Skip to main content

Gaps in Our Biomarker Armamentarium: What Novel Biomarkers Might Be Synergistic in Patients with Acute Disease

  • Chapter
  • First Online:
Cardiac Biomarkers
  • 1157 Accesses

Abstract

We have seen dramatic improvements of the acute cardiac care in the last 20 years, which have led to a substantial reduction in short and long term mortality after acute myocardial infarction (AMI) as well as after heart failure (HF) [1, 2]. These impressive successes have been achieved mainly by improved treatments but also through improved diagnostic methods. During this time period we have got access to some very strong new biomarkers, cardiac troponins (cardiac troponin I and cardiac troponin I) and natriuretic peptides (BNP and NT-proBNP). Their success and widespread use are based upon their excellent diagnostic properties rather than their similarly excellent prognostic properties. The introduction and development of more and more sensitive cTn assays have revolutionized the diagnosis of AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jernberg T, Johanson P, Held C, Svennblad B, Lindbäck J, Wallentin L. Association between adoption of evidence-based treatment and survival for patients with st-elevation myocardial infarction. JAMA. 2011;305(16):1677–84.

    Article  CAS  PubMed  Google Scholar 

  2. Gabet A, Juillière Y, Lamarche-Vadel A, Vernay M, Olié V. National trends in rate of patients hospitalized for heart failure and heart failure mortality in France, 2000–2012. Eur J Heart Fail. 2015;17(6):583–90.

    Article  PubMed  Google Scholar 

  3. Rodríguez-Antona C, Taron M. Pharmacogenomic biomarkers for personalized cancer treatment. J Intern Med. 2015;277(2):201–17.

    Article  PubMed  Google Scholar 

  4. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012;33(20):2551–67.

    Article  PubMed  Google Scholar 

  5. Backus BE, Six AJ, Kelder JC, et al. A Prospective validation of the HEART score for chest pain in the emergency department: a multinational validation study. Int J Cardiol. 2013;168(3):2153–8.

    Article  CAS  PubMed  Google Scholar 

  6. Eggers KM, Lind L, Venge P, Lindahl B. Will the universal definition of myocardial infarction criteria result in an overdiagnosis of myocardial infarction? Am J Cardiol. 2009;103(5):588–91.

    Article  PubMed  Google Scholar 

  7. Bjurman C, Larsson M, Johanson P, Petzold M, Lindahl B, Fu MLX, et al. Small changes in troponin T levels Are common in patients with non–ST-segment elevation myocardial infarction and are linked to higher mortality. J Am Coll Cardiol. 2013;62(14):1231–8.

    Article  CAS  PubMed  Google Scholar 

  8. Möckel M, Searle J. Copeptin—marker of acute myocardial infarction. Curr Atheroscler Rep. 2014;16(7):1–8. English.

    Article  Google Scholar 

  9. Streng AS, de Boer D, van der Velden J, van Dieijen-Visser MP, Wodzig WKWH. Posttranslational modifications of cardiac troponin T: an overview. J Mol Cell Cardiol. 2013;63:47–56.

    Article  CAS  PubMed  Google Scholar 

  10. Ostermann M, Lo J, Toolan M, Tuddenham E, Sanderson B, Lei K, et al. A prospective study of the impact of serial troponin measurements on the diagnosis of myocardial infarction and hospital and six-month mortality in patients admitted to ICU with non-cardiac diagnoses. Crit Care. 2014;18(2):R62. PubMed PMID: doi:10.1186/cc13818.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Collinson PO, Lindahl B. Type 2 myocardial infarction – the chimaera of cardiology? Heart. 2015;101(21):1697–703. In Press.

    Article  CAS  PubMed  Google Scholar 

  12. Gerber Y, Weston SA, Redfield MM, et al. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern Med. 2015;175(6):996–1004.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC. Plasma brain natriuretic peptide to detect preclinical ventricular systolic or diastolic dysfunction: a community-based study. Circulation. 2004;109(25):3176–81.

    Article  CAS  PubMed  Google Scholar 

  14. Romaine SPR, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart. 2015;101(12):921–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schulte C, Zeller T. microRNA-based diagnostics and therapy in cardiovascular disease—Summing up the facts. Cardiovasc Diagn Ther. 2015;5(1):17–36.

    PubMed  PubMed Central  Google Scholar 

  16. Devaux Y, Mueller M, Haaf P, Goretti E, Twerenbold R, Zangrando J, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277(2):260–71.

    Article  CAS  PubMed  Google Scholar 

  17. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012;126(9):1110–20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Senn T, Hazen SL, Tang WHW. Translating metabolomics to cardiovascular biomarkers. Prog Cardiovasc Dis. 2012;55(1):70–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bodi V, Marrachelli V, Husser O, Chorro F, Viña J, Monleon D. Metabolomics in the diagnosis of acute myocardial ischemia. J Cardiovasc Transl Res. 2013;6(5):808–15. English.

    Article  PubMed  Google Scholar 

  20. Bodi V, Sanchis J, Morales JM, Marrachelli VG, Nunez J, Forteza MJ, et al. Metabolomic profile of human myocardial ischemia by nuclear magnetic resonance spectroscopy of peripheral blood serum: a translational study based on transient coronary occlusion models. J Am Coll Cardiol. 2012;59(18):1629–41.

    Article  PubMed  Google Scholar 

  21. Cheng ML, Wang C-H, Shiao M-S, Liu M-H, Huang Y-Y, Huang C-Y, et al. Metabolic disturbances identified in plasma Are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J Am Coll Cardiol. 2015;65(15):1509–20.

    Article  CAS  PubMed  Google Scholar 

  22. Xu X, Li Z, Gao W. Growth differentiation factor 15 in cardiovascular diseases: from bench to bedside. Biomarkers. 2011;16(6):466–75.

    Article  CAS  PubMed  Google Scholar 

  23. Lindahl B. The story of growth differentiation factor 15: another piece of the puzzle. Clin Chem. 2013;59(11):1550–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertil Lindahl MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lindahl, B. (2016). Gaps in Our Biomarker Armamentarium: What Novel Biomarkers Might Be Synergistic in Patients with Acute Disease. In: Maisel, A., Jaffe, A. (eds) Cardiac Biomarkers. Springer, Cham. https://doi.org/10.1007/978-3-319-42982-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42982-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42980-9

  • Online ISBN: 978-3-319-42982-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics