Skip to main content

Polymer Inorganic Nanocomposites: A Sustainable Antimicrobial Agents

  • Chapter
  • First Online:
Advances and Applications Through Fungal Nanobiotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Certainly there is a vital necessitates to identify such more compounds to present more alternatives to some of the over-used antimicrobial compounds. Some of these new green and/or hybrid composites may reveal antimicrobial efficacy that differ mechanistically from other classical synthetic antimicrobials that being used. Additionally, using green nanotechnology to reduce probable ecological, plant and human health hazards linked with the drug and pesticides industries and use of nano-based agricultural products, and to find more eco-friendly bioactive materials. Biopolymers include plant-derived materials (starch, cellulose, other polysaccharides, proteins), animal products (proteins, polysaccharides), microbial products (polyhydroxybutyrate) and polymers synthesized chemically from naturally derived monomers (polylactic acid, PLA). Uses a combination of active ingredients from polymer inorganic nanocomposites may increase antimicrobial activity, reduce drug and pesticide dose. In the current article, synthesis and characterize a new green and/or hybird polymer inorganic nanocomposites will be reviewed to demonstrate, synthesis characterize, synergistic antimicrobial activity, toxicity and recyclable in soil and water environment, and understood toxicity dynamics of new nanocomposites. As a final point, we will discuss the applications and our future trends on how outlook research should be oriented to contribute in the replacement of synthetic materials with new polymer inorganic nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA, Khokhlov AR (2015) Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cotton seeds. Appl Nanosci 5:255–265

    Article  CAS  Google Scholar 

  • Abd-Elsalam KA, Alghuthaymi MA (2015) Nanobiofungicides: are they the next-generation of fungicides? J Nanotechol Mater Sci 2:1–3

    Google Scholar 

  • Abou-Okeil A, El Shafei A (2011) ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydr Polym 83:920–925

    Article  CAS  Google Scholar 

  • Abu-Laiwi FA, Ahmed MB, Ibrahim NA, Ab. Rahman MZ, Md. Dahlan KZ, Wan Yunus WMZ (2003) Graft copolymerization of methyl methacrylate onto rubber-wood fiber using H2O2 and Fe2+ as an initiator system. J Appl Polym Sci 88:2499–2503

    Article  CAS  Google Scholar 

  • Ahmad Z, Pandey R, Sharma S, Khuller GK (2006) Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48:171–176

    PubMed  Google Scholar 

  • Ahn S, Vang MS, Yang HS et al (2009) Histologic evaluation and removal torque analysis of nano- and microtreated titanium implants in the dogs. J Adv Prosthodont 1:75–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Ain P (2007) Nanotechnologies: what we do not know. Technol Soc 29:43–61

    Article  Google Scholar 

  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lubbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    CAS  PubMed  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Galiev ES, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236. doi:10.1080/13102818.2015.1008194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alix S, Mahieu A, Terrie C, Soulestin J, Gerault E, Feuilloley MGJ, Gattin R, Edon V, Ait-Younes T, Leblanc N (2013) Active pseudo-multilayered films from polycaprolactone and starch based matrix for food-packaging applications. Eur Polym J 49:1234–1242

    Article  CAS  Google Scholar 

  • Allan CR, Hadwiger LA (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 3:285–287

    Article  CAS  Google Scholar 

  • Alonso A (2012) Development of polymeric nanocomposites with enhanced distribution of catalytically active or bactericide nanoparticles. Ph.D. Thesis, Universitat Autònoma de Barcelona

    Google Scholar 

  • Al-Sagheer FA, Merchant S (2011) Visco-elastic properties of chitosan–titania nano-composites. Carbohydr Polym 85:356–362

    Article  CAS  Google Scholar 

  • Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391

    Article  CAS  PubMed  Google Scholar 

  • Amara D, Felner I, Nowik I, Margel S (2009) Physicochemical and engineering aspects synthesis and characterization of Fe and Fe3O4 nanoparticles by thermal decomposition of triiron dodecacarbony. Colloids Surf A Physicochem Eng Asp 339:106–110

