Skip to main content

Microbial Enzymes: Current Features and Potential Applications in Nanobiotechnology

  • Chapter
  • First Online:
Book cover Advances and Applications Through Fungal Nanobiotechnology

Abstract

Nanobiotechnology is an immensely developing field of biotechnology due to its wide-ranging applications in different areas of science and technology. It is an integration of different fields of science which holds promise in the pharmaceutical industry, medicine, and agriculture. The synthesis of mono-dispersed nanoparticles with various sizes and shapes has been a big challenge in nanotechnology. Although different physical and chemical methods have been extensively used to produce mono-dispersed nanoparticles, these methods suffer from large limitations of toxicity and adverse reactions for the biological systems. In recent years, interest in employment of enzymatic systems like as fungal and bacterial enzymes as cell-free systems in production of nanoparticles with new biological activities has increased dramatically as efficient routes over traditional synthesis by whole organisms. Since various enzymes have different capacities for synthesis of nanoparticles in a diverse range of shapes and sizes, it is very important to find suitable enzymes for such purposes and improve the method for suitable conditions of nanoparticle synthesis. Enzymatically-synthesized nanoparticles have several advantages over those synthesized by microbial biomasses and culture supernatants. Besides meaningful decrease of the downstream steps needed for purification of produced nanoparticles, they have high potential for manufacturing applications as the enzymes can be immobilized for recycling in nanoparticle synthesis. Likewise, microbial enzymes have great importance in the progress of industrial bioprocesses with potential application in pulp and paper industries, detergents and textiles, pharmaceuticals, chemicals, food and beverages, biofuels, animal feed and personal care. Today, there is an urgent need for newly developed versatile enzymes in order to use in economically nanoparticle production processes. Microbial diversity and innovative molecular techniques, such as metagenomics and genomics, are being used to discover novel microbial enzymes whose major properties can be improved by different strategies based on rational, semi-rational and random directed evolution. Nearly all industrial enzymes are recombinant forms produced in bacteria and fungi. In this chapter, we highlight current status and future prospects of cell-free synthesis of biologically active nanomaterials using enzymes originated from fungi, bacteria and actinomycetes as an important part of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553. doi:10.1021/la026772l

    Article  CAS  Google Scholar 

  • Ahmad R, Mohsin M, Ahmad T, Sardar M (2015) Alpha amylase assisted synthesis of TiO2 nanoparticles: Structural characterization and application as antibacterial agents. J Hazard Mater 283:171–177. doi:10.1016/j.jhazmat.2014.08.073

    Article  CAS  PubMed  Google Scholar 

  • Akhavan O, Ghaderi E (2012) Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Technol 205:219–223. doi:10.1016/j.surfcoat.2010.06.036

    Article  CAS  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 8:933–940. doi:10.2217/fmb.11.78

    Article  CAS  Google Scholar 

  • Ananikov VP, Orlov NV, Beletskaya IP, Khrustalev VN, Antipin MY, Timofeeva TV (2007) New approach for size-and shape-controlled preparation of Pd nanoparticles with organic ligands. Synthesis and application in catalysis. J Am Chem Soc 129:7252–7253. doi:10.1021/ja071727r

    Article  CAS  PubMed  Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vect Bor Zoonotic Dis 12:262–268. doi:10.1089/vbz.2011.0661

    Article  Google Scholar 

  • Asghari F, Jahanshiri Z, Imani M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh, M (2016) Antifungal nanomaterials: Synthesis, properties and applications. In: Alexandru Mihai Grumezescu (eds) Nanobiomaterials in Antimicrobial Therapy - Applications of Bionanomaterials, Vol 6, 1st Edition, Chapter 10, Elsevier, pp 343–383.

    Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Coll Surf B Biointer 103:283–287. doi:10.1016/j.colsurfb.2012.10.030

    Article  CAS  Google Scholar 

  • Attard G, Casadesu´s M, Macaskie LE, Deplanche K (2012) Biosynthesis of platinum nanoparticles by Escherichia coli MC4100: can such nanoparticles exhibit intrinsic surface enantioselectivity? Langmuir 28:5267–5274. doi:10.1021/la204495z

    Google Scholar 

  • Ayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84. doi:10.1016/j.saa.2012.01.006

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. doi:10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Bahrami K, Nazari P, Nabavi M, Golkar M, Almasirad A, Shahverdi AR (2014) Hydroxyl capped silver-gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus. Nanomed J 1:155–161. doi:10.7508/nmj.2014.03.005

    Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides. Coll Surf B Biointer 68:88–92. doi:10.1016/j.colsurfb.2008.09.022

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venketaraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170. doi:10.1016/j.materresbull.2007.06.020

    Article  CAS  Google Scholar 

  • Bera RK, Mandal SM, Retna Raj C (2014) Antimicrobial activity of fluorescent Ag nanoparticles. Lett Appl Microbiol 58:520–526. doi:10.1111/lam.12222

    Article  CAS  PubMed  Google Scholar 

  • Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutants using a suite of bioassays. Nanotoxicology 8:1–16. doi:10.3109/17435390.2012.742935

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Doyle RJ (1989) Metal Ions and Bacteria. Wiley, New York

    Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Coll Surf B Biointer 47:160–164. doi:10.1016/j.colsurfb.2005.11.026

    Article  CAS  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782. doi:10.1039/B806051G

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Book  Google Scholar 

  • Castro ME, Cottet L, Castillo A (2014) Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Mater Lett 115:42–44. doi:10.1016/j.matlet.2013.10.020

    Article  CAS  Google Scholar 

  • Cheng Y, Samia AC, Li J, Kenney ME, Resnick A, Burda C (2010) Delivery and efficacy of a cancer drugs a function of the bond to the gold nanoparticle surface. Langmuir 26:2248–2255. doi:10.1021/la902390d

    Article  CAS  PubMed  Google Scholar 

  • Clark DS (1994) Can immobilization be exploited to modify enzyme activity? Trends Biotechnol 12:439–443. doi:10.1016/0167-7799(94)90018-3

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333. doi:10.1016/j.biomaterials.2011.11.057

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and applications in water hygiene management. Langmuir 25(14):8192–8199. doi:10.1021/la900585p

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Liang J, Schmidt M, Laffir F, Marsili E (2012a) Biomineralization mechanism of gold by zygomycete fungi Rhizopous oryzae. ACS Nano 6:6165–6173. doi:10.1021/nn301502s

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E (2012b) Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem 14:1322–1334. doi:10.1039/C2GC16676C

    Article  CAS  Google Scholar 

  • Dhanasekar NN, Rahul G, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol 25:1129–1135. doi:10.4014/jmb.1410.10036

    Article  CAS  PubMed  Google Scholar 

  • Dujardin E, Mann S (2002) Bio-inspired materials chemistry. Adv Mater 14:1–14

    Article  Google Scholar 

  • Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organization of metallic nanoparticles usingtobacco mosaic virus templates. Nano Lett 3:413–417. doi:10.1021/nl034004o

    Article  CAS  Google Scholar 

  • Duran N, Seabra AB (2012) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95:275–288. doi:10.1007/s00253-012-4118-9

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Marcato PD, Alves OL, DeSouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8. doi:10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976. doi:10.1128/AEM.01658-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 10:135. doi:10.1371/journal.pgen.0020135

    Article  CAS  Google Scholar 

  • Eppler AS, Rupprechter G, Anderson EA, Somorjai GA (2000) Thermal and chemical stability and adhesion strength of Pt nanoparticle arrays supported on silica studied by transmission electron microscopy and atomic force microscopy. J Phys Chem B 104:7286–7292. doi:10.1021/jp0006429

    Article  CAS  Google Scholar 

  • Erasmus M, Cason ED, van Marwijk J, Botes E, Gericke M, van Heerden E (2014) Gold nanoparticle synthesis using the thermophilic bacterium Thermus scotoductus SA-01 and the purification and characterization of its unusual gold reducing protein. Gold Bull 47:245–253. doi:10.1007/s13404-014-0147-8

    Article  CAS  Google Scholar 

  • Feldheim DL, Foss CA (2002) Metal nanoparticles: synthesis, characterization, and applications. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mat Bioenerg 2:243–247. doi:10.1166/jbmb.2008.401

