Skip to main content

Synthesis Techniques and Evaluation Methods of Nanoparticles as Fungicides

  • Chapter
  • First Online:
Advances and Applications Through Fungal Nanobiotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1296 Accesses

Abstract

The scientists’ attention concentrated on developing the materials for addition and desirable properties especially in nano-level because the materials allow improving their properties significantly. Nanostructured materials are involved in all fields of science with great applications in Agriculture. Among the widely used of these different types of nanoparticles in investigations to control a lot of fungal plant pathogens, there are different methods to prepare each type, also many methods and techniques followed to evaluate it as control agents against some plant pathogens. Also engineering of nanoparticles is the backbone of nanotechnology with very fast development and growing. This chapter focused on the methodology of nanoparticles preparation and its evaluation as pesticides in plant pathology researches

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aneesh PM, Vanaja KA, Jayaraj MK (2007) Synthesis of ZnO nanoparticles by hydrothermal method. Proc Spie 663966390J:1–9

    Google Scholar 

  • Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA (2003) Characterization of biophysical and metabolic properties of cells labeled with super paramagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838–846

    Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68(1):88–92

    Article  CAS  PubMed  Google Scholar 

  • Baldassari S, Komarneni S, Mariani E, Villa C (2005) Microwave hydrothermal process for the synthesis of rutile. Mater Res Bull 40:2014–2020

    Article  CAS  Google Scholar 

  • Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural Iron oxyhydroxide biomineralization Products. Science 289:751–754

    Article  CAS  PubMed  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicon Process 32:55–61

    Article  CAS  Google Scholar 

  • Bönnemann H, Richards RM (2001) Nanoscopic metal particles synthetic methods and potential applications. Eur J Inorg Chem 2001:2455–2480

    Article  Google Scholar 

  • Camtakan Z, Erenturk S, Yusan S (2011) Magnesium oxide nanoparticles: Preparation, characterization, and uranium sorption properties. Environ Progr Sustain Energy 31(4): doi:10.1002/ep

    Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83(1):42–48

    Article  CAS  PubMed  Google Scholar 

  • Chen JP, Yang RT (1993) Selective catalytic reduction of NO with NH3 on SO4-2/TiO2 super acid catalyst. J Catal 139:277–288

    Article  CAS  Google Scholar 

  • Cigang Xu, Harm van Zalinge , John LP, Andrew Glidle, Jonathan M Cooper, David R S Cumming, Wolfgang Haiss, Jian Lin Yao, David J Schiffrin, Maria Proupin-Perez, Richard Cosstick, Richard J Nichols (2006) A combined top-down bottom-up approach for introducing nanoparticle networks into nanoelectrode gaps. Nanotechnology 17:3333

    Google Scholar 

  • Daniel MC, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  • Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y (2001) Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape and structure via hydrothermal synthesis. Chem Mater 3:435–440

    Article  CAS  Google Scholar 

  • Dove PN, Kalaniya RY (2012) Synthesis and magnetic properties of Fe3O4, Fe2O3 core / shell nanoparticles. J Ind Chem Soc 89:853–856

    Google Scholar 

  • Durán N, Marcato PD, Alves OL, Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi:10.1186/1477-3155-3-8

    Google Scholar 

  • Elzey S, Grassian V (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12:1945–1958

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GO, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  PubMed  Google Scholar 

  • Forough M, Farhadi K (2010) Biological and green synthesis of silver nanoparticles. Turk J Eng Enviro Sci 34:1–7

    Google Scholar 

  • Glasauer S, Langley S, Beveridge TJ (2002) Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295:117–119

    Article  CAS  PubMed  Google Scholar 

  • Grancharov SG, Zeng H, Sun S, Wang SX, O'brien S, Murray CB, Kirtley JR, Held GA (2005) Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem 109:13030–13035

    Article  CAS  Google Scholar 

  • Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL (2000) Synthesis and characterization of poly (vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem Mater 12:2268–2274

    Article  CAS  Google Scholar 

  • Hansel CM, Benner SG, Nico P, Fendorf S (2004) Structural constraints of ferric (hydr) oxides on dissimilatory iron reduction and the fate of Fe (II). Geochim Cosmochim Acta 68:3217–3229

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  • Jana NR, Sau TK, Pal T (1998) Growing small silver particle as redox catalyst. J Phys Chem 103:115–121

    Article  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry interactions and potential environmental implications. Sci Total Environ 400:396–414

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Kim S, Min JS, Kim YJ, Lamsal K, Kim KS, Lee YS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Micobiology 38(1):39–45

    Article  CAS  Google Scholar 

  • Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  • Kandbal ND, Shah N, Oshali RL, Joshi R, Prasad J (2014) Co-Precipitation methods of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res 73

    Google Scholar 

  • Kanheda P, Birlaa S, Gaikwada S, Gadea A, Seabrab B, Rubilarc O, Durane N, Mahendra R (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115(15):13–17