    Article  CAS  Google Scholar 

  • Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258:151–165

    Article  CAS  PubMed  Google Scholar 

  • Arul EJ, Asselin A, Benhamou N (1992) Antifungal activity of chitosan on postharvest pathogens induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol Res 96:769–779

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Azizi S, Ahmad MB, Mahdavi M, Abdolmohammadi S (2008) Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. Bioresources 8:1841–1851

    Google Scholar 

  • Baba Y, Yamashita T, Kawano Y, Uchida Y (1996) Antifungal activity of aqueous soluble chitosan derivatives on Fusarium and Verticillium. Nippon Kagaku Kaishi 1:48–53

    Article  Google Scholar 

  • Baekeland LH (2014) Bakelite, a new composition of matter: its synthesis, constitution, and uses. Sci Am 68(Suppl 1909):322

    Google Scholar 

  • Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh S (2010) Heightened reactive oxygen species generation in the antimicrobial activity of three component iodinated chitosan-silver nanoparticle composite. Langmuir 26:590–5908

    Google Scholar 

  • Belyaev EY (2000) Drug synthesis methods and manufacturing technology, New medical materials based on modified polysaccharides (Review). Pharm Chem J 34:607–612

    Article  CAS  Google Scholar 

  • Belyakova OA, Shulenina AV, Zubavichus YV, Veligzhanin AA, Naumkin AV, Vasil’kov AY (2013) Diagnostics of gold containing surgical dressing materials with X-Ray and synchrotron radiation. J Surf Invest X-Ray Synchrotron Neutron Tech 7:509–514

    Article  CAS  Google Scholar 

  • Berger TJ, Spardaro JA, Bierman R, Chapin SE, Becker RD (1976) Antifungal properties of electrically generated metallic ions. Antimicrob Agents Chemother 10:856–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyki M, Zhaveh S, Khalili S, Rahmani-Cherati T, Abollahi A, Bayat M, Tabatabaei M, Mohsenifar A (2014) Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crop Prod 54:310–319

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, Macleod M, Hungerbühler K (2007) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  PubMed  CAS  Google Scholar 

  • Brunel F, Gueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356

    Article  CAS  PubMed  Google Scholar 

  • Cárdenaz G, Díaz JV, Meléndrez MF, Cruzat CC, Cancino AG (2009) Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym Bull 62:511–524

    Article  CAS  Google Scholar 

  • Chen DH, Liao MH (2002) Preparation and characterization of YADH-bound magnetic nanoparticles. J Mol Catal B Enzym 16:283–291

    Article  CAS  Google Scholar 

  • Chien PJ, Sheu F, Yang FH (2007) Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78:225–229

    Article  CAS  Google Scholar 

  • Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, Sabbatini T, Bleve-Zacheo M, Zambonin PG, D’Alessio M, Traversa E (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phy Lett 85:2417–2419

    Article  CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-romero M, Cummins E (2011) Nanotechnologies in the food industry recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    Article  CAS  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK (2014) Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int Nano Lett 4:107–117

    Article  CAS  Google Scholar 

  • Di Y, Li Q, Zhuang X (2012) Antibacterial finishing of Tencel/cotton nonwoven fabric using Ag nanoparticles-chitosan composite. J Eng Fibers Fabr 7:24–29

    CAS  Google Scholar 

  • Dietz K, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589

    Article  CAS  PubMed  Google Scholar 

  • Du WL, Xu YL, Xu ZR, Fan CL (2008) Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions. Nanotechnology 19:085707. doi:10.1088/0957-4484/19/8/085707

    Article  PubMed  CAS  Google Scholar 

  • Fang SW, Li CF, Shih DYC (1994) Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J Food Prot 57:136–140

    CAS  Google Scholar 

  • Faundez G, Troncoso M, Navarrete P, Figueroa G (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol 4:1–7

    Article  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Jiménez A, Kenny JM (2013) Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nanobiocomposites. J Food Eng 118:117–124

