control of myco-induced postharvest rots of tubers and agricultural products: A review. Net J Agr Sci 2(1):30–46

    Google Scholar 

  • Farr DF, Rossman AY, Palm ME, McCray EB (2008) Fungal databases. Systematic Botany & Mycology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases

  • Fletcher J, Bender C, Budowle B, Cobb WT, Gold SE, Ishimaru CA et al (2006) Plant pathogenforensics: capabilities, needs, and recommendations. Microbiol Mol Biol 7:450–471

    Article  Google Scholar 

  • Foster AJ, Kora C, McDonald MR, Boland GJ (2011) Development and validation of a disease forecast model for Sclerotinia rot of carrot. Canadian Journal of Plant Pathol 33:187–201

    Article  Google Scholar 

  • Fountain JC, Scully BT, Ni X, Kemerait RC, Lee RD, Chen ZY, Guo BZ (2014) Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production. Front Microbiol 5:1–7

    Article  Google Scholar 

  • Fountain JC, Khera P, Yang L, Nayak SN, Scully BT, Lee RD, Chen ZY, Kemerait RC, Varshney RK, Guo B (2015) Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives. The Crop J 3:229–237

    Article  Google Scholar 

  • Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahlia and V. albo-atrum. Mol Plant Pathol 7(2):71–86

    Article  CAS  PubMed  Google Scholar 

  • Gabaldon JA, Maquieira A, Puchades R (1999) Current trends in immunoassay based kits for pesticide analysis. Crit Rev Food Sci Nutr 39:519–538

    Article  CAS  PubMed  Google Scholar 

  • Gan N, Yang X, Xie D, Wu Y, Wen WA (2010) Disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nanoparticles modified screen printed carbon electrode. Sensors 10:625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Jackson TA, Lambert KM, Li S, Hartman GL, Niblack TL (2004) Detection and quantification of Fusarium solani f. sp. glycines with real-time quantitative polymerase chain reaction. Plant Dis 88:1372–1380

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Jose-Yacaman M (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotech Adv 29(6):792–803

    Article  CAS  Google Scholar 

  • González D, Cubeta MA, Vilgalys R (2006) Phylogenetic utility of indels within ribosomal DNA and β-tubulin sequences from fungi in the Rhizoctonia solani species complex. Mol Phylogenet Evol 40:459–470

    Article  PubMed  CAS  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta Part A:Mol Biomol Spectrosc 106:170–174

    Article  CAS  Google Scholar 

  • Guo WZ, Li JJ, Wang YA, Peng XG (2003) Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem Mater 15:3125–3133

    Article  CAS  Google Scholar 

  • Gupta R, Khokhar MK, Lai R (2012) Management of black mould of onion. J Plant Pathol Microbiol 3(5):3

    Article  Google Scholar 

  • Hatschek E (1931) Inventor. Electro Chem Processes Ltd assignee Brouisol. British patent no 392:556

    Google Scholar 

  • Herron DA, Wingfield MJ, Wingfield BD, Rodas CA, Marincowitz S, Steenkamp ET (2015) Novel taxa in the Fusarium fujikuroi species complex from Pinus spp. Stud Mycol 80:131–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang E, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(746):750

    Google Scholar 

  • Ijato JY, Adebiyi AO, Ijadnola JÁ (2011) Antifungal effects of four tropical plants aqueous and ethanolic extracts on postharvest rot tomato (Lycopersicon esculenta) in Ado-Ekiti, Nigeria. New York Sci J 4(1):64–68

    Google Scholar 

  • Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomat 2012:1–9

    Article  CAS  Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res 11(8):20179–22085

    Article  CAS  Google Scholar 

  • Ireland KB, Weir BS, Phantavong S, Phitsanoukane P, Vongvichid K, Vilavong S, Tesoriero LA, Burgess LW (2014) First report of Rhizoctonia solani anastomosis group AG-4 HG-I in the Lao PDR. Australasian Plant Dis Notes 10:152

