Skip to main content

Chikungunya Virus Entry and Replication

  • Chapter
  • First Online:

Abstract

Successful infection by enveloped viruses relies on the capacity of these pathogens to release their genome in the cytoplasm. This process involves several successive steps including the recruitment of attachment factors by the viral particle, interaction of viral glycoproteins with specific receptors, and fusion of virus and host membranes. Drugs and inhibitors capable of interrupting the infectious cycle by targeting viral or cellular components involved in the entry process have a considerable interest for the development of antiviral strategies susceptible to block the replication cycle at the earliest time. The development of such molecules is underpinned by the elucidation of the host–virus interplay engaged during these steps and by the characterization of the molecular mechanisms governing viral entry. In this chapter, we focus on the mechanisms used by the chikungunya virus (CHIKV), a medically important mosquito-borne alphavirus propagating in many parts of the world, to penetrate into its target cells. The knowledge accumulated on the nature of receptors and endocytic routes hijacked by this pathogen to infect mammalian and mosquito cells is discussed and we summarize the most recent advances in the development of drugs and antibodies targeting CHIKV replication at the receptor binding, internalization, and fusion steps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abere B, Wikan N, Ubol S, Auewarakul P, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR (2012) Proteomic analysis of chikungunya virus infected microgial cells. PLoS One 7(4), e34800. doi:10.1371/journal.pone.0034800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham R, Mudaliar P, Padmanabhan A, Sreekumar E (2013) Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus. PLoS One 8(9), e75854. doi:10.1371/journal.pone.0075854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn A, Gibbons DL, Kielian M (2002) The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains. J Virol 76(7):3267–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Goeta C, Mousson L, Rougeon F, Failloux AB (2013) Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level. PLoS One 8(2), e57548. doi:10.1371/journal.pone.0057548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton DJ, Sawicki SG, Sawicki DL (1991) Solubilization and immunoprecipitation of alphavirus replication complexes. J Virol 65(3):1496–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard KA, Klimstra WB, Johnston RE (2000) Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 276(1):93–103. doi:10.1006/viro.2000.0546

    Article  CAS  PubMed  Google Scholar 

  • Bernard E, Solignat M, Gay B, Chazal N, Higgs S, Devaux C, Briant L (2010) Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One 5(7), e11479. doi:10.1371/journal.pone.0011479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernard E, Hamel R, Neyret A, Ekchariyawat P, Moles JP, Simmons G, Chazal N, Despres P, Misse D, Briant L (2014) Human keratinocytes restrict chikungunya virus replication at a post-fusion step. Virology 476C:1–10. doi:10.1016/j.virol.2014.11.013

    Google Scholar 

  • Blaising J, Levy PL, Polyak SJ, Stanifer M, Boulant S, Pecheur EI (2013) Arbidol inhibits viral entry by interfering with clathrin-dependent trafficking. Antivir Res 100(1):215–219. doi:10.1016/j.antiviral.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  • Boriskin YS, Pecheur EI, Polyak SJ (2006) Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection. Virol J 3:56. doi:10.1186/1743-422X-3-56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brighton SW (1984) Chloroquine phosphate treatment of chronic chikungunya arthritis. An open pilot study. S Afr Med J 66(6):217–218

    CAS  PubMed  Google Scholar 

  • Bron R, Wahlberg JM, Garoff H, Wilschut J (1993) Membrane fusion of Semliki Forest virus in a model system: correlation between fusion kinetics and structural changes in the envelope glycoprotein. EMBO J 12(2):693–701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes AP, Griffin DE (1998) Binding of Sindbis virus to cell surface heparan sulfate. J Virol 72(9):7349–7356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao S, Zhang W (2013) Characterization of an early-stage fusion intermediate of Sindbis virus using cryoelectron microscopy. Proc Natl Acad Sci U S A 110(33):13362–13367. doi:10.1073/pnas.1301911110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassell S, Edwards J, Brown DT (1984) Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus. J Virol 52(3):857–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra A, Saluja M, Venugopalan A (2014) Effectiveness of chloroquine and inflammatory cytokine response in patients with early persistent musculoskeletal pain and arthritis following chikungunya virus infection. Arthritis Rheumatol 66(2):319–326. doi:10.1002/art.38221