    Article  CAS  Google Scholar 

  • Freese C, Uboldi C, Gibson MI, Unger RE, Weksler BB, Romero IA et al (2012) Uptake and cytotoxicity of citrate-coated gold nanospheres: comparative studies on human endothelial and epithelial cells. Part Fibre Toxicol 9:23. doi:10.1186/1743-8977-9-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman M, Juneja VK (2010) Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 73:1737–1761

    CAS  PubMed  Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 87:60–72

    Google Scholar 

  • Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nano textiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 28:604–611

    Google Scholar 

  • Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Haider A, Kwak S, Gupta KC, Kang IK (2015) Antibacterial activity and cytocompatibility of PLGA/CuO hybrid nanofiber scaffolds prepared by electrospinning. J Nanomater 2015:832762. doi:10.1155/2015/832762

    Article  CAS  Google Scholar 

  • Hardy JJE, Hubert S, Macquarrie DJ, Wilson AJ (2004) Chitosan-based heterogeneous catalysts for suzuki and heck reactions. Green Chem 6:53–56

    Article  CAS  Google Scholar 

  • He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of Zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  • Herrero AM, Carmona P, Jiménez-Colmeneroa F, Ruiz-Capillas C (2014) Polysaccharide gels as oil bulking agents: technological and structural properties. Food Hydrocoll 36:374–381

    Article  CAS  Google Scholar 

  • Hollinger MA (1996) Toxicological aspects of topical silver. Crit Rev Toxicol 26:255–260

    Article  CAS  PubMed  Google Scholar 

  • Honary S, Ghajar K, Khazaeli P, Shalchian P (2011) Preparation, characterization and antibacterial properties of silver-chitosan nanocomposites using different Molecular weight grades of chitosan. Trop J Pharm Res 10:69–74

    Article  CAS  Google Scholar 

  • Innovation N, Island R (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 21:69–75

    Google Scholar 

  • Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 2:2475–2490

    Article  Google Scholar 

  • Jiang J, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersion for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  • Jo Y K, Kim BH, Jung GH (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Google Scholar 

  • Joselito D, Soytong K (2014) Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. J Agric Technol 10:823–831

    Google Scholar 

  • Joseph S, Mathew B (2014) Microwave assisted biosynthesis of silver nanoparticles using the rhizome extract of Alpinia galanga and evaluation of their catalytic and antimicrobial activities. J Nanopart 2014:1–9

    Article  CAS  Google Scholar 

  • Judet-Correia D, Charpentier C, Bensoussan M, Dantigny P (2011) Modeling the inhibitory effect of copper sulfate on the growth of Penicillium expansum and Botrytis cinerea. Lett Appl Microbiol 53:558–564

    Article  CAS  PubMed  Google Scholar 

  • Kalita M, Basel MT, Janik K, Bossmann SH (2009) Optical and electronic properties of metal and semiconductor nanostructures. In: Nanoscale materials in chemistry. Wiley, London, pp 537–578. doi:10.1002/9780470523674.ch16

    Chapter  Google Scholar 

  • Kaur P, Thakur R, Barnela M, Chopra M, Manujaand A, Chaudhury A (2015) Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan-metal nanocomposites. J Chem Technol Biotechnol 90:867–873

    Article  CAS  Google Scholar 

  • Kavitha K, Sutha S, Rajendran V, Prabhu M, Jayakumar T (2013) In situ synthesized novel biocompatible titania-chitosan M nanocomposites with high surface area and antibacterial activity. Carbohydr Polym 93:731–739

    Article  CAS  PubMed  Google Scholar 

  • Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Abdollahi A, Bayat M, Tabatabaei M (2015) Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT Food Sci Technol 60:502–508

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kim CH, Choi JW, Chun HJ, Choi KS (1997) Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity. Polym Bull 38:387–393

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Moon WS, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1490

    CAS  PubMed  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper Anthracnose disease in field. Mycobiology 39:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199–2204

    Article  CAS  Google Scholar 

  • Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961

    Article  CAS  Google Scholar 

  • Li LH, Deng JC, Deng HR, Liu ZL, Xin L (2010) Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res 345:994–998