    Article  Google Scholar 

  • Gade A, Ingle A, Bawaskar M, Rai M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085. doi:10.1007/s11051-008-9573-y

    Article  CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386. doi:10.1016/j.nano.2009.06.005

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, Jose-Yacaman M (1999) Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanopart Res 1:397–404. doi:10.1023/A:1010008915465

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, JG Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361. doi:10.1021/la020835i

    Google Scholar 

  • Geng X, Grove TZ (2015) Repeat protein mediated synthesis of gold nanoparticles: effect of protein shape on the morphological and optical properties. RSC Adv 5:2062–2069. doi:10.1039/C4RA12014K

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006a) Microbial production of gold nanoparticles. Gold Bull 39:22–28. doi: 10.1007/BF03215529

    Google Scholar 

  • Gericke M, Pinches A (2006b) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140. doi:10.1016/j.hydromet.2006.03.019

    Google Scholar 

  • Ghaseminezhad SM, Hamedi S, Shojaosadati SA (2012) Green synthesis of silver nanoparticles by a novel method: comparative study of their properties. Carbo Polym 89:467–472. doi:10.1016/j.carbpol.2012.03.030

    Article  CAS  Google Scholar 

  • Gholami-Shabani MH, Akbarzadeh A, Mortazavi M, Emadzadeh MK (2012) Evaluation of the antibacterial properties of silver nanoparticles synthesized with Fusarium oxysporum and Escherichia coli. New Cell Mol Biotechnol J 2:27–33

    Google Scholar 

  • Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098. doi:10.1007/s12010-014-0809-2

    Article  CAS  PubMed  Google Scholar 

  • Gholami-Shabani M, Imani A, Shams-Ghahfarokhi M, Gholami-Shabani Z, Pazooki A, Akbarzadeh A, Riazi G, Razzaghi-Abyaneh M (2016) Bioinspired synthesis, characterization and antifungal activity of enzyme-mediated gold nanoparticles using a fungal oxidoreductase. J Iran Chem Soc doi:10.1007/s13738-016-0923-x

    Google Scholar 

  • Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M (2015) Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Proc Biochem 50:1076–1085. doi:10.1016/j.procbio.2015.04.004

    Article  CAS  Google Scholar 

  • Goodman C, McCusker C, Yilmaz T, Rotello V (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900. doi:10.1021/bc049951i

    Article  CAS  PubMed  Google Scholar 

  • Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100. doi:10.1007/s10529-008-9825-z

    Article  CAS  PubMed  Google Scholar 

  • Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791. doi:10.1039/B711490G

    Article  CAS  PubMed  Google Scholar 

  • Guo KW (2012) Green nanotechnology of trends in future energy: a review. Int J Energy Res 36:1–17. doi:10.1002/er.1928

    Article  Google Scholar 

  • Guo C, Boullanger P, Jiang L, Liu T (2007) Highly sensitive gold nanoparticles biosensor chips modified with a self-assembled bilayer for detection of Con A. Biosens Bioelectron 22:1830–1834. doi:10.1016/j.bios.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009a) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350. doi:10.1016/j.biomaterials.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009b) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Coll Surf B Biointer 74:328–335. doi:10.1016/j.colsurfb.2009.07.048

    Article  CAS  Google Scholar 

  • Gurunathan S, Jeong JK, Han JW, Zhang XF, Park JH, Kim JH (2015) Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res Lett 10:1–17. doi:10.1186/s11671-015-0747-0

    Article  CAS  Google Scholar 

  • Han G, Ghosh P, De M, Rotello MV (2007) Drug and gene delivery using gold nanoparticles. Nanobiotechnology 3:40–45. doi:10.1007/s12030-007-0005-3

    Article  CAS  Google Scholar 

  • Hanauer M, Lotz A, Pierrat S, Sonnichsen C, Zins I (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7:2881–2885. doi:10.1021/nl071615y

    Article  CAS  PubMed  Google Scholar 

  • Hassan MS, Amna T, Yang OB, El-Newehy MH, Al-Deyab SS, Khil MS (2012) Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Coll Surf B Biointer 97:201–206. doi:10.1016/j.colsurfb.2012.04.032