    Google Scholar 

  • Iven T, König S, Singh S, Braus-Stromeyer SA, Bischoff M, Tietze LF, Braus GH, Lipka V, Feussner I, Dröge-Laser W (2012) Transcriptional activation and production of tryptophan-derived secondary metabolites in Arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. Mol Plant 5(6):1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Jenkins SF, Averre CW (1986) Problems and progress in integrated control of southern blight of vegetables. Plant Dis 70(7):614e619

    Article  Google Scholar 

  • Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279

    Article  CAS  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mat Lett 115:13–17

    Article  CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Bio Macromol 77:36–51

    Article  CAS  Google Scholar 

  • Kaushik A, Solanki PR, Ansarib AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochem J 46:132–140

    CAS  Google Scholar 

  • Khodakovsky A, Schroder P, Sweldens W (2000) In Sig graph. Comput Graphics P 271-278

    Google Scholar 

  • Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag +, Cu 2+, Zn 2+) in hydroxyapatite. J Mater Sci Mater in Med 9:129–134

    Article  Google Scholar 

  • Kim J, Jia H, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Yoon JB, Do JW, Park HG (2008) A major recessive gene associated with anthracnose resistance to Colletotrichum capsici in chili pepper (Capsicum annuum L.). Breeding Sci 58:137–141

    Article  Google Scholar 

  • Kim S, Kim KT, Kim DH, Yang EY, Cho MC, Jamal A, Chae Y, Pae DH, Oh DG, Hwang JK (2010) Identification of quantitative trait loci associated with anthracnose resistance in chili pepper (Capsicum spp.). Korean J Hortic Sci 28:1014–1024

    CAS  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Kor Soc Mycol Mycobiol 40(53):58

    Google Scholar 

  • Klosterman SJ, Subbarao K, Kang S, Veronese P, God SE, Thomma BHJ et al (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathogen 7, e1002137

    Article  CAS  Google Scholar 

  • Koch S, Dunker S, Kleinhenz B, Roehrig M, von Tiedemann A (2007) Crop loss-related forecasting model for Sclerotinia stem rot in winter oilseed rape. Phytopathology 97:1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Kuramae E, Buzeto A, Ciampi M, Souza N (2003) Identification of Rhizoctonia solani AG 1-IB in Lettuce, AG 4 HG-I in tomato and melon, and AG 4 HG-III in Broccoli and Spinach, in Brazil. Eur J Plant Pathol 109:391–395

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence DP, Gannibal PB, Peever TL, Pryor BM (2013) The sections of Alternaria: formalizing species-groups concepts. Mycologia 105:530–546

    Article  PubMed  Google Scholar 

  • Lee J, Hong J, Do J, Yoon J, Lee JD, Hong JH, Do JW, Yoon JB (2010) Identification of QTLs for resistance to anthracnose to two Colletotrichum species in pepper. J Crop Sci Biotechnol 13:227–233

    Article  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell, Ames

    Book  Google Scholar 

  • Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immuno-assay for the rapid detection of dichlorodiphenyltrichlor-oethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, Mclaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91(10):1446–1480

    Article  PubMed  Google Scholar 

  • Manczinger L, Antal Z, Kredics L (2002) Ecophysiology and breeding of mycoparasitic Trichoderma strains (a review). Acta Microbiol Immunol Hung 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Martínez-de la Parte E, Trujillo M, Cantillo-Pérez T, García D (2013) First report of white mould of beans caused by Sclerotinia sclerotiorum in Cuba. New Dis Rep 27:1–5

    Article  Google Scholar 

  • Metha KC, Mitra MA (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64(2):120–127

    Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. J Plant Pathol 25:376–380

    Article  CAS  Google Scholar 

  • Misra AN, Misra M, Singh R (2013) Nanotechnology in agriculture and food industry. Int J Pure Appl Sci Technol 16(2):1–9

    CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Bioreduction of AuCl4 - ions by the fungus. Verticillium sp and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1

    Article  CAS  PubMed  Google Scholar 

  • Nasser LCB, Sutton JC, Boland GJ, James TW (1995) Influence of crop residues and soil moisture on Sclerotinia sclerotiorum from the Cerrados region in Brazil. Can J Plant Pathol 17:353–365