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wang Y, Peng Z, She F, Kong L (2011) Effects of starch nanocrystal on structure and properties of waterborne polyurethane-based composites. Carbohydr Polym 85:698–703

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Guan YL, Yao KD (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335

    Article  CAS  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbial 107:1193–1201

    Article  CAS  Google Scholar 

  • Llorens A, Lloret E, Picouet P, Fernandez A (2012a) Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices. Int J Food Microbiol 158:113–119

    Article  CAS  PubMed  Google Scholar 

  • Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012b) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29

    Article  CAS  Google Scholar 

  • Lloret E, Picouet P, Fernández A (2012) LWT—Matrix effects on the antimicrobial capacity of silver based nanocomposite absorbing materials. Food Sci Technol 49:333–338

    CAS  Google Scholar 

  • Longano D, Ditaranto N, Cioffi N, Niso FD, Sibillano T, Mezzapesa FP, Ancona A, Conte A, Del Nobile MA, Sabbatini L, Torsi L (2013) One- vs two-step preparation of antimicrobial coatings composed of laser ablated copper nanoparticles and polylactic acid. MRS Proc 1453, mrss12-1453-gg11-03. doi:10.1557/opl.2012.1044.

  • Mahapatra SS, Karak N (2008) Silver nanoparticle in hyperbranched polyamine: synthesis, characterization and antibacterial activity. Mater Chem Phys 112:1114–1119

    Article  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51. doi:10.1016/j.carbpol.2007.07.025

    Article  CAS  Google Scholar 

  • Manikandan A, Sathiyabama M (2015) Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. J Nanomed Nanotechnol 6:1–5

    Google Scholar 

  • Maynard AD (2006) Nanotechnology: risks. Nano Toady 1:22–33

    Article  Google Scholar 

  • McKenna KP (2009) Unique bonding in nanoparticles and powders. In: Nanoscale materials in chemistry. Wiley, London, pp 15–36. doi:10.1002/9780470523674.ch2

    Chapter  Google Scholar 

  • Mehtar S, Wiid I, Todorov SD (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect 68:45–51

    Article  CAS  PubMed  Google Scholar 

  • Mikos A, Lyman M, Freed L, Langer R (1994) Wetting of poly (L-lactic acid) and poly (D, L-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58

    Article  CAS  PubMed  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Le YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Miranda SP, Miranda E, Serrano J (2007) Chitosan and gamma irradiated chitosan against Aspergillus flavus in maize. Asian Chitin J 3:37–47

    Google Scholar 

  • Mohan R, Shanmugharaj AM, Hun RS (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96:119–126

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman JM (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Mu Q, Hondow NS, Krzemiński Ł, Brown AP, Jeuken LJ, Routledge MN (2012) Mechanism of cellular uptake of genotoxic silica nanoparticles. Part Fibre Toxicol 9:29. doi:10.1186/1743-8977-9-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Campagne C, Devaux E, Dubois P (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 12:1762–1771

    Article  CAS  PubMed  Google Scholar 

  • Najafzadeh H, Ghorbanpour M, Hekmati-Moghaddam SH, Karimiyan A (2015) Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan J Res Med Sci 17, e2179

    Google Scholar 

  • Namazi H, Dadkhah A (2008) Surface modification of starch nanocrystals through ring-opening polymerization of epsilon-caprolactone and investigation of their micro structures. J Appl Polym Sci 110:2405–2412

    Article  CAS  Google Scholar 

  • Namazi H, Mosadegh M (2011) Bio-nanocomposites based on naturally occurring common polysaccharides chitosan, cellulose and starch with their biomedical applications. In: Tiwari A (ed) Recent developments in bio-nanocomposites for biomedical applications. pp 379–397

    Google Scholar 

  • Nan L, Yang W, Liu Y, Hui X, Ying L, Manqi L, Ke Y (2008) Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. coli. J Mater Sci Technol 24:197–201

    CAS  Google Scholar 

  • Nikitin LN, Vasil’kov AY, Banchero M, Manna L, Naumkin AV, Podshibikhin VL, Abramchuk SS, Buzin MI, Korlyukov AA, Khokhlov (2011) Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles, Russian J. of Phys Chem A 85, 1190–1195.