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987. doi:10.1016/j.matlet.2007.01.018

    Article  CAS  Google Scholar 

  • Heath JR (1999) Nanoscale materials. Acc Chem Res 32:388. doi:10.1021/ar990059e

    Article  CAS  Google Scholar 

  • Hernández-Sierra JF, Ruiz F, Cruz Pena DC, Martínez-Gutiérrez F, Martínez AE, de Jesús Pozos Guillén A, Tapia-Pérez H, Martínez Castañón G (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed: Nanotech Biol Med 4:237–240. doi:10.1016/j.nano.2008.04.005

    Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumours under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554. doi:10.1073/pnas.2232479100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios 7:999–1005

    Google Scholar 

  • Huang J, Lin L, Li Q, Sun D, Wang Y, Lu Y, He N, Yang K, Yang X, Wang H, Wang W, Lin W (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of Sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47:6081–6090. doi:10.1021/ie701698e

    Article  CAS  Google Scholar 

  • Huang JL, Wang WT, Lin LQ, Li QB, Lin WS, Li M, Mann S (2009) A general strategy for the biosynthesis of gold nanoparticles by traditional Chinese medicines and their potential application as catalysts. Chem Asian J 4:1050–1054. doi:10.1002/asia.200900064

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanoparticles and application. Chem Soc Rev 44:6330–6374

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli I, Fontana L, Leso V (2013) Bergamaschi A (2013) The Effects of Nanomaterials as Endocrine Disruptors. Int J Mol Sci 14:16732–16801. doi:10.3390/ijms140816732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ilic V, Saponjı´c Z, Vodnik V, Potkonjak B, Jovancic P, Nedeljkovı´c J, Radetic M (2009) The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydr Polym 78:564–569. doi:10.1016/j.carbpol.2009.05.015

    Google Scholar 

  • Ingle A, Gade A, Pierrat S, Seonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. doi:10.2174/157341308784340804

    Article  CAS  Google Scholar 

  • Iravani HK, Mirmohammadi SV, B Zolfaghari S (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharmaceutical Sci 9:385–406

    Google Scholar 

  • Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2013) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol 97:859–869. doi:10.1007/s00253-012-3934-2

    Article  CAS  PubMed  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043. doi:10.1094/PDIS-93-10-1037

    Article  CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Coll Surf B Biointer 65:150–153. doi:10.1016/j.colsurfb.2008.02.018

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2009) Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresource Technol 100:5356–5358. doi:10.1016/j.biortech.2009.05.051

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Coll Surf B Biointer 77:257–262. doi:10.1016/j.colsurfb.2010.02.007

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Coll Surf B Biointer 71:133–137. doi:10.1016/j.colsurfb.2009.01.016

    Article  CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. doi:10.1021/jp026731

    Article  CAS  Google Scholar 

  • Khan SA, Ahmad A (2014) Enzyme mediated synthesis of water-dispersible, naturally protein capped, monodispersed gold nanoparticles; their characterization and mechanistic aspects. RSC Adv 4:7729–7734. doi:10.1039/C3RA43888K

    Article  CAS  Google Scholar 

  • Kharissova OV, Dias HR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31:240–248. doi:10.1016/j.tibtech.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614. doi:10.1073/pnas.96.24.13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4 ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29. doi:10.1016/j.hydromet.2005.09.006

    Article  CAS  Google Scholar 

  • Konishi YK, Ohno N, Saitoh T, Nomura S, Nagamine H, Hishida Y, Takahashi T, Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Uruga, T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. Uruga. J Biotechnol 128:648–653. doi:10.1016/j.jbiotec.2006.11.014

    Google Scholar 

  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007b) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192. doi:10.1016/j.electacta.2007.02.073

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Ahmad A, Khan MI (2007) Sulfite reductase‐mediated synthesis of gold nanoparticles capped with phytochelatin. Biotechnol Appl Biochem 47:191–195. doi:10.1042/BA20060205