    Article  Google Scholar 

  • Nguyen HM, Hwang IC, Park JW, Park HJ (2012) Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag Sci 68(7):1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Norman D, Chen J (2013) Effect of foliar application of titanium dioxide on bacterial blight of Geranium and Xanthomonas leaf spot of poinsettia. Hort Sci 48:189–192

    Google Scholar 

  • Ogoshi A (1987) Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani kuhn. Annu Rev Phytopathol 25:125–143

    Article  Google Scholar 

  • Park K, Kim C (1992) Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Kor J Plant Pathol 8:61–69

    Google Scholar 

  • Park HP, Kim SH, Kim HJ, Choi HS (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302

    Article  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles, Article ID: 963961. doi:10.1155/2014/963961

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2015) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol. doi:10.1002/wnan.1363

    Google Scholar 

  • Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol Appl Sci 3(10):71–84

    Google Scholar 

  • Purdy LH (1979) Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69:875–880

    Article  Google Scholar 

  • Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interaction. Front Plant Sci 6:1–23

    Article  Google Scholar 

  • Qiang W (2015) Synthesis of Cu2O nanocrystals and their agricultural application. Bulg Chem Commun 47(3):929–936

    Google Scholar 

  • Rabea EI, Badawy M, Stevens C, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4(6):1457–1465

    Article  CAS  Google Scholar 

  • Rajiv SR, Venckatesh R (2013) Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta Part A Mol Biomol Spectrosc 112:384–387

    Article  CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely green synthesis and stabilization of metal nanoparticles. J Ame Chem Soc 125(46):13940–13941

    Article  CAS  Google Scholar 

  • Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R et al (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A 111(27):9923–9928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotem J (1994) The genus Alternaria. Biology, epidemiology and pathogenicity. APS, St. Paul

    Google Scholar 

  • Ruffolo SA, La Russa MF, Malagodi M. Rossi CO, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A 100(3):829–834

    Google Scholar 

  • Saccardo PA (1899) Saccardo’s Sylloge Fungorum XIV. Edwards JW (ed) Edwards Bros Inc., Ann Arbor, pp 1141–1154

    Google Scholar 

  • Safaa M, NaeimaA YMH, Nafady NA (2015) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomaterials 2015:1–10

    Google Scholar 

  • Saharan V, Mehrotraa A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  PubMed  Google Scholar 

  • Sarath Babu B, Pandravada S, Prasada RR, Anitha K, Chakrabarty S, Varaprasad K (2011) Global sources of pepper genetic resources against arthropods, nematodes and pathogens. Crop Prot 30:389–400

    Article  Google Scholar 

  • Sarsar V, Selwal MK, Selwal KK (2015) Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM. J Saudi Chem Soc 19:682–688

    Article  Google Scholar 

  • Sastry RK, Rashmi HB, Rao NH, Ilyas SM (2010) Integrating nanotechnology (NT) into agri-food systems research in India: a conceptual framework. Technol Forecast Soc Change 77:639–648

    Article  Google Scholar 

  • Sathiyabama M, Einstein RC (2015) Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici. Carbohydr Polym 133:400–407

    Article  CAS  PubMed  Google Scholar 

  • Saurabh S, Bijendra KS, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. J Nanosci Nanotechnol 5:1–5

    Article  Google Scholar 

  • Sawle DB, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):1–6

    Google Scholar 

  • Shankar SS, Ahmad A, Parischa R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92

    Google Scholar 

  • Sharp RG (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3(4):757–793

    Article  CAS  Google Scholar 

  • Shobha G, Moses V, Ananda S (2014) Biological synthesis of copper nanoparticles and its impact – a review. Int J Pharmaceut Sci Invention 3(8):28–38

    Google Scholar 

  • Shukla AM, Yadav RS, Shashi SK, Dikshit A (2012) Use of plant metabolites as an effective source for the management of postharvest fungal pest: A review. Inter J Curr Discov Innov 1(1):33–45

    Google Scholar 

  • Siddiquee S, Rovina K, Yusof NA, Rodrigues KF, Suryani S (2014) Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Bio Sensing Res 2:16–22

    Article  Google Scholar 

  • Simmons EG (1995) Alternaria themes and variations (112–144). Mycotaxon 55:55–163