    Article  CAS  Google Scholar 

  • Kawai-Nakamura A, Sato T, Sue K, Tanaka S, Saitoh K, Aida K, Hiaki T (2008) Rapid and continuous hydrothermal synthesis of metal and metal oxide nanoparticles with a microtube-reactor at 523 K and 30 MPa. Mater Lett 62:3471–3473

    Article  CAS  Google Scholar 

  • Khabat V, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (A route for large-scale production of AgNPs). Insciences J 1(1):65–79

    Google Scholar 

  • Khalil Neveen M (2013) Biogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigatus. Afr J Microbiol Res 7(50):5645–5651

    Article  CAS  Google Scholar 

  • Khandelwal N, Singh A, Jain D, Upadhyay MK, Verma HN (2010) Green synthesis of silver nanoparticles using Argimone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 5:483–489

    Google Scholar 

  • Kim JH, Lee GD, Park SS, Hong SS (2006) Hydrothermal synthesis of titanium dioxides using acidic and basic peptizing agents and their photocatalytic activity on the decomposition of orange II. In: Hyun-Ku Rhee I-SN, Jong moon P (eds) Studies in surface science and catalysis. Elsevier, Amsterdam

    Google Scholar 

  • Kim SY, Lim TH, Chang TS, Shin CH (2007) Photocatalysis of methylene blue on titanium dioxide nanoparticles synthesized by modified sol-hydrothermal process of TiCl4. Catal Lett 117:112–118

    Article  CAS  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klabunde KJ (2001) Nanoscale materials in chemistry. Wiley, Canada

    Google Scholar 

  • Krishnaraj C, Ramachandran RK, Mohan P, Kalaichelvan T (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochem Acta Part A 93:95–99

    Article  CAS  Google Scholar 

  • Lakkakula JR, Kolekar NS, Mendhulkar VD, Kashid SB (2009) Phytosynthesis of silver nanoparticle using gliricidia sepium (Jacq.). Curr Nanosci 5:117–122

    Article  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim SK, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I, Han SW, Kim K (2001) Simultaneous preparation of SERS-active metal colloids and plates by laser ablation. J Raman Spectrosc 32:947–952

    Article  CAS  Google Scholar 

  • Li H, Duan X, Liu G, Jia X, Liu X (2008) Morphology controllable synthesis of TiO2 by a facile hydrothermal process. Mater Lett 62:4035–4037

    Article  CAS  Google Scholar 

  • Makino T, Chia CH, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Matsumoto Y, Koinuma H (2002) High-throughput optical characterization for the development of a ZnO-based ultraviolet semiconductor-laser. Appl Surf Sci 189:277–283

    Article  CAS  Google Scholar 

  • Marek JK, Magdalena K, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    Article  CAS  Google Scholar 

  • Marek JK, Anna G, Rasmus JNF (2013) The effect of nanosilver on pigments production by Fusarium culmorum (W.G.Sm.) Sacc. Pol J Microbiol 62(4):365–372

    Google Scholar 

  • Medentsev AG, Alimenko VK (1998) Naphthoquinone metabolites of the fungi. Photochemistry 47:935–959

    Article  CAS  Google Scholar 

  • Miguel AA, Eduardo SM, Lesli O, Georgina C, Esther S (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532

    Article  CAS  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim S P, Jung MY, Lee YS (2009) Effect of colloidal silver nanoparticles on sclortium forming phytopathogenic fungi. Plant Pathol J 25(4):376–380

    Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  • MĂĽller J, WeiĂźenrieder S (1994) ZnO-thin film chemical sensors. Fresenius J Anal Chem 349:380–384

    Article  Google Scholar 

  • Navaladian S, Viswanathan B, Viswanath R, Varadarajan T (2006) Thermal decomposition as route for silver nanoparticles. Nanoscale Res Lett 2:44–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann N, Filser J, Miao AJ, Quigg A, Santschi P, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Onishi H (1989) Photometric determination of trace metals (4th Edition), Part IIB. Wiley, Canada

    Google Scholar 

  • Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Technol 37:161–164

    Article  CAS  Google Scholar 

  • Pallub S, Arun C, Sidhartha sanker G (2011) Induction of apoptosis in cancer cells at low silver nanoparticles concentrations using chitosan nano carrier. Appl Mater Interface 3:218–228

    Google Scholar 

  • Park H, Kim SH, Kim HJ, Choi SH (2006) Anew composition of nano silica-silver for control of various plant diseases. Plant Pathol J 23(3):295–302

    Article  Google Scholar 

  • Park S, Lee JH, Kim HS, Park HJ, Lee JC (2009) Effect of ZnO nanopowder dispersion on photocatalytic reactions for the removal of Ag ions from aqueous solution. J Electro Ceram 22:105–109

    Article  CAS  Google Scholar 

  • Perez JM (2007) Iron oxide nanoparticles: hidden talent. Nat Nano 2:535–536

    Article  CAS  Google Scholar 

  • Prachi K, Birlaa S, Swapnil G, Aniket G, Amedea B, Seabrab OR, Durane N, Mahendra R (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles, Article ID: 963961. doi:10.1155/2014/963961

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2015) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol. doi:10.1002/wnan.1363

    Google Scholar 

  • Pratsinis SE, Zhu W, Vemury S (1996) The role of gas mixing in flame synthesis of titania powders. Powder Technol 86:87–93

    Article  CAS  Google Scholar 

  • Pulit J, Banach M, SzczygĹ‚owska R, Bryk M (2013) Nanosilver against fungi; silver nanoparticles as an effective biocidal factor. Acta Biochim Pol 60:795–798

    PubMed  Google Scholar 

  • Raliya R, Tarafdar JC (2012) Novel approach for silver nanoparticles synthesis using Aspergillus terreus CZR-1: mechanism perspective. J Bionanosci 6:12–16

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2014) Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 4:93

    Article  CAS  Google Scholar 

  • Ramaswamy V, Jagtap NB, Vijayanand S, Bhange DS, Awati PS (2008) Photocatalytic decomposition of methylene blue on nanocrystalline titania prepared by different methods. Mater Res Bull 43:1145–1152

    Article  CAS  Google Scholar 

  • Rao NN, Dube S (1996) Photocatalytic degradation of mixed surfactants and some commercial soap/detergent products using suspended TiO2 catalysts. J Mol Catal A Chem 104:L197–L199

    Article  Google Scholar 

  • Rashidzadeh M (2008) Synthesis of high-thermal stable titanium dioxide nanoparticles. Int J Photoenergy Article ID 245981:4. doi:10.1155/2008/245981

    Google Scholar 

  • Rodriguez JA (2007) Synthesis properties and applications of oxide nanomaterials. Wiley, Canada, p 6

    Book  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  CAS  PubMed  Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700

    Article  Google Scholar 

  • Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851

    Article  CAS  PubMed  Google Scholar 

  • SchĂĽler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, bio mineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473

    Article  PubMed  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1(5):517–520

    Article  CAS  PubMed  Google Scholar 

  • Shenhar R, Rotello VM (2003) Nanoparticles: scaffolds and building blocks. Accounts Chem Res 36:549–561

    Article  CAS  Google Scholar 

  • Shtykova EV, Huang X, Remmes N, Baxter D, Stein B, dragnea B, Svergun DI, Bronstein LM (2007) Structure and properties of iron oxide nanoparticles encapsulated by phospholipids with poly (ethylene glycol) tails. J Phys Chem C 111:18078–18086

    Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113

    Google Scholar 

  • Souza GIH, Marcato PD, Duran N, Esposito E (2004) Utilization of Fusarium oxysporum in the biosynthesis of silver nanoparticles and its antibacterial activities. In: IX National Meeting of Environmental Microbiology Curtiba, PR (Brazil) Abstract p 25

    Google Scholar 

  • Suleiman M, Ali AA, Hussein A, Hammouti B, Hadda TB, Warad I (2013) Sulfur nanoparticles: synthesis, characterizations and their applications. J Mater Environ Sci 4(6):1029–1033

    CAS  Google Scholar 

  • Suman, Prasad R, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–91

    Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Radionuclide contamination: nanometre-size products of uranium bioreduction. Nature 419(134):134

    Article  CAS  PubMed  Google Scholar 

  • Tarasenko N, Nevar A, Nedelko M (2010) Properties of zinc-oxide nanoparticles synthesized by electrical-discharge technique in liquids. Phys Status Solidi 207:2319–2322

    Article  CAS  Google Scholar 

  • Tolaymat TM, El badawy A M, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputrea NM, Varadarajana PV, Nachanea RP, Paralikara KM, Balasubramanyaa RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Vijayalakshmi R, Rajendran V (2012) Synthesis and characterization of nano-TiO2 via different methods. Arch Appl Sci Res 4(2):1183–1190

    CAS  Google Scholar 

  • Wang ZL, Song J (2006) Piezoelectric nano generators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  CAS  PubMed  Google Scholar 

  • Wang WN, Lenggoro IW, Terashi Y, Kim TO, Okuyama K (2005) One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors. Mater Sci Eng B 123:194–202

    Article  CAS  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharmaceutical Sci 02(03):40–44

    Google Scholar 

  • Widder KJ, Senyel AE, Scarpelli GD (1978) Magnetic microspheres: a model system of site specific drug delivery in vivo. Proc Soc Exp Biol Med. 158:141–146

    Google Scholar 

  • Wiesner MR, Lowry GV, Jones KL, Hochella JMF, Giulio DI, Casman RTE, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterial. Environ Sci Technol 43:6458–6462

    Article  CAS  PubMed  Google Scholar 

  • Yehia RS, Ahmed OF (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr J Microbiol Res 7(19):1917–1923

    Article  CAS  Google Scholar 

  • Zhu X, Su M, Tang S, Wang L, Liang X, Meng F, Hong Y, Xu Z (2012) Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Molecular 18:1973–1982

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed I. S. Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, Y.S., Ahmed, A.I.S. (2016). Synthesis Techniques and Evaluation Methods of Nanoparticles as Fungicides. In: Prasad, R. (eds) Advances and Applications Through Fungal Nanobiotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42990-8_7

Download citation

Publish with us

Policies and ethics