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Liang H (2008) Polyelectrolyte-mediated non-micellar synthesis of monodispersed ‘aggregates’ of gold nanoparticles using a microwave approach. Coll Surf A Physicochem Eng Asp 330:143–150. doi:10.1016/j.colsurfa.2008.07.043

    Article  CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141. doi:10.1007/s10534-010-9381-6

    Article  CAS  PubMed  Google Scholar 

  • Li D, Mathew B, Mao C (2012a) Biotemplated synthesis of hollow double-layered core/shell titania/silica nanotubes under ambient conditions. Small 8:3691–3697. doi:10.1002/smll.201200421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Newton SMC, Klebba PE, Mao C (2012b) Flagellar display of bone- protein-derived peptides for studying peptide-mediated biomineralization. Langmuir 28:16338–16346. doi:10.1021/la303237u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Qu X, Newton SMC, Klebba PE, Mao C (2012c) Morphology-controlled synthesis of silica nanotubes through pH and sequence-responsive morphological change bacterial flagellar biotemplates. J Mater Chem 22:15702–15709. doi:10.1039/C2JM31034A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima E, Guerra R, Lara V, Guzmán A (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J 7:1–7

    Article  CAS  Google Scholar 

  • Lin WS, Lok CN, Che CM (2014) Biosynthesis of silver nanoparticles from silver (i) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chem Sci 5:3144–3150. doi:10.1039/C4SC00138A

    Article  CAS  Google Scholar 

  • Liu A, Abbineni G, Mao C (2009) Nanocomposite films assembled from genetically engineered filamentous viruses and gold nanoparticles: Nanoarchitecture- and humidity-tunable surface plasmon resonance spectra. Adv Mater 21:1001–1005. doi:10.1002/adma.200800777

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi:10.1021/pr0504079

    Article  CAS  PubMed  Google Scholar 

  • Lolina S, Narayanan V (2013) Antimicrobial and anticancer activity of gold nanoparticles synthesized from grapes fruit extract. Chem Sci Trans 2:S105–S110. doi:10.7598/cst2013.22

    Google Scholar 

  • Mabbett AN, Yong P, Farr JPG, Macaskie LE (2004) Reduction of Cr (VI) by “palladized” biomass of Desulfovibrio desulfuricans ATCC 29577. Biotechnol Bioeng 87:104–109. doi:10.1002/bit.20105

    Article  CAS  PubMed  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G, Annadurai G (2013) Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J Nanostruct Chem 3:1–7. doi:10.1186/2193-8865-3-30

    Article  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg Chem Appl 2014:1–10. doi:10.1155/2014/347167

    Article  CAS  Google Scholar 

  • Mann S (2001) Biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Meldrum FC, Cölfen H (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev 108:4332–4432. doi:10.1021/cr8002856

    Google Scholar 

  • Mi C, Wang Y, Zhang J, Huang H, Xu L, Wang S, Fang X, Fang J, Mao C, Xu S (2011) Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J Biotechnol 153:125–132. doi:10.1016/j.jbiotec.2011.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SNA (2014) Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomed 9:121–127. doi:10.2147/IJN.S52306

    Article  CAS  Google Scholar 

  • Mijatovic D, Eijkel JCT, Van Den Berg A (2005) Technologies for nanofluidic systems: top-down vs. bottom-up—a review. Lab Chip 5:492–500. doi:10.1039/B416951D

    Article  CAS  PubMed  Google Scholar 

  • Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS Biol 7:1–7. doi:10.1371/journal.pone.0030321

    Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresource Technol 166:235–242. doi:10.1016/j.biortech.2014.04.085

    Article  CAS  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356. doi:10.1016/j.biotechadv.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:205–220. doi:10.1080/13102818.2015.1008192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517. doi:10.1007/s11051-007-9275-x

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519. doi:10.1021/nl0155274

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3:461–463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Sushma V, Patra S, Barui AK, Bhadra MP, Sreedhar B, Patra CR (2012) Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology 23:455103

    Article  PubMed  CAS  Google Scholar 

  • Muthukrishnan S, Bhakya S, Kumar TS, Rao M (2015) Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii–an endemic species. Ind Crops Prod 63:119–124. doi:10.1016/j.indcrop.2014.10.022