    Google Scholar 

  • Smith ME, Henkel TW, Rollins JA (2015) How many fungi make sclerotia? Fungal Ecol 13:211–220

    Article  Google Scholar 

  • Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) The fungi. Curr Biol 19(18):R840–R845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streit E, Schatzmayr G, Tassis P, Tzika E, Marin D, Taranu I, Tabuc C, Nicolau A, Aprodu I, Puel O, Oswald IP (2012) Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins 4:788–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudheesh SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Inter J Biol Macromol 59:46–58

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendarn V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137

    Article  CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    CAS  PubMed  Google Scholar 

  • Than PP, Jeewon R, Hyde KD, Pongsupasamit S, Mongkolporn O, Taylor PWJ (2008) Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol 57:562–572

    Article  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Uddin W, Viji G, Schumann GL, Boyd SH (2003) Detection of Pyricularia grisea causing gray leaf spot of perennial ryegrass turf by a rapid immuno-recognition assay. Plant Dis 87:772–778

    Article  CAS  Google Scholar 

  • Vinayaka AC, Basheer S, Thakur MS (2009) Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron 24(6):1615–1620

    Article  CAS  PubMed  Google Scholar 

  • Vivek MN, Manasa M, Kambar Y, Nawaz AS, Vinayaka KS, Kekuda TR (2014) Antifungal activity of some plants of Western Ghats of Karnataka against Sclerotium rolfsii. Indian J Adv Plant Res 1(4):29–33

    CAS  Google Scholar 

  • Walter S, Nicholson P, Doohan FM (2010) Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66

    Article  CAS  PubMed  Google Scholar 

  • Wang YA, Li JJ, Chen HY, Peng XG (2002) Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc 124(2293):2298

    Google Scholar 

  • Wang B, Yang X, Zeng H, Liu H, Zhou T, Tan B et al (2012) The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Appl Environ Microbiol 93(1):191–201

    Google Scholar 

  • Wild CP, Gong YY (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31:71–82

    Article  CAS  PubMed  Google Scholar 

  • Woudenberg JHC, Groenewald JZ, Binder M, Groenwald JZ, Binder M, Crous PW (2013) Alternaria redefined. Stud Mycol 75:171–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woudenberg JHC, Seidl MF, Groenewald JZ, de Vries M, Stielow JB, Thomma BPHJ, Crous PV (2015) Alternaria section Alternaria: species, formae speciales or pathotypes? Stud Mycol 82:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia H, Wang XL, Zhu HJ, Gao BD (2011) First report of anthracnose caused by Glomerella acutata on chili pepper in China. Plant Dis 95:219

    Article  Google Scholar 

  • Xing K, Shen X, Zhu X, Ju X, Miao X, Tian J, Feng Z, Peng X, Jiang J, Qin S (2016) Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. Int J Biol Macromol 82:830–836

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 4:5408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Rashid KY, Adam LR, Daayf F (2011) Verticillium dahliae’s VdNEP acts both as a plant defence elicitor and a pathogenicity factor in the interaction with Helianthus annuus. Can J Plant Pathol 33(3):375–388

    Article  CAS  Google Scholar 

  • Young CS, Smith JA, Watling M, Clarkson JP, Whipps JM (2001) Environmental conditions influencing apothecial production and lettuce infection by Sclerotinia sclerotiorum in field conditions. In: Young C, Hughes K (eds) Proceedings of the 6th international Sclerotinia workshop, York, pp 181–182

    Google Scholar 

  • Zhang J, Liu Y, Zhang X, Shang JK (2013) Antifungal activity and mechanism of palladium-modified nitrogen-doped titanium oxide photocatalyst on agricultural pathogenic fungi Fusarium graminearum. ACS Appl Mater Inter 5(21):10953–10959

    Article  CAS  Google Scholar 

  • Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin SA (2004) Rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci 101:15027–15032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Pérez Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Álvarez, S.P., López, N.E.L., Lozano, J.M., Negrete, E.A.R., Cervantes, M.E.S. (2016). Plant Fungal Disease Management Using Nanobiotechnology as a Tool. In: Prasad, R. (eds) Advances and Applications Through Fungal Nanobiotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42990-8_8

Download citation

Publish with us

Policies and ethics