    Google Scholar 

  • Nnemeka I, Sule M, Friday A, Philbus D, Godwin EU, Shola O, Moses O, Rufus S (2014) Rapid synthesis of silver nano particles capped in starch and its anti-mold activity. Int J Innov Sci Res 9:16–25

    Google Scholar 

  • Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Park SY, Chung JW, Priestley RD, YeopKwak S (2012) Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity. Cellulose 19:2141–2215

    Article  CAS  Google Scholar 

  • Park T, Cohen S, Langer R (1992) Poly (L-lactic acid)/pluronic blends: characterization of phase separation behavior, degradation, morphology and as protein releasing matrices. Macromolecules 25:116–122

    Article  CAS  Google Scholar 

  • PCÆFVDK Æ, Hofmann MBÆT (2008) Nanoparticles: structure, properties, preparation and behaviour. Environ Media 17:326–343

    Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:245705–245711

    Article  PubMed  CAS  Google Scholar 

  • Perelshtein I, Ruderman E, Perkas N, Tzanov T, Beddow J, Joyce E, Mason TJ, Blanes M, Molla K, Patlolla A, Frenkele AI, Gedanken A (2013) Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J Mater Chem B 1:1968–1976

    Article  CAS  Google Scholar 

  • Petrak K (1990) Polymers for use in drug delivery. Br Polym J 22:213–219

    Article  CAS  Google Scholar 

  • Poosti M, Ramazanzadeh B, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT (2013) Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod 35:676–679

    Article  PubMed  Google Scholar 

  • Prasad R, Swamy VS, Varma A (2012) Biogenic synthesis of silver nanoparticles from the leaf extract of Syzygium cumini (L.) and its antibacterial activity. Int J Pharm Bio Sci 3(4):745–752

    CAS  Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart 2013, 431218. doi:10.1155/2013/431218

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014, 963961. doi:10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2015) Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed Nanobiotechnol 8(2):316–330. doi:10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2016) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CABI, UK (in Press)

    Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Quaranta D, Krans T, Espirito Santo C, Elowsky CG, Domaille DW, Chang CJ, Grass G (2011) Mechanisms of yeast contact-killing on dry metallic copper surfaces. Appl Environ Microbiol 77:416–426

    Article  CAS  PubMed  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. J Soft Mater 5:707–715

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Zhang AJ, Elder TJ, Pu YQ (2007) Facile synthesis of spherical cellulose nanoparticles. J Carbohydr Polym 69:607–611

    Article  CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Bio Macromol 62:677–683

    Article  CAS  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  CAS  PubMed  Google Scholar 

  • Raji V, Chakraborty M, Parikh PA (2012) Synthesis of starch-stabilized silver nanoparticles and their antimicrobial activity. Particulate Sci Technol 30:565–577

    Article  CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely green synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  PubMed  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2006) A simple and green method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem 8:34–38

    Article  CAS  Google Scholar 

  • Ravi-Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  Google Scholar 

  • Ray SS (2013) Environmentally friendly polymer nanocomposites: types, processing and properties. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Reddy MVB, Arul J, Ait-Barka E, Angers P, Richard C, Castaigne F (1998) Effect of chitosan on growth and toxin production by Alternaria alternata f. sp. lycopersici. Biocontrol Sci Technol 8:33–43

    Article  Google Scholar 

  • Ren GG, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker R (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa J, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their potential interactions in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Romanska D, Mazur M (2003) Electrochemical preparation of thiol-coated silver nanostructures on highly oriented pyrolytic graphite. Langmuir 19:4532–4534

    Article  CAS  Google Scholar 

  • Rubina MS, Kamitov KK, Zubavichus YV, Peters GS, Naumkin AV, Suzer S , Vasil’kov AY (2015) Collagen-Chitosan Scaffold modified with Au and Ag nanoparticles: synthesis and structure. Appl. Surf. Sci, 2016, DOI:10.1016/j.apsusc.2016.01.107