    Article  CAS  Google Scholar 

  • Nagajyothi PC, Lee SE, An M, Lee KD (2012) Green synthesis of silver and gold nanoparticles using Lonicera japonica flower extract. Bull Korean Chem Soc 33:2609–2612. doi:10.5012/bkcs.2012.33.8.2609

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298. doi:10.1021/cg0255164

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13. doi:10.1016/j.cis.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  • Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Super paramagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Mater 293:483–496. doi:10.1016/j.jmmm.2005.01.064

    Article  CAS  Google Scholar 

  • Ng CK, Sivakumar K, Liu X, Madhaiyan M, Ji L, Yang L, Tang C, Song H, Kjelleberg S, Cao B (2013) Influence of outer membrane c‐type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. Biotechnol Bioeng 110:1831–1837. doi:10.1002/bit.24856

    Article  CAS  PubMed  Google Scholar 

  • Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819. doi:10.1021/jp066539m

    Article  CAS  Google Scholar 

  • Oh JW, Chung WJ, Heo K, Jin HE, Lee BY, Wang E, Zueger C, Wong W, Meyer J, Kim C, Lee SY, Kim WG, Zemla M, Auer M, Hexemer A, Lee SW (2014) Biomimetic virus-based colourimetric sensors. Nat Commun 5:3043. doi:10.1038/ncomms4043

  • Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A (2013) Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8, e59140. doi:10.1371/journal.pone.0059140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paciotti GF, Mayer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2006) Colloidal gold: a novel nanoparticle vector for tumour directed drug delivery. Drug Deliv 11:169–183. doi:10.1080/10717540490433895

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chem Bio Chem 9:1415–1422. doi:10.1002/cbic.200700592

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Google Scholar 

  • Park TJ, Lee KG, Lee SY (2015) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol 1–14. doi:10.1007/s00253-015-6904-7

    Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:1–6

    Google Scholar 

  • Perez-Espitia PJ, Ferreira-Soares NF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioproc Technol 5:1447–1464. doi:10.1007/s11947-012-0797-6

    Article  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73:374–381. doi:10.1016/j.saa.2009.02.037

    Article  PubMed  CAS  Google Scholar 

  • Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2009) Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28:207–213. doi:10.1016/j.tibtech.2009.12.004

    Article  CAS  Google Scholar 

  • Poinern GEJ (2014) A laboratory course in nanoscience and nanotechnology, 1st edn. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  • Poinern GEJ, Le X, Chapman P, Fawcett D (2013) Green biosynthesis of gold nanometre scale plate using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa. Gold Bull 46:165–173. doi:10.1007/s13404-013-0096-7

    Article  CAS  Google Scholar 

  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesisof silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2:574–580. doi:10.1016/S2221-1691(12)60100-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles, Article ID: 963961. doi:10.1155/2014/963961

    Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanoparticles. doi:10.1155/2013/431218

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2015) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol. doi:10.1002/wnan.1363

    Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi:10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, Velayutham K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomolecul Spectrosc 91:23–29. doi:10.1016/j.saa.2012.01.011

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Met 1–8. doi:10.1155/2014/692643

    Google Scholar 

  • Ramamurthy CH, Padma M, Mareeswaran R, Suyavaran A, Kumar MS, Premkumar K, Thirunavukkarasu C (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Coll Surf B Biointer 102:808–815. doi:10.1016/j.colsurfb.2012.09.025

    Article  CAS  Google Scholar 

  • Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27:714–719. doi:10.1021/la1036162

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Chen CY, Chen CC, Jean JS, Chen HR, Tseng MJ, Wang JC (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol 10:6567–6574. doi:10.1166/jnn.2010.2519

    Article  CAS  PubMed  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f sp lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  PubMed  Google Scholar 

  • Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microb Technol 45:267–273. doi:10.1016/j.enzmictec.2009.06.006

    Article  CAS  Google Scholar 

  • Ro¨sken LM, Ko¨rsten S, Fischer CB, Scho¨nleber A, van Smaalen S, Geimer S, Wehner S (2014) Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp. J Nanopart Res 16:2370. doi:10.1007/s11051-014-2370-x