    Article  CAS  PubMed  Google Scholar 

  • Collinet C, Stoter M, Bradshaw CR, Samusik N, Rink JC, Kenski D, Habermann B, Buchholz F, Henschel R, Mueller MS, Nagel WE, Fava E, Kalaidzidis Y, Zerial M (2010) Systems survey of endocytosis by multiparametric image analysis. Nature 464(7286):243–249. doi:10.1038/nature08779

    Article  CAS  PubMed  Google Scholar 

  • Coombs K, Mann E, Edwards J, Brown DT (1981) Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus. J Virol 37(3):1060–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corver J, Bron R, Snippe H, Kraaijeveld C, Wilschut J (1997) Membrane fusion activity of Semliki Forest virus in a liposomal model system: specific inhibition by Zn2+ ions. Virology 238(1):14–21. doi:10.1006/viro.1997.8799

    Article  CAS  PubMed  Google Scholar 

  • Couderc T, Chretien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F, Touret Y, Barau G, Cayet N, Schuffenecker I, Despres P, Arenzana-Seisdedos F, Michault A, Albert ML, Lecuit M (2008) A mouse model for chikungunya: young age and inefficient type-i interferon signaling are risk factors for severe disease. PLoS Pathog 4(2), e29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis JL, Hodge HM, Campbell WE Jr (1971) Growth of chikungunya virus in baby hamster kidney cell (BHK-21-clone 13) suspension cultures. Appl Microbiol 21(2):338–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Lamballerie X, Boisson V, Reynier JC, Enault S, Charrel RN, Flahault A, Roques P, Le Grand R (2008) On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis 8(6):837–839. doi:10.1089/vbz.2008.0049

    Article  PubMed  Google Scholar 

  • Delogu I, Pastorino B, Baronti C, Nougairede A, Bonnet E, de Lamballerie X (2011) In vitro antiviral activity of arbidol against chikungunya virus and characteristics of a selected resistant mutant. Antivir Res 90(3):99–107. doi:10.1016/j.antiviral.2011.03.182

    Article  CAS  PubMed  Google Scholar 

  • DeTulleo L, Kirchhausen T (1998) The clathrin endocytic pathway in viral infection. EMBO J 17(16):4585–4593. doi:10.1093/emboj/17.16.4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanwani R, Khan M, Alam SI, Rao PV, Parida M (2011) Differential proteome analysis of chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 11(10):1936–1951. doi:10.1002/pmic.201000500

    Article  CAS  PubMed  Google Scholar 

  • Dhanwani R, Khan M, Bhaskar AS, Singh R, Patro IK, Rao PV, Parida MM (2012) Characterization of chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus Res 163(2):563–572. doi:10.1016/j.virusres.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  • Di Mola A, Peduto A, La Gatta A, Delang L, Pastorino B, Neyts J, Leyssen P, de Rosa M, Filosa R (2014) Structure-activity relationship study of arbidol derivatives as inhibitors of chikungunya virus replication. Bioorg Med Chem 22(21):6014–6025. doi:10.1016/j.bmc.2014.09.013

    Article  PubMed  CAS  Google Scholar 

  • Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux AB (2009) Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PLoS One 4(6), e5895. doi:10.1371/journal.pone.0005895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards J, Brown DT (1991) Sindbis virus infection of a Chinese hamster ovary cell mutant defective in the acidification of endosomes. Virology 182(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Fongsaran C, Jirakanwisal K, Kuadkitkan A, Wikan N, Wintachai P, Thepparit C, Ubol S, Phaonakrop N, Roytrakul S, Smith DR (2014) Involvement of ATP synthase beta subunit in chikungunya virus entry into insect cells. Arch Virol 159(12):3353–3364. doi:10.1007/s00705-014-2210-4

    Article  CAS  PubMed  Google Scholar 

  • Gardner CL, Ebel GD, Ryman KD, Klimstra WB (2011) Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc Natl Acad Sci U S A 108(38):16026–16031. doi:10.1073/pnas.1110617108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gay B, Bernard E, Solignat M, Chazal N, Devaux C, Briant L (2012) pH-dependent entry of chikungunya virus into Aedes albopictus cells. Infect Genet Evol 12(6):1275–1281. doi:10.1016/j.meegid.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  • Glasgow LA (1966) Leukocytes and interferon in the host response to viral infections. II. Enhanced interferon response of leukocytes from immune animals. J Bacteriol 91(6):2185–2191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glomb-Reinmund S, Kielian M (1998) The role of low pH and disulfide shuffling in the entry and fusion of Semliki Forest virus and Sindbis virus. Virology 248(2):372–381. doi:10.1006/viro.1998.9275

    Article  CAS  PubMed  Google Scholar 

  • Goh LY, Hobson-Peters J, Prow NA, Gardner J, Bielefeldt-Ohmann H, Pyke AT, Suhrbier A, Hall RA (2013) Neutralizing monoclonal antibodies to the E2 protein of chikungunya virus protects against disease in a mouse model. Clin Immunol 149(3):487–497. doi:10.1016/j.clim.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  • Heil ML, Albee A, Strauss JH, Kuhn RJ (2001) An amino acid substitution in the coding region of the E2 glycoprotein adapts Ross River virus to utilize heparan sulfate as an attachment moiety. J Virol 75(14):6303–6309. doi:10.1128/JVI.75.14.6303-6309.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius A, Kartenbeck J, Simons K, Fries E (1980) On the entry of Semliki Forest virus into BHK-21 cells. J Cell Biol 84(2):404–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius A, Marsh M, White J (1982) Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J Gen Virol 58(Pt 1):47–61

    Article  CAS  PubMed  Google Scholar 

  • Henrik Gad H, Paulous S, Belarbi E, Diancourt L, Drosten C, Kummerer BM, Plate AE, Caro V, Despres P (2012) The E2-E166K substitution restores chikungunya virus growth in OAS3 expressing cells by acting on viral entry. Virology 434(1):27–37. doi:10.1016/j.virol.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  • Her Z, Malleret B, Chan M, Ong EK, Wong SC, Kwek DJ, Tolou H, Lin RT, Tambyah PA, Renia L, Ng LF (2010) Active infection of human blood monocytes by chikungunya virus triggers an innate immune response. J Immunol 184(10):5903–5913. doi:10.4049/jimmunol.0904181

    Article  CAS  PubMed  Google Scholar 

  • Higashi N, Matsumoto A, Tabata K, Nagatomo Y (1967) Electron microscope study of development of chikungunya virus in green monkey kidney stable (VERO) cells. Virology 33(1):55–69

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Zhang J, Wang H, Liu S, Yu L, Sun L, Qu Y (2014) Chikungunya virus glycoproteins pseudotype with lentiviral vectors and reveal a broad spectrum of cellular tropism. PLoS One 9(10), e110893. doi:10.1371/journal.pone.0110893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang HC, Tao MH, Hung TM, Chen JC, Lin ZJ, Huang C (2014) (−)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antivir Res 111:100–111. doi:10.1016/j.antiviral.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  • Hunt SR, Hernandez R, Brown DT (2011) Role of the vacuolar-ATPase in Sindbis virus infection. J Virol 85(3):1257–1266. doi:10.1128/JVI.01864-10

    Article  CAS  PubMed  Google Scholar 

  • Inglot AD (1969) Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J Gen Virol 4(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Irurzun A, Nieva JL, Carrasco L (1997) Entry of Semliki Forest virus into cells: effects of concanamycin A and nigericin on viral membrane fusion and infection. Virology 227(2):488–492. doi:10.1006/viro.1996.8340