    Google Scholar 

  • Sanpui P, Murugadoss A, Prasad PVD, Ghosh SS, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int J Food Microbiol 124:142–147

    Article  CAS  PubMed  Google Scholar 

  • Sautista-Banos S, Hernandez-Lauzardo AN, Velazquez-Del Valle MG, Hernandez-Lopez M, Barka E, Bosquez-Molina E, Wilson CL (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25:108–118

    Article  CAS  Google Scholar 

  • Savic R, Luo L, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300:615–618

    Article  CAS  PubMed  Google Scholar 

  • Sawai J, Yoshikawa T (2004) Quantitative evaluation of anti-fungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–812

    Article  CAS  PubMed  Google Scholar 

  • Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 6:697–710

    Article  Google Scholar 

  • Sebastien F, Stephane G, Copinet A, Coma V (2006) Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydr Polym 65:185–193

    Article  CAS  Google Scholar 

  • Sepideh H, Ghaseminezhad SM, Shojaosadati SA, Shokrollahzadeh S (2012) Comparative study on silver nanoparticles properties produced by green methods. Iran J Biotechnol 10:191–197

    Google Scholar 

  • Sescousse S, Gavillon R, Budtova T, (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and srllulose-NMMO routes. Carbohydrate Polym 83, 1766–1774

    Google Scholar 

  • Shameli K, Ahmad MB, Yunus WMZ, Ibrahim NA, Abdul Rahman R, Jokar M, Darroudi M (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579

    Article  CAS  Google Scholar 

  • Shanmugam S, Viswanathan B, Varadarajan TK (2006) A novel single step chemical route for noble metal nanoparticles embedded organic–inorganic composite films. Mater Chem Phys 95:51–55

    Article  CAS  Google Scholar 

  • Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174

    Article  CAS  Google Scholar 

  • Siegrist M, Cousin-eve M, Kastenholz H, Wiek A (2007) Public acceptance of nanotechnology foods and food packaging: the influence of affect and trust. Appetite 49:459–466

    Article  PubMed  Google Scholar 

  • Simonet BM, Valcárcel M (2009) Monitoring nanoparticles in the environment. Anal Bioanal Chem 393:17–21

    Article  CAS  PubMed  Google Scholar 

  • Smiechowicz E, Kulpinski P, Niekraszewicz B, Bacciarelli A (2011) Cellulose fibers modified with silver nanoparticles. Cellulose 18:975–985

    Article  CAS  Google Scholar 

  • Sondi I, Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Soytong K, Charoenporn C, Kanokmedhakul S (2013) Evaluation of microbial elicitors to induce plant immunity for tomato wilt. Afr J Microbiol Res 7:1993–2000

    Article  CAS  Google Scholar 

  • Sriram MI, Kanth SB, Kalishwaralal K, Gurunathan S (2010) Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed 5:753–762

    CAS  Google Scholar 

  • Stashak ST, Farstvedt E, Othis A (2004) Update on wound dressings: indication and best use. Clin Tech Equine Pract 3:148–163

    Article  Google Scholar 

  • Sundaresan K, Sivakumar A, Vigneswaran C, Ramachandran T (2012) Influence of nano titanium dioxide finish, prepared by sol-gel technique, on the ultraviolet protection, antimicrobial, and self-cleaning characteristics of cotton fabrics. J Ind Text 41:259–277

    Article  CAS  Google Scholar 

  • Supp AP, Neely AN, Supp DM, Warden GD, Boyce S (2005) Evaluation of cytotoxicity and antimicrobial activity of acticoat burn dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice. J Burn Care Rehabil 26:238–246

    PubMed  Google Scholar 

  • Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59

    Google Scholar 

  • Tang J, Song Y, Tanvir S, Anderson WA, Berry RM, Ta KC (2015) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3:1801–1809

    Article  CAS  Google Scholar 

  • Taylor MS, Daniels AU, Andriano KP, Heller J (1994) Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater 5:151–157

