Skip to main content

Energy Effects in Modeling Neutron Diffusion: Two-Group Models

  • Chapter
  • First Online:
Book cover Neutronic Analysis For Nuclear Reactor Systems
  • 747 Accesses

Abstract

In this chapter we derive the multigroup diffusion equation (MGDE), and we illustrate how do we solve them in a way that allows us to calculate an accurate eigenvalue and accurate reaction rates. Since the cross sections vary wildly by multiple orders of magnitude over the energy range in a typical nuclear reactor, the major problem is determining the accurate multigroup cross sections for the design problem under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976)

    Google Scholar 

  2. P.F. Zweifel, Reactor Physics (McGraw-Hill, New York, 1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. Problem 4.1:

    List and describe the three approximations made in deriving the multigroup diffusion equations from the neutron transport equation.

  2. Problem 4.2:

    Listed below are a set of typical group constants for a BWR. Calculate the multiplication factor for this reactor if it can be treated as a right circular cylinder of height of 370 cm and a diameter of 340 cm.

    Group constant

    Group 1

    Group 2

    gfission

    0.001348

    0.040783

    Σ gabsorption

    0.001469

    0.040249

    D g

    0.859599

    0.142481

    Σ gremoval

    0.044587

    0.040249

    χ g

    1.0

    0.0

  3. Problem 4.3:

    Using the group constants from the previous Problem 4.1, calculate \( {k}_{\infty } \), the resonance escape probability, the fast fission factor, and the fast and thermal non-leakage probabilities for this reactor.

  4. Problem 4.4:

    Calculate the critical radius for an unreflected right circular cylinder reactor characterized by the following group constants.

    Group constant

    Group 1

    Group 2

    gfission

    0.002562

    0.15180

    Σ gabsorption

    0.001930

    0.09509

    Σ gtransport

    0.466100

    2.95420

    Σ gdownstream

    0.055140

    χ g

    1.0

    0.0

    Reactor height = 25 cm

  5. Problem 4.5:

    Calculate the multiplication factor for an unreflected fast reactor with the following cross-sectional data and core size

    Group constant

    Group 1

    Group 2

    gfission

    0.011040

    0.005486

    Σ gabsorption

    0.004598

    0.004108

    Σ gdownstream

    0.023420

    Σ gtransport

    0.028020

    0.242200

    χ g

    0.55

    0.45

    $$ \mathrm{Core}\ \mathrm{radius} = 111\ \mathrm{cm}\kern1em \mathrm{Core}\ \mathrm{height} = 91.44\ \mathrm{cm} $$
  6. Problem 4.6

    Derive an equation for k eff in case of the three-group problem described by the following equations:

    $$ \left[\begin{array}{ccc}\hfill {D}_1{B}^2+{\varSigma}_{\mathrm{r}}^1\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -{\varSigma}_{{\mathrm{s}}_0}^{1\to 2}\hfill & \hfill {D}_2{B}^2+{\varSigma}_{\mathrm{r}}^2\hfill & \hfill 0\hfill \\ {}\hfill -{\varSigma}_{{\mathrm{s}}_0}^{1\to 3}\hfill & \hfill -{\varSigma}_{{\mathrm{s}}_0}^{2\to 3}\hfill & \hfill {D}_3{B}^2+{\varSigma}_{\mathrm{r}}^3\hfill \end{array}\right]\left\{\begin{array}{c}\hfill {\phi}_1\hfill \\ {}\hfill {\phi}_2\hfill \\ {}\hfill {\phi}_3\hfill \end{array}\right\}=\left[\begin{array}{ccc}\hfill v{\varSigma}_{\mathrm{f}}^1\hfill & \hfill v{\varSigma}_{\mathrm{f}}^2\hfill & \hfill \mathrm{v}{\varSigma}_{\mathrm{f}}^3\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \end{array}\right]\left\{\begin{array}{c}\hfill {\phi}_1\hfill \\ {}\hfill {\phi}_2\hfill \\ {}\hfill {\phi}_3\hfill \end{array}\right\} $$
  7. Problem 4.7

    Compute an infinite-medium spectrum for the following six-group fast reactor problem that is directly coupled.