    Article  CAS  PubMed  Google Scholar 

  • Jemielity S, Wang JJ, Chan YK, Ahmed AA, Li W, Monahan S, Bu X, Farzan M, Freeman GJ, Umetsu DT, Dekruyff RH, Choe H (2013) TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog 9(3), e1003232. doi:10.1371/journal.ppat.1003232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justman J, Klimjack MR, Kielian M (1993) Role of spike protein conformational changes in fusion of Semliki Forest virus. J Virol 67(12):7597–7607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur P, Thiruchelvan M, Lee RC, Chen H, Chen KC, Ng ML, Chu JJ (2013) Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob Agents Chemother 57(1):155–167. doi:10.1128/AAC.01467-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M, Santhosh SR, Tiwari M, Lakshmana Rao PV, Parida M (2010) Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells. J Med Virol 82(5):817–824. doi:10.1002/jmv.21663

    Article  CAS  PubMed  Google Scholar 

  • Klimjack MR, Jeffrey S, Kielian M (1994) Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein. J Virol 68(11):6940–6946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klimstra WB, Ryman KD, Johnston RE (1998) Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72(9):7357–7366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klimstra WB, Nangle EM, Smith MS, Yurochko AD, Ryman KD (2003) DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J Virol 77(22):12022–12032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kononchik JP Jr, Hernandez R, Brown DT (2011a) An alternative pathway for alphavirus entry. Virol J 8:304. doi:10.1186/1743-422X-8-304

    Article  PubMed  PubMed Central  Google Scholar 

  • Kononchik JP, Vancini R, Brown DT (2011b) Alphavirus adsorption to mosquito cells as viewed by freeze fracture immunolabeling. Virology 415(2):132–140. doi:10.1016/j.virol.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  • Krejbich-Trotot P, Denizot M, Hoarau JJ, Jaffar-Bandjee MC, Das T, Gasque P (2011) Chikungunya virus mobilizes the apoptotic machinery to invade host cell defenses. FASEB J 25(1):314–325. doi:10.1096/fj.10-164178

    Article  CAS  PubMed  Google Scholar 

  • La Linn M, Eble JA, Lubken C, Slade RW, Heino J, Davies J, Suhrbier A (2005) An arthritogenic alphavirus uses the alpha1beta1 integrin collagen receptor. Virology 336(2):229–239. doi:10.1016/j.virol.2005.03.015

    Article  PubMed  CAS  Google Scholar 

  • Labadie K, Larcher T, Joubert C, Mannioui A, Delache B, Brochard P, Guigand L, Dubreil L, Lebon P, Verrier B, de Lamballerie X, Suhrbier A, Cherel Y, Le Grand R, Roques P (2010) Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 120(3):894–906. doi:10.1172/JCI40104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam S, Chen KC, Ng MM, Chu JJ (2012) Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced chikungunya virus replication. PLoS One 7(10), e46396. doi:10.1371/journal.pone.0046396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Hapuarachchi HC, Chen KC, Hussain KM, Chen H, Low SL, Ng LC, Lin R, Ng MM, Chu JJ (2013) Mosquito cellular factors and functions in mediating the infectious entry of chikungunya virus. PLoS Negl Trop Dis 7(2), e2050. doi:10.1371/journal.pntd.0002050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YG, Siripanyaphinyo U, Tumkosit U, Noranate N, An A, Tao R, Kurosu T, Ikuta K, Takeda N, Anantapreecha S (2013) Chikungunya virus induces a more moderate cytopathic effect in mosquito cells than in mammalian cells. Intervirology 56(1):6–12. doi:10.1159/000339985

    Article  PubMed  Google Scholar 

  • Liu CY, Kielian M (2009) E1 mutants identify a critical region in the trimer interface of the Semliki Forest virus fusion protein. J Virol 83(21):11298–11306. doi:10.1128/JVI.01147-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YE, Cassese T, Kielian M (1999) The cholesterol requirement for sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. J Virol 73(5):4272–4278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maassen JA, Terhorst C (1981) Identification of a cell-surface protein involved in the binding site of Sindbis virus on human lymphoblastic cell lines using a heterobifunctional cross-linker. Eur J Biochem 115(1):153–158

    Article  CAS  PubMed  Google Scholar 

  • Malygin AA, Bondarenko EI, Ivanisenko VA, Protopopova EV, Karpova GG, Loktev VB (2009) C-terminal fragment of human laminin-binding protein contains a receptor domain for venezuelan equine encephalitis and tick-borne encephalitis viruses. Biochemistry (Mosc) 74(12):1328–1336

    Article  CAS  Google Scholar 

  • Marsh M, Helenius A (1980) Adsorptive endocytosis of Semliki Forest virus. J Mol Biol 142(3):439–454

    Article  CAS  PubMed  Google Scholar 

  • Marsh M, Bolzau E, Helenius A (1983) Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell 32(3):931–940

    Article  CAS  PubMed  Google Scholar 

  • Marsh M, Kielian MC, Helenius A (1984) Semliki Forest virus entry and the endocytic pathway. Biochem Soc Trans 12(6):981–983

    Article  CAS  PubMed  Google Scholar 

  • Mendoza QP, Stanley J, Griffin DE (1988) Monoclonal antibodies to the E1 and E2 glycoproteins of Sindbis virus: definition of epitopes and efficiency of protection from fatal encephalitis. J Gen Virol 69(Pt 12):3015–3022

    Article  CAS  PubMed  Google Scholar 

  • Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79:803–833. doi:10.1146/annurev-biochem-060208-104626

    Article  CAS  PubMed  Google Scholar 

  • Moller-Tank S, Maury W (2014) Phosphatidylserine receptors: Enhancers of enveloped virus entry and infection. Virology 468–470:565–580. doi:10.1016/j.virol.2014.09.009

    Article  PubMed  CAS  Google Scholar 

  • Mourya DT, Ranadive SN, Gokhale MD, Barde PV, Padbidri VS, Banerjee K (1998) Putative chikungunya virus-specific receptor proteins on the midgut brush border membrane of Aedes aegypti mosquito. Indian J Med Res 107:10–14

    CAS  PubMed  Google Scholar 

  • Nieva JL, Bron R, Corver J, Wilschut J (1994) Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J 13(12):2797–2804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noret M, Herrero L, Rulli N, Rolph M, Smith PN, Li RW, Roques P, Gras G, Mahalingam S (2012) Interleukin 6, RANKL, and osteoprotegerin expression by chikungunya virus-infected human osteoblasts. J Infect Dis 206(3):455–457. doi:10.1093/infdis/jis368, 457–459

    Article  CAS  PubMed  Google Scholar 

  • Nuckols JT, McAuley AJ, Huang YJ, Horne KM, Higgs S, Davey RA, Vanlandingham DL (2014) pH-dependent entry of chikungunya virus fusion into mosquito cells. Virol J 11(1):215. doi:10.1186/s12985-014-0215-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ooi YS, Stiles KM, Liu CY, Taylor GM, Kielian M (2013) Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry. Plos Pathog 9(12), e1003835. doi:10.1371/journal.ppat.1003835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozden S, Huerre M, Riviere JP, Coffey LL, Afonso PV, Mouly V, de Monredon J, Roger JC, El Amrani M, Yvin JL, Jaffar MC, Frenkiel MP, Sourisseau M, Schwartz O, Butler-Browne G, Despres P, Gessain A, Ceccaldi PE (2007) Human muscle satellite cells as targets of chikungunya virus infection. PLoS One 2(6), e527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozden S, Lucas-Hourani M, Ceccaldi PE, Basak A, Valentine M, Benjannet S, Hamelin J, Jacob Y, Mamchaoui K, Mouly V, Despres P, Gessain A, Butler-Browne G, Chretien M, Tangy F, Vidalain PO, Seidah NG (2008) Inhibition of chikungunya virus infection in cultured human muscle cells by furin inhibitors: impairment of the maturation of the E2 surface glycoprotein. J Biol Chem 283(32):21899–21908. doi:10.1074/jbc.M802444200

    Article  CAS  PubMed  Google Scholar 

  • Padmakumar B, Jayan J, Menon R, Krishnankutty B, Payippallil R, Nisha R (2009) Comparative evaluation of four therapeutic regimes in chikungunya arthritis: a prospective randomized parallel-group study. Indian J Rheumatol 4(3):94–101

    Article  Google Scholar 

  • Paredes AM, Ferreira D, Horton M, Saad A, Tsuruta H, Johnston R, Klimstra W, Ryman K, Hernandez R, Chiu W, Brown DT (2004) Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion. Virology 324(2):373–386. doi:10.1016/j.virol.2004.03.046

    Article  CAS  PubMed  Google Scholar 

  • Phalen T, Kielian M (1991) Cholesterol is required for infection by Semliki Forest virus. J Cell Biol 112(4):615–623

    Article  CAS  PubMed  Google Scholar 

  • Phuklia W, Kasisith J, Modhiran N, Rodpai E, Thannagith M, Thongsakulprasert T, Smith DR, Ubol S (2013) Osteoclastogenesis induced by CHIKV-infected fibroblast-like synoviocytes: a possible interplay between synoviocytes and monocytes/macrophages in CHIKV-induced arthralgia/arthritis. Virus Res 177(2):179–188. doi:10.1016/j.virusres.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  • Pohjala L, Utt A, Varjak M, Lulla A, Merits A, Ahola T, Tammela P (2011) Inhibitors of alphavirus entry and replication identified with a stable chikungunya replicon cell line and virus-based assays. PLoS One 6(12), e28923. doi:10.1371/journal.pone.0028923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priya R, Dhanwani R, Patro IK, Rao PV, Parida MM (2013) Differential regulation of TLR mediated innate immune response of mouse neuronal cells following infection with novel ECSA genotype of chikungunya virus with and without E1:A226V mutation. Infect Genet Evol 20:396–406. doi:10.1016/j.meegid.2013.09.030

    Article  CAS  PubMed  Google Scholar 

  • Rathore AP, Ng ML, Vasudevan SG (2013) Differential unfolded protein response during chikungunya and Sindbis virus infection: CHIKV nsP4 suppresses eIF2alpha phosphorylation. Virol J 10:36. doi:10.1186/1743-422X-10-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohatgi A, Corbo JC, Monte K, Higgs S, Vanlandingham DL, Kardon G, Lenschow DJ (2014) Infection of myofibers contributes to increased pathogenicity during infection with an epidemic strain of chikungunya virus. J Virol 88(5):2414–2425. doi:10.1128/JVI.02716-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP, Ross SR, Hardy RW, Bambina SA, Heise MT, Cherry S (2011) Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe 10(2):97–104. doi:10.1016/j.chom.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador B, Zhou Y, Michault A, Muench MO, Simmons G (2009) Characterization of chikungunya pseudotyped viruses: Identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology 393(1):33–41. doi:10.1016/j.virol.2009.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sam IC, Loong SK, Michael JC, Chua CL, Wan Sulaiman WY, Vythilingam I, Chan SY, Chiam CW, Yeong YS, AbuBakar S, Chan YF (2012) Genotypic and phenotypic characterization of chikungunya virus of different genotypes from Malaysia. PLoS One 7(11), e50476. doi:10.1371/journal.pone.0050476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilte C, Couderc T, Chretien F, Sourisseau M, Gangneux N, Guivel-Benhassine F, Kraxner A, Tschopp J, Higgs S, Michault A, Arenzana-Seisdedos F, Colonna M, Peduto L, Schwartz O, Lecuit M, Albert ML (2010) Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med 207(2):429–442. doi:10.1084/Jem.20090851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Brehin AC, Cubito N, Despres P, Kunst F, Rey FA, Zeller H, Brisse S (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3(7), e263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selvarajah S, Sexton NR, Kahle KM, Fong RH, Mattia KA, Gardner J, Lu K, Liss NM, Salvador B, Tucker DF, Barnes T, Mabila M, Zhou X, Rossini G, Rucker JB, Sanders DA, Suhrbier A, Sambri V, Michault A, Muench MO, Doranz BJ, Simmons G (2013) A neutralizing monoclonal antibody targeting the acid-sensitive region in chikungunya virus E2 protects from disease. PLoS Negl Trop Dis 7(9), e2423. doi:10.1371/journal.pntd.0002423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimizu Y, Yamamoto S, Homma M, Ishida N (1972) Effect of chloroquine on the growth of animal viruses. Arch Gesamte Virusforsch 36(1):93–104

    Article  CAS  PubMed  Google Scholar 

  • Shirako Y, Strauss JH (1994) Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J Virol 68(3):1874–1885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sieczkarski SB, Whittaker GR (2003) Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses. Traffic 4(5):333–343

    Article  CAS  PubMed  Google Scholar 

  • Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S (2005) Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci U S A 102(8):2760–2765. doi:10.1073/pnas.0409817102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simizu B, Yamamoto K, Hashimoto K, Ogata T (1984) Structural proteins of chikungunya virus. J Virol 51(1):254–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K (1967) Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L). Curr Sci 36:506

    Google Scholar 

  • Smit JM, Bittman R, Wilschut J (1999) Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol 73(10):8476–8484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AL, Tignor GH (1980) Host cell receptors for two strains of Sindbis virus. Arch Virol 66(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Solignat M, Gay B, Higgs S, Briant L, Devaux C (2009) Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393(2):183–197. doi:10.1016/j.virol.2009.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Le Roux K, Prevost MC, Fsihi H, Frenkiel MP, Blanchet F, Afonso PV, Ceccaldi PE, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saib A, Rey FA, Arenzana-Seisdedos F, Despres P, Michault A, Albert ML, Schwartz O (2007) Characterization of reemerging chikungunya virus. PLoS Pathog 3(6), e89. doi:10.1371/journal.ppat.0030089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanley J, Cooper SJ, Griffin DE (1986) Monoclonal antibody cure and prophylaxis of lethal Sindbis virus encephalitis in mice. J Virol 58(1):107–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmann J, Buer J, Pietschmann T, Steinmann E (2013) Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol 168(5):1059–1073. doi:10.1111/bph.12009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suhrbier A, Jaffar-Bandjee MC, Gasque P (2012) Arthritogenic alphaviruses—an overview. Nat Rev Rheumatol 8(7):420–429. doi:10.1038/nrrheum.2012.64

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen M, Garoff H (1992) Alphavirus spike-nucleocapsid interaction and network antibodies. J Virol 66(8):5106–5109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teng TS, Foo SS, Simamarta D, Lum FM, Teo TH, Lulla A, Yeo NK, Koh EG, Chow A, Leo YS, Merits A, Chin KC, Ng LF (2012) Viperin restricts chikungunya virus replication and pathology. J Clin Invest 122(12):4447–4460. doi:10.1172/JCI63120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thon-Hon VG, Denizot M, Li-Pat-Yuen G, Giry C, Jaffar-Bandjee MC, Gasque P (2012) Deciphering the differential response of two human fibroblast cell lines following chikungunya virus infection. Virol J 9:213. doi:10.1186/1743-422X-9-213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3(12), e201. doi:10.1371/journal.ppat.0030201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsetsarkin KA, McGee CE, Higgs S (2011) Chikungunya virus adaptation to Aedes albopictus mosquitoes does not correlate with acquisition of cholesterol dependence or decreased pH threshold for fusion reaction. Virol J 8:376. doi:10.1186/1743-422X-8-376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubol S, Griffin DE (1991) Identification of a putative alphavirus receptor on mouse neural cells. J Virol 65(12):6913–6921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umashankar M, Sanchez-San Martin C, Liao M, Reilly B, Guo A, Taylor G, Kielian M (2008) Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J Virol 82(18):9245–9253. doi:10.1128/JVI.00975-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vancini R, Wang G, Ferreira D, Hernandez R, Brown DT (2013) Alphavirus genome delivery occurs directly at the plasma membrane in a time- and temperature-dependent process. J Virol 87(8):4352–4359. doi:10.1128/JVI.03412-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavre F, Mavingui P (2011) Endosymbionts of arthropods and nematodes: allies to fight infectious diseases? Med Sci 27(11):953–958. doi:10.1051/medsci/20112711010

    Google Scholar 

  • Villalain J (2010) Membranotropic effects of arbidol, a broad anti-viral molecule, on phospholipid model membranes. J Phys Chem B 114(25):8544–8554. doi:10.1021/jp102619w

    Article  CAS  PubMed  Google Scholar 

  • Vonderheit A, Helenius A (2005) Rab7 associates with early endosomes to mediate sorting and transport of Semliki Forest virus to late endosomes. PLoS Biol 3(7), e233. doi:10.1371/journal.pbio.0030233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, Thompson A, Bricogne G, Rey FA (2010) Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature 468(7324):709–712. doi:10.1038/nature09555

    Article  CAS  PubMed  Google Scholar 

  • Waarts BL, Bittman R, Wilschut J (2002) Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J Biol Chem 277(41):38141–38147. doi:10.1074/jbc.M206998200

    Article  CAS  PubMed  Google Scholar 

  • Wang KS, Schmaljohn AL, Kuhn RJ, Strauss JH (1991) Antiidiotypic antibodies as probes for the Sindbis virus receptor. Virology 181(2):694–702

    Article  CAS  PubMed  Google Scholar 

  • Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH (1992) High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 66(8):4992–5001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber C, Sliva K, von Rhein C, Kummerer BM, Schnierle BS (2015) The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antivir Res 113:1–3. doi:10.1016/j.antiviral.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  • White J, Helenius A (1980) pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci U S A 77(6):3273–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White A, Berman S, Lowenthal JP (1972) Comparative immunogenicities of chikungunya vaccines propagated in monkey kidney monolayers and chick embryo suspension cultures. Appl Microbiol 23(5):951–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • White LK, Sali T, Alvarado D, Gatti E, Pierre P, Streblow D, Defilippis VR (2011) Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff. J Virol 85(1):606–620. doi:10.1128/JVI.00767-10

    Article  CAS  PubMed  Google Scholar 

  • Wikan N, Sakoonwatanyoo P, Ubol S, Yoksan S, Smith DR (2012) Chikungunya virus infection of cell lines: analysis of the East, Central and South African lineage. PLoS One 7(1), e31102. doi:10.1371/journal.pone.0031102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wileman T, Boshans RL, Schlesinger P, Stahl P (1984) Monensin inhibits recycling of macrophage mannose-glycoprotein receptors and ligand delivery to lysosomes. Biochem J 220(3):665–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilschut J, Corver J, Nieva JL, Bron R, Moesby L, Reddy KC, Bittman R (1995) Fusion of Semliki Forest virus with cholesterol-containing liposomes at low pH: a specific requirement for sphingolipids. Mol Membr Biol 12(1):143–149

    Article  CAS  PubMed  Google Scholar 

  • Wintachai P, Wikan N, Kuadkitkan A, Jaimipuk T, Ubol S, Pulmanausahakul R, Auewarakul P, Kasinrerk W, Weng WY, Panyasrivanit M, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR (2012) Identification of prohibitin as a chikungunya virus receptor protein. J Med Virol 84(11):1757–1770. doi:10.1002/jmv.23403

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Helenius A (2013) Virus entry at a glance. J Cell Sci 126(Pt 6):1289–1295. doi:10.1242/jcs.119685

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Wang L, Yang Y, Jia J, Fu S, Feng Y, He Y, Li JP, Liang G (2010) Interaction of E2 glycoprotein with heparan sulfate is crucial for cellular infection of Sindbis virus. PLoS One 5(3), e9656. doi:10.1371/journal.pone.0009656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziegler SA, Nuckols J, McGee CE, Huang YJ, Vanlandingham DL, Tesh RB, Higgs S (2011) In vivo imaging of chikungunya virus in mice and Aedes mosquitoes using a Renilla luciferase clone. Vector Borne Zoonotic Dis 11(11):1471–1477. doi:10.1089/vbz.2011.0648

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work cited herein was funded by the French ANR programs CHIKVENDOM and KERABO. We are grateful to the members of the virus–host interaction group for their contributions. Due to space limitations, recognition and apologies are given in advance to the many colleagues whose original contributions have not been possible to cite in this current review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Briant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chazal, N., Briant, L. (2016). Chikungunya Virus Entry and Replication. In: Okeoma, C. (eds) Chikungunya Virus. Springer, Cham. https://doi.org/10.1007/978-3-319-42958-8_8

Download citation

Publish with us

Policies and ethics