  • Roopan SM, Surendra TV, Elango G, Kumar SHS (2014) Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl Microbiol Biotechnol 98:5289–5300. doi:10.1007/s00253-014-5736-1

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Das TK (2015) A review on biosynthesis of silver nanoparticles using Aspergillus species. Adv Sci Engin Medi 7:729–738. doi:10.1166/asem.2015.1760

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong CW, Nuryasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem 6:61–70

    CAS  Google Scholar 

  • Salata OV (2004) Application of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–9

    Article  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504. doi:10.1186/1477-3155-2-3

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Engin Sci 1:154. doi:10.4236/aces.2011.13023

    Article  CAS  Google Scholar 

  • Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649. doi:10.1021/ja047846d

    Article  CAS  PubMed  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781. doi:10.2147/IJN.S24805

    CAS  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943. doi:10.1016/j.procbio.2009.04.009

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488. doi:10.1038/nmat1152

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chem Soc Rev 44:8410–8423. doi:10.1039/C5CS00236B

    Article  CAS  PubMed  Google Scholar 

  • Show S, Tamang A, Chowdhury T, Mandal D, Chattopadhyay B (2015) Bacterial (BKH1) assisted silica nanoparticles from silica rich substrates: a facile and green approach for biotechnological applications. Coll Surf B Biointer 126:245–250. doi:10.1016/j.colsurfb.2014.12.039

    Article  CAS  Google Scholar 

  • Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634. doi:10.1007/s10295-006-0139-7

    Article  CAS  PubMed  Google Scholar 

  • Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindaraju K (2007) A novel extracellular synthesis of mondisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Coll Surf B Biointer 57:97–101. doi:10.1016/j.colsurfb.2007.01.010

    Article  CAS  Google Scholar 

  • Soundarrajan C, Sankari A, Dhandapani P, Maruthamuthu S, Ravichandran S, Sozhan G, Palaniswamy N (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioproc Biosys Eng 35:827–833. doi:10.1007/s00449-011-0666-0

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin RL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686. doi:10.1021/la0202374

    Article  CAS  Google Scholar 

  • Subhankari I, Nayak PL (2013) Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2:14–17. doi:10.5829/idosi.wjnst.2013.2.1.21134

    Google Scholar 

  • Subramanian V (2012) Green synthesis of silver nanoparticles using Coleus amboinicus lour, antioxitant activity and in vitro cytotoxicity against Ehrlich’s Ascite carcinoma. J Pharm Res 5:1268–1272

    Google Scholar 

  • Sugunan A, Melin P, Schn€urer J, Hilborn JG, Dutta J (2007) Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater 19:77–81. doi:10.1002/adma.200600911

    Google Scholar 

  • Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S (2011) Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Proc Biochem 47:273–279. doi:10.1016/j.procbio.2011.11.003

    Article  CAS  Google Scholar 

  • Surugau N, Urban PL (2009) Electrophoretic methods for separation of nanoparticles. J Sep Sci 32:1889–1906. doi:10.1002/jssc.200900071

    Article  CAS  PubMed  Google Scholar 

  • Tang T, Krysmann JM, Hamley WI (2008) In situ formation of gold nanoparticles with a thermoresponsive block copolymer corona. Colloids Surf A Physicochem Eng Asp 317:764–767. doi:10.1016/j.colsurfa.2007.11.032

    Article  CAS  Google Scholar 

  • Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:31–63. doi:10.3390/nano1010031

    Article  CAS  Google Scholar 

  • Tran QH, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001

    Article  CAS  Google Scholar 

  • Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2010) Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Coll Surf B Biointer 75:335–341. doi:10.1016/j.colsurfb.2009.09.006

    Article  CAS  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40. doi:10.2217/nnm.09.77

    Article  CAS  PubMed  Google Scholar 

  • Vetchinkina EP, Loshchinina EA, Burov AM, Dykman LA, Nikitina VE (2014) Enzymatic formation of gold nanoparticles by submerged culture of the basidiomycete Lentinus edodes. J Biotechnol 82:37–45. doi:10.1016/j.jbiotec.2014.04.018

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 66:1413–1418. doi:10.1016/j.matlet.2006.07.042

    Article  CAS  Google Scholar 

  • Vivek M, Kumar PS, Steffi S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 3:143–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xia Y (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4:2047–2050. doi:10.1021/nl048689j

    Article  CAS  Google Scholar 

  • Wang F, Li D, Mao C (2008) Genetically modified flagella as templates for silica fibers: From hybrid nanotubes to 1D periodic nanohole arrays. Adv Funct Mater 18:4007–4013. doi:10.1002/adfm.200800889

    Article  CAS  Google Scholar 

  • Wang Y, Ju Z, Cao B, Gao X, Zhu Y, Qiu P, Xu H, Pan P, Bao H, Wang L, Mao C (2015) Ultrasensitive rapid detection of human serum antibody biomarkers by biomarker-capturing viral nanofibers. ACS Nano 9:4475–4483. doi:10.1021/acsnano.5b01074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Liu H (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Biores Technol 103:273–278. doi:10.1016/j.biortech.2011.09.118

    Article  CAS  Google Scholar 

  • Weller H (2003) Synthesis and self–assembly of colloidal nanoparticles. Philos Trans R Soc Lond A Math Phys Eng Sci 361:22–240. doi:10.1098/rsta.2002.1136

    Article  Google Scholar 

  • Xia Y, Xia X, Wang Y, Xie S (2013) Shape-controlled synthesis of metal nanocrystals. Bull MRS 38:335–344. doi:10.1557/mrs.2013.84

    Article  CAS  Google Scholar 

  • Xu AW, Ma Y, Cölfen H (2007) Biomimetic mineralization. J Mater Chem 17:415–449. doi:10.1039/B611918M

    Article  CAS  Google Scholar 

  • Yang M, Shuai Y, Zhang C, Chen Y, Zhu L, Mao C, OuYang H (2014) Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Biomacromolecules 15:1185–1193. doi:10.1021/bm401740x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Zhou G, Shuai Y, Wang J, Zhu L, Mao C (2015) Ca2+ induced self-assembly of Bombyx mori silk sericin into a Nanofibrous network-like protein matrix for directing controlled nucleation of hydroxyapatite nano-needles. J Mater Chem B 3:2455–2462. doi:10.1039/C4TB01944J

    Article  CAS  Google Scholar 

  • Yates MD, Cusick RD, Logan BE (2013) Extracellular palladium nanoparticle production using Geobacter sulfurreducens. ACS Sustainable Chem Eng 1:1165–1171. doi:10.1021/sc4000785

    Article  CAS  Google Scholar 

  • Yong P, Rowson A, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379. doi:10.1002/bit.10369

    Article  CAS  PubMed  Google Scholar 

  • Yong P, Paterson-Beedle M, Mikheenko IP, Macaskie LE (2007) From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst. Biotechnol Lett 29:539–544. doi:10.1007/s10529-006-9283-4

    Article  CAS  PubMed  Google Scholar 

  • Yun H, Kim JD, Choi HC, Lee CW (2013) Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull Korean Chem Soc 34:3261. doi:10.5012/bkcs.2013.34.11.3261

    Article  CAS  Google Scholar 

  • Zarei M, Jamnejad A, Khajehali E (2014) Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J Microbiol 7(1):e8720. doi:10.5812/jjm.8720

  • Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by aone-Pot sol-gel method. Environ Sci Technol 43:2905–2910. doi:10.1021/es803450

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Sache L (2009) Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiat Res 172:114–119

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol 10:19

    Article  CAS  Google Scholar 

  • Zinjarde SS (2012) Bio-inspired nanomaterials and their applications as antimicrobial agents. Chron Young Sci 3:1–74. doi:10.4103/2229-5186.94314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Razzaghi-Abyaneh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gholami-Shabani, M., Shams-Ghahfarokhi, M., Gholami-Shabani, Z., Razzaghi-Abyaneh, M. (2016). Microbial Enzymes: Current Features and Potential Applications in Nanobiotechnology. In: Prasad, R. (eds) Advances and Applications Through Fungal Nanobiotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42990-8_5

Download citation

Publish with us

Policies and ethics