    Article  CAS  PubMed  Google Scholar 

  • Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216:503–509

    Article  CAS  PubMed  Google Scholar 

  • Toksha BG, Shirsath SE, Patange SM, Jadhav KM (2008) Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Commun 147:479–483

    Article  CAS  Google Scholar 

  • Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int J Biol Macromol 45:372–376

    Article  CAS  PubMed  Google Scholar 

  • Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed 8:4467–4479

    Google Scholar 

  • Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV, Thakore S (2012) Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J Hazard Mater 201:244–249

    Article  PubMed  CAS  Google Scholar 

  • Varlan AR, Sansen W (1996) Nondestructive electrical impedance analysis in fruit: normal ripening and injuries characterization. Electromagn Biol Med 15:213–227

    Google Scholar 

  • Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93

    Article  CAS  Google Scholar 

  • Vasil’kov AY, Rubina MS, Gallyamova AA, Naumkin AV, Buzin MI, Murav’eva JP, (2015) Mesoporic material from microcrystalline cellulose with gold NPs: new approach to obtain metal-carrying polysaccharides. Mendeleev Comm 25, 358–360

    Google Scholar 

  • Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341:2012–2018

    Article  CAS  PubMed  Google Scholar 

  • Vigo TL (2001) Antimicrobial polymers and fibers: retrospective and prospective in bioactive fibers and polymers. Am Chem Soc 11:175–200

    Google Scholar 

  • Vokhidova NR, Sattarov ME, Kareva ND, Rashidova SS (2014) Fungicide features of the nanosystems of silkworm (Bombyx mori) chitosan with copper ions. Microbiology 83:751–753

    Article  CAS  Google Scholar 

  • Wang LS, Wang CY, Yang CH, Hsieh CL, Chen SY, Shen CY, Wang JJ, Huang KS (2015) Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles. Int J Nanomed 10:2685–2696

    CAS  Google Scholar 

  • Weaver L, Michels HT, Keevil CW (2010) Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Lett Appl Microbiol 50:18–23

    Article  CAS  PubMed  Google Scholar 

  • Wheeldon LJ, Worthington T, Lambert PA, Hilton AC, Lowden CJ, Elliott TSJ (2008) Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother 62:522–525

    Article  CAS  PubMed  Google Scholar 

  • Wilks SA, Michel HT, Keevil CW (2006) Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int J Food Microbiol 111:93–98

    Article  PubMed  Google Scholar 

  • Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 4:5408. doi:10.1038/srep05408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yallapu MM, Reddy MK, Labhasetwar V (2007) Nanogels: chemistry to drug delivery. In: Labhasetwar V, Pelecky LDL (eds) Biomedical applications of nanotech. Wiley, New York, pp 131–172

    Chapter  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–649

    Article  CAS  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yang YJ, Chuang CC, Yang HB, Lu CC, Sheu BS (2012) Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFkB pathways. BMC Microbiol 12:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef K, Roberto SR (2014) Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biol Technol 87:95–102

    Article  CAS  Google Scholar 

  • Yu L, Deana K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  • Yumak T, Kuralay F, Muti M, Sinag A, Erdem A, Abaci S (2011) Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization. Colloids Surf B 86:397–403

    Article  CAS  Google Scholar 

  • Zakrzewska A, Boorsma A, Brul S, Hellingwerf KJ, Klis FM (2005) Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot Cell 4:703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Unit of Excellence in Nano-Molecular Plant Pathology Research, Agricultural Research Center (ARC), Egypt for funding this study. This work was partially funded by the Science and Technology Development Fund (STDF), Egypt (STDF-ERJCG), Grant ID. 13791 to Kamel Abd-Elsalam. Also, this work was partially funded by Russian Foundation for Basic Research grant (RFBR-15-53-61030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel A. Abd-Elsalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hashim, A.F., Alghuthaymi, M.A., Vasil’kov, A.Y., Abd-Elsalam, K.A. (2016). Polymer Inorganic Nanocomposites: A Sustainable Antimicrobial Agents. In: Prasad, R. (eds) Advances and Applications Through Fungal Nanobiotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42990-8_13

Download citation

Publish with us

Policies and ethics