     

    Group 1

    Group 2

    Group 3

    Group 4

    Group 5

    Group 6

    D

    3.1348

    2.5292

    1.8095

    0.7256

    0.30601

    0.1350

    Σ r

    0.08175

    0.05189

    0.00813

    0.03373

    0.51380

    0.37846

    \( {\varSigma}^{\mathrm{s}g\to g+1} \)

    0.07066

    0.041489

    0.002214

    0.015413

    0.00192

    f

    0.037445

    0.023684

    0.010181

    0.020241

    0.42601

    4.1648

    χ

    0.052579

    0.52040

    0.41085

    0.016081

    0.0008

    0.0

  8. Problem 4.8

    Use the spectrum calculated as solution for Problem 4.7 to collapse the upper three groups to one group and the lower three groups to a second group for broad group cross sections. Calculate all five cross sections.

  9. Problem 4.9

    Estimate the minimum group spacing that will yield directly coupled multigroup equations for C12, D2, Be9, and Na22.

  10. Problem 4.10

    What percentage of the neutrons slowing down in hydrogen will tend to skip groups if the group structure is chosen that \( \left({E}_{g-1}/{E}_g\right)=100 \)?

  11. Problem 4.11

    Write out the detailed of the multigroup diffusion equations, \( \boldsymbol{M}\phi ={k}^{-1}\boldsymbol{F}\phi \), for a four-group model in which:

    1. (a)

      There is direct coupling.

    2. (b)

      The fission source exists only in the upper two groups.

    3. (c)

      Only the lowest group contains thermal neutrons.

  12. Problem 4.12

    Solve the collision rate equation for hydrogen as

    $$ F(E)={\displaystyle {\int}_E^{E_0}d{E}^{\prime}\frac{f\left({E}^{\prime}\right)}{E^{\prime }}+{S}_0\delta \left(E-{E}_0\right)} $$

    by restricting our attention to \( E<{E}_0 \) and using the source as boundary condition as \( E\to {E}_0 \)

  13. Problem 4.13

    Determine the neutron flux ϕ(E) resulting from an arbitrary source in an infinite hydrogenous medium by solving the infinite-medium slowing down equation with a general source term S(E).

  14. Problem 4.14

    Show that for a mixture of N nuclides, the collision rate density F(E) can be written in asymptotic region as

    $$ \begin{array}{ccc}\hfill F(E)=\frac{S_0}{E\xi}\hfill & \hfill \mathrm{and}\hfill & \hfill \overline{\xi}=\frac{{\displaystyle \sum_{i=1}^N{\varSigma}_{\mathrm{s}i}{\xi}_i}}{\varSigma_{\mathrm{s}}}\hfill \end{array} $$
  15. Problem 4.15

    Show that for \( A>1 \) and a monoenergetic source S 0 at E 0, we have the following relation:

    $$ \begin{array}{cc}\hfill F(E)=\frac{S_0{E}_0^{\left(\alpha /\left(1-\alpha \right)\right)}}{E\overline{\xi}}\frac{1}{E^{\left(\alpha /\left(1-\alpha \right)\right)}},\hfill & \hfill \kern1.2em \alpha {E}_0<E<{E}_0\hfill \end{array} $$
  16. Problem 4.16

    Show that for \( A>1 \), compute and plot the collision density function F 3(E) for neutrons that have had three collisions. Discuss the continuity of F 3(E) and its derivatives at \( E-{E}_0 \), αE 0, α 2 E 0, and α 3 E 0:

  17. Problem 4.17

    By means of the one-group treatment, estimate the critical radius of a spherical core of uranium-235 surrounded by a thick reflector of uranium-238. The cross sections may be taken as the average values for neutrons in the energy range of 0.4 to 1.35 MeV; then

    Uranium-235:

    \( {\sigma}_{\mathrm{f}}=1.27\;\left(\mathrm{barn}\right) \)

    \( {\sigma}_{\mathrm{a}}=1.40\;\left(\mathrm{barn}\right) \)

    \( {\sigma}_{\mathrm{tr}}=5.7\;\left(\mathrm{barn}\right) \)

    \( v=2.52 \)

    Uranium-238:

    \( {\sigma}_{\mathrm{f}}=1.27\;\left(\mathrm{barn}\right) \)

    \( {\sigma}_{\mathrm{a}}=1.40\;\left(\mathrm{barn}\right) \)

    \( {\sigma}_{\mathrm{tr}}=5.7\;\left(\mathrm{barn}\right) \)

    \( v=2.52 \)

Solution

The solution to this problem is as follows:

The density of uranium is approximately 19 g/cm3, so that atoms N for both uranium-235 and uranium-238 are close to 0.048 × 1024 nuclei per cm3.

For the core,

$$ {\varSigma}_{\mathrm{a}}=0.048\times 1.40=0.067\;{\mathrm{cm}}^{-1}\kern1em \mathrm{and}\kern1em {\varSigma}_{\mathrm{tr}}=0.048\times 5.7=0.27\;{\mathrm{cm}}^{-1} $$

Thus,

$$ {L}^2=\frac{1}{3{\varSigma}_{\mathrm{tr}}{\varSigma}_{\mathrm{a}}}=\frac{1}{(3)(0.27)(0.067)}=18\;{\mathrm{cm}}^2 $$
$$ L=4.24\;\mathrm{cm} $$

For the reflector,

$$ {\varSigma}_{\mathrm{a}}=0.048\times 0.13=0.0062\;{\mathrm{cm}}^{-1}\kern1em \mathrm{and}\kern1em {\varSigma}_{\mathrm{tr}}=0.048\times 5.8=0.28\;{\mathrm{cm}}^{-1} $$

Thus,

$$ {L}_{\mathrm{refl}.}^2=\frac{1}{3{\varSigma}_{\mathrm{tr}}{\varSigma}_{\mathrm{a}}}=\frac{1}{(3)(0.28)(0.0062)}=190\;{\mathrm{cm}}^2 $$
$$ {L}_{\mathrm{reff}.}=13.78\;\mathrm{cm} $$

In uranium-235 core, \( {k}_{\infty } \) is equal to η, i.e., to f/σ a, so that

$$ {k}_{\infty }=(2.52)(1.27)/(1.40)=2.3 $$

Hence, by the one-group critical equation, we can write

$$ {B}_{\mathrm{c}}^2=\frac{k_{\infty }-1}{L^2}=\frac{2.3-1}{18}=\frac{1.3}{18}=0.072\;{\mathrm{c}\mathrm{m}}^{-2} $$

or

$$ {B}_{\mathrm{c}}=0.27\;{\mathrm{c}\mathrm{m}}^{-1} $$

It is found that R c/L refl. is not large in this case, so that for one-group critical equation for a spherical core with an infinitely thick reflector written as below must be used:

$$ {B}_{\mathrm{c}}{R}_{\mathrm{c}} \coth \left({B}_{\mathrm{c}}{R}_{\mathrm{c}}\right)=-\frac{D_{\mathrm{r}}}{D}\left(1+\frac{R_{\mathrm{c}}}{L_{\mathrm{r}\mathrm{efl}.}}\right)+1 $$

However, since D and D r are approximately equal, it reduces to

$$ \tan \left({B}_{\mathrm{c}}{R}_{\mathrm{c}}\right)=-{B}_{\mathrm{c}}{L}_{\mathrm{refl}.} $$

Hence, \( \tan \left(0.27{R}_{\mathrm{c}}\right)=-(0.27)(14)=-3.8 \) and R c is 6.8 cm. Note that the experimental value is close to 6.0 cm.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zohuri, B. (2017). Energy Effects in Modeling Neutron Diffusion: Two-Group Models. In: Neutronic Analysis For Nuclear Reactor Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-42964-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42964-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42962-5

  • Online ISBN: 978-3-319-42964-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics