Skip to main content

Interaction of Chikungunya Virus with the Mosquito Vector

  • Chapter
  • First Online:
Chikungunya Virus

Abstract

Chikungunya virus (CHIKV) is an arthropod-borne virus (arbovirus) transmitted by mosquito vectors. Specific aspects of CHIKV interaction with its vectors play a significant role in virus biology, and therefore have a direct influence on the process of CHIKV emergence and the resultant dynamics of outbreaks. The focus of this review is to summarize current understanding of the intrinsic (determined by virus and mosquito genetics) and extrinsic (environmental) factors as well as the complex interplay between them that governs the process of the CHIKVvector interaction, determines CHIKV transmission dynamics and ultimately the process of disease emergence. Recent advances in CHIKV control through vector manipulation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman ZN, Anderson MA, Wiley MR, Murreddu MG, Samuel GH, Morazzani EM, Myles KM (2013) Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl Trop Dis 7, e2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal A, Dash PK, Singh AK, Sharma S, Gopalan N, Rao PV, Parida MM, Reiter P (2014) Evidence of experimental vertical transmission of emerging novel ECSA genotype of chikungunya virus in Aedes aegypti. PLoS Negl Trop Dis 8, e2990

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn A, Klimjack MR, Chatterjee PK, Kielian M (1999) An epitope of the Semliki Forest virus fusion protein exposed during virus-membrane fusion. J Virol 73:10029–10039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alto BW, Lounibos LP, Higgs S, Juliano SA (2005) Larval competition differentially affects arbovirus infection in Aedes mosquitoes. Ecology 86:3279–3288

    Article  PubMed  PubMed Central  Google Scholar 

  • Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM, Jadhav SM, Sudeep AB, Mishra AC (2007) Genetic divergence of chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J Gen Virol 88:1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Arias-Goeta C, Mousson L, Rougeon F, Failloux AB (2013) Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level. PLoS One 8, e57548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagny L, Delatte H, Quilici S, Fontenille D (2009) Progressive decrease in Aedes aegypti distribution in Reunion Island since the 1900s. J Med Entomol 46:1541–1545

    Article  PubMed  Google Scholar 

  • Banerjee K, Mourja DT, Malunjkar AS (1988) Susceptibility & transmissibility of different geographical strains of Aedes aegypti mosquitoes to chikungunya virus. Indian J Med Res 87:134–138

    CAS  PubMed  Google Scholar 

  • Blagrove MS, Arias-Goeta C, Di Genua C, Failloux AB, Sinkins SP (2013) A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus. PLoS Negl Trop Dis 7, e2152

    Article  PubMed  PubMed Central  Google Scholar 

  • Brault AC, Powers AM, Ortiz D, Estrada-Franco JG, Navarro-Lopez R, Weaver SC (2004) Venezuelan equine encephalitis emergence: enhanced vector infection from a single amino acid substitution in the envelope glycoprotein. Proc Natl Acad Sci U S A 101:11344–11349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, Wilusz J, Foy BD (2008) Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21:23–46

    Article  CAS  PubMed  Google Scholar 

  • Chadee DD (2013) Resting behaviour of Aedes aegypti in Trinidad: with evidence for the re-introduction of indoor residual spraying (IRS) for dengue control. Parasit Vectors 6:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherian SS, Walimbe AM, Jadhav SM, Gandhe SS, Hundekar SL, Mishra AC, Arankalle VA (2009) Evolutionary rates and timescale comparison of chikungunya viruses inferred from the whole genome/E1 gene with special reference to the 2005–07 outbreak in the Indian subcontinent. Infect Genet Evol 9:16–23

    Article  CAS  PubMed  Google Scholar 

  • Chretien JP, Anyamba A, Bedno SA, Breiman RF, Sang R, Sergon K, Powers AM, Onyango CO, Small J, Tucker CJ, Linthicum KJ (2007) Drought-associated chikungunya emergence along coastal East Africa. Am J Trop Med Hyg 76:405–407

    PubMed  Google Scholar 

  • Clayton RB (1964) The utilization of sterols by insects. J Lipid Res 5:3–19

    CAS  PubMed  Google Scholar 

  • Clements AN (1992) The biology of mosquitoes. Chapman and Hall, London

    Google Scholar 

  • Coffey LL, Vignuzzi M (2011) Host alternation of chikungunya virus increases fitness while restricting population diversity and adaptability to novel selective pressures. J Virol 85:1025–1035

    Article  CAS  PubMed  Google Scholar 

  • Coffey LL, Beeharry Y, Borderia AV, Blanc H, Vignuzzi M (2011) Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci U S A 108:16038–16043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffey LL, Failloux AB, Weaver SC (2014) Chikungunya virus-vector interactions. Viruses 6:4628–4663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbel V, Nosten F, Thanispong K, Luxemburger C, Kongmee M, Chareonviriyaphap T (2013) Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia. Trends Parasitol 29:623–633

    Article  PubMed  Google Scholar 

  • Dash PK, Parida MM, Santhosh SR, Verma SK, Tripathi NK, Ambuj S, Saxena P, Gupta N, Chaudhary M, Babu JP, Lakshmi V, Mamidi N, Subhalaxmi MV, Lakshmana Rao PV, Sekhar K (2007) East Central South African genotype as the causative agent in reemergence of chikungunya outbreak in India. Vector Borne Zoonotic Dis 7:519–527

    Article  CAS  PubMed  Google Scholar 

  • DE Lamballerie X, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, Gould EA (2008) Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol J 5:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deardorff ER, Weaver SC (2010) Vector competence of Culex (Melanoconion) taeniopus for equine-virulent subtype IE strains of Venezuelan equine encephalitis virus. Am J Trop Med Hyg 82:1047–1052

    Article  PubMed  PubMed Central  Google Scholar 

  • Delatte H, Dehecq JS, Thiria J, Domerg C, Paupy C, Fontenille D (2008) Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a chikungunya epidemic event. Vector Borne Zoonotic Dis 8:25–34

    Article  CAS  PubMed  Google Scholar 

  • Diagne CT, Faye O, Guerbois M, Knight R, Diallo D, Faye O, Ba Y, Dia I, Faye O, Weaver SC, Sall AA, Diallo M (2014) Vector competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde Archipelago for West African lineages of chikungunya virus. Am J Trop Med Hyg 91(3):635–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D (1999) Vectors of chikungunya virus in Senegal: current data and transmission cycles. Am J Trop Med Hyg 60:281–286

    CAS  PubMed  Google Scholar 

  • Diallo M, Laganier R, Nangouma A (2010) First record of Ae. albopictus (Skuse 1894), in Central African Republic. Trop Med Int Health 15:1185–1189

    Article  PubMed  Google Scholar 

  • Diallo D, Sall AA, Buenemann M, Chen R, Faye O, Diagne CT, Faye O, Ba Y, Dia I, Watts D, Weaver SC, Hanley KA, Diallo M (2012) Landscape ecology of sylvatic chikungunya virus and mosquito vectors in southeastern Senegal. PLoS Negl Trop Dis 6, e1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  CAS  PubMed  Google Scholar 

  • Eisen L, Moore CG (2013) Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J Med Entomol 50:467–478

    Article  PubMed  Google Scholar 

  • Failloux AB, Vazeille M, Rodhain F (2002) Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. J Mol Evol 55:653–663

    Article  CAS  PubMed  Google Scholar 

  • Fields W, Kielian M (2013) A key interaction between the alphavirus envelope proteins responsible for initial dimer dissociation during fusion. J Virol 87:3774–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerardin P, Barau G, Michault A, Bintner M, Randrianaivo H, Choker G, Lenglet Y, Touret Y, Bouveret A, Grivard P, Le Roux K, Blanc S, Schuffenecker I, Couderc T, Arenzana-Seisdedos F, Lecuit M, Robillard PY (2008) Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Reunion. PLoS Med 5, e60

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbons DL, Ahn A, Chatterjee PK, Kielian M (2000) Formation and characterization of the trimeric form of the fusion protein of Semliki Forest Virus. J Virol 74:7772–7780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilotra SK, Shah KV (1967) Laboratory studies on transmission of chikungunya virus by mosquitoes. Am J Epidemiol 86:379–385

    CAS  PubMed  Google Scholar 

  • Grandadam M, Caro V, Plumet S, Thiberge JM, Souares Y, Failloux AB, Tolou HJ, Budelot M, Cosserat D, Leparc-Goffart I, Despres P (2011) Chikungunya virus, southeastern France. Emerg Infect Dis 17:910–913

    Article  PubMed  PubMed Central  Google Scholar 

  • Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227

    Article  CAS  PubMed  Google Scholar 

  • Green DW, Rowley WA, Wong YW, Brinker JP, Dorsey DC, Hausler WJ Jr (1980) The significance of western equine encephalomyelitis viral infections in Aedes trivittatus (Diptera: Culicidae) in Iowa. I. Variation in susceptibility of Aedes trivittatus to experimental infection with three strains of western equine encephalomyelitis virus. Am J Trop Med Hyg 29:118–124

    CAS  PubMed  Google Scholar 

  • Grimstad PR, Haramis LD (1984) Aedes triseriatus (Diptera: Culicidae) and La Crosse virus. III. Enhanced oral transmission by nutrition-deprived mosquitoes. J Med Entomol 21:249–256

    Article  CAS  PubMed  Google Scholar 

  • Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hapuarachchi HC, Bandara KB, Sumanadasa SD, Hapugoda MD, Lai YL, Lee KS, Tan LK, Lin RT, Ng LF, Bucht G, Abeyewickreme W, Ng LC (2010) Re-emergence of chikungunya virus in South-east Asia: virological evidence from Sri Lanka and Singapore. J Gen Virol 91:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Hawley WA (1988) The biology of Aedes albopictus. J Am Mosq Control Assoc Suppl 1:1–39

    CAS  PubMed  Google Scholar 

  • Houk EJ, Obie F, Hardy JL (1979) Peritrophic membrane formation and the midgut barrier to arboviral infection in the mosquito, Culex tarsalis Coquillett (Insecta, Diptera). Acta Trop 36:39–45

    CAS  PubMed  Google Scholar 

  • Houk EJ, Hardy JL, Chiles RE (1981) Permeability of the midgut basal lamina in the mosquito, Culex tarsalis Coquillett (Insecta, Diptera). Acta Trop 38:163–171

    CAS  PubMed  Google Scholar 

  • Inoue S, Morita K, Matias RR, Tuplano JV, Resuello RR, Candelario JR, Cruz DJ, Mapua CA, Hasebe F, Igarashi A, Natividad FF (2003) Distribution of three arbovirus antibodies among monkeys (Macaca fascicularis) in the Philippines. J Med Primatol 32:89–94

    Article  CAS  PubMed  Google Scholar 

  • Jupp PG, Kemp A (1996) What is the potential for future outbreaks of chikungunya, dengue and yellow fever in southern Africa? S Afr Med J 86:35–37

    CAS  PubMed  Google Scholar 

  • Jupp PG, Mcintosh BM (1988) Chikungunya virus disease. In: Monath TP (ed) The arbovirus: epidemiology and ecology, vol II. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Jupp PG, Mcintosh BM (1990) Aedes furcifer and other mosquitoes as vectors of chikungunya virus at Mica, northeastern Transvaal, South Africa. J Am Mosq Control Assoc 6:415–420

    CAS  PubMed  Google Scholar 

  • Jupp PG, Mcintosh BM, Dos Santos I, Demoor P (1981) Laboratory vector studies on six mosquito and one tick species with chikungunya virus. Trans R Soc Trop Med Hyg 75:15–19

    Article  CAS  PubMed  Google Scholar 

  • Kamgang B, Brengues C, Fontenille D, Njiokou F, Simard F, Paupy C (2011) Genetic structure of the tiger mosquito, Aedes albopictus, in Cameroon (Central Africa). PLoS One 6, e20257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamgang B, Ngoagouni C, Manirakiza A, Nakoune E, Paupy C, Kazanji M (2013) Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis 7(12), e2590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kariuki Njenga M, Nderitu L, Ledermann JP, Ndirangu A, Logue CH, Kelly CH, Sang R, Sergon K, Breiman R, Powers AM (2008) Tracking epidemic chikungunya virus into the Indian Ocean from East Africa. J Gen Virol 89:2754–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE (2004) RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci U S A 101:17240–17245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klowden MJ (1996) Vector behavior. In: Beaty BJ, Marquardt WC (eds) The biology of disease vectors. University Colorado Press, Niwot, Colorado

    Google Scholar 

  • Kramer LD, Scherer WF (1976) Vector competence of mosquitoes as a marker to distinguish Central American and Mexican epizootic from enzootic strains of Venezuelan encephalitis virus. Am J Trop Med Hyg 25:336–346

    CAS  PubMed  Google Scholar 

  • Lounibos LP (2002) Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266

    Article  CAS  PubMed  Google Scholar 

  • Mangiafico JA (1971) Chikungunya virus infection and transmission in five species of mosquito. Am J Trop Med Hyg 20:642–645

    CAS  PubMed  Google Scholar 

  • Martin E, Moutailler S, Madec Y, Failloux AB (2010) Differential responses of the mosquito Aedes albopictus from the Indian Ocean region to two chikungunya isolates. BMC Ecol 10:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCarthy MC, Haberberger RL, Salib AW, Soliman BA, El-Tigani A, Khalid IO, Watts DM (1996) Evaluation of arthropod-borne viruses and other infectious disease pathogens as the causes of febrile illnesses in the Khartoum Province of Sudan. J Med Virol 48:141–146

    Article  CAS  PubMed  Google Scholar 

  • McClelland GA (1974) A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans R Entomol Soc London 126:239–259

    Article  Google Scholar 

  • McCrae AW, Henderson BE, Kirya BG, Sempala SD (1971) Chikungunya virus in the Entebbe area of Uganda: isolations and epidemiology. Trans R Soc Trop Med Hyg 65:152–168

    Article  CAS  PubMed  Google Scholar 

  • McFarlane M, Arias-Goeta C, Martin E, O’Hara Z, Lulla A, Mousson L, Rainey SM, Misbah S, Schnettler E, Donald CL, Merits A, Kohl A, Failloux AB (2014) Characterization of Aedes aegypti innate-immune pathways that limit chikungunya virus replication. PLoS Negl Trop Dis 8, e2994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mcintosh BM, Jupp PG (1970) Attempts to transmit chikungunya virus with six species of mosquito. J Med Entomol 7:615–618

    Article  CAS  PubMed  Google Scholar 

  • Mcintosh BM, Jupp PG, DOS Santos I (1977) Rural epidemic of chikungunya in South Africa with involvement of Aedes (Diceromyia) furcifer (Edwards) and baboons. S Afr J Med Sci 73:267–269

    Google Scholar 

  • Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM (2012) Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 8, e1002470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mourya DT (1987) Absence of transovarial transmission of chikungunya virus in Aedes aegypti & Ae. albopictus mosquitoes. Indian J Med Res 85:593–595

    CAS  PubMed  Google Scholar 

  • Mourya DT, Malunjkar AS, Banerjee K (1987) Susceptibility & transmissibility of Aedes aegypti to four strains of chikungunya virus. Indian J Med Res 86:185–190

    CAS  PubMed  Google Scholar 

  • Mousson L, Martin E, Zouache K, Madec Y, Mavingui P, Failloux AB (2010) Wolbachia modulates chikungunya replication in Aedes albopictus. Mol Ecol 19:1953–1964

    Article  CAS  PubMed  Google Scholar 

  • Muturi EJ, Alto BW (2011) Larval environmental temperature and insecticide exposure alter Aedes aegypti competence for arboviruses. Vector Borne Zoonotic Dis 11:1157–1163

    Article  PubMed  Google Scholar 

  • Muturi EJ, Costanzo K, Kesavaraju B, Alto BW (2011a) Can pesticides and larval competition alter susceptibility of Aedes mosquitoes (Diptera: Culicidae) to arbovirus infection? J Med Entomol 48:429–436

    Article  CAS  PubMed  Google Scholar 

  • Muturi EJ, Kim CH, Alto BW, Berenbaum MR, Schuler MA (2011b) Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Trop Med Int Health 16:955–964

    Article  CAS  PubMed  Google Scholar 

  • Muturi EJ, Blackshear M Jr, Montgomery A (2012) Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J Vector Ecol 37:154–161

    Article  PubMed  Google Scholar 

  • Myles KM, Wiley MR, Morazzani EM, Adelman ZN (2008) Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci U S A 105:19938–19943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niyas KP, Abraham R, Unnikrishnan RN, Mathew T, Nair S, Manakkadan A, Issac A, Sreekumar E (2010) Molecular characterization of chikungunya virus isolates from clinical samples and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, South India. Virol J 7:189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pages F, Peyrefitte CN, Mve MT, Jarjaval F, Brisse S, Iteman I, Gravier P, Tolou H, Nkoghe D, Grandadam M (2009) Aedes albopictus mosquito: the main vector of the 2007 chikungunya outbreak in Gabon. PLoS One 4, e4691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parola P, De Lamballerie X, Jourdan J, Rovery C, Vaillant V, Minodier P, Brouqui P, Flahault A, Raoult D, Charrel RN (2006) Novel chikungunya virus variant in travelers returning from Indian Ocean islands. Emerg Infect Dis 12:1493–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson HE, Mcintosh BM (1964) Further studies on the chikungunya outbreak in Southern Rhodesia in 1962. II. Transmission experiments with the Aedes furcifer-taylori group of mosquitoes and with a Member of the Anopheles gambiae complex. Ann Trop Med Parasitol 58:52–55

    Article  CAS  PubMed  Google Scholar 

  • Paul SD, Singh KR (1968) Experimental infection of Macaca radiata with chikungunya virus and transmission of virus by mosquitoes. Indian J Med Res 56:802–811

    CAS  PubMed  Google Scholar 

  • Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Pesko K, Westbrook CJ, Mores CN, Lounibos LP, Reiskind MH (2009) Effects of infectious virus dose and bloodmeal delivery method on susceptibility of Aedes aegypti and Aedes albopictus to chikungunya virus. J Med Entomol 46:395–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, Fu G, Condon KC, Scaife S, Donnelly CA, Coleman PG, White-Cooper H, Alphey L (2007) Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 5:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Powell JR, Tabachnick WJ (2013) History of domestication and spread of Aedes aegypti—a review. Mem Inst Oswaldo Cruz 108(Suppl 1):11–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiter P, Fontenille D, Paupy C (2006) Aedes albopictus as an epidemic vector of chikungunya virus: another emerging problem? Lancet Infect Dis 6:463–464

    Article  PubMed  Google Scholar 

  • Rey JR, Nishimura N, Wagner B, Braks MA, O’Connell SM, Lounibos LP (2006) Habitat segregation of mosquito arbovirus vectors in south Florida. J Med Entomol 43:1134–1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846

    Article  CAS  PubMed  Google Scholar 

  • Ross RW (1956) A laboratory technique for studying the insect transmission of animal viruses, employing a bat-wing membrane, demonstrated with two African viruses. J Hyg (Lond) 54:192–200

    Article  CAS  Google Scholar 

  • Roussel A, Lescar J, Vaney MC, Wengler G, Wengler G, Rey FA (2006) Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14:75–86

    Article  CAS  PubMed  Google Scholar 

  • Rozen-Gagnon K, Stapleford KA, Mongelli V, Blanc H, Failloux AB, Saleh MC, Vignuzzi M (2014) Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLoS Pathog 10, e1003877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog 5, e1000299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schnettler E, Donald CL, Human S, Watson M, Siu RW, McFarlane M, Fazakerley JK, Kohl A, Fragkoudis R (2013) Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol 94:1680–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Brehin AC, Cubito N, Despres P, Kunst F, Rey FA, Zeller H, Brisse S (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3, e263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sempala SD, Kirya BG (1973) Laboratory transmission of chikungunya virus by Aedes (Stegomyia) apicoargenteus Theobald (Diptera, Culicidae). Am J Trop Med Hyg 22:263–266

    CAS  PubMed  Google Scholar 

  • Simard F, Nchoutpouen E, Toto JC, Fontenille D (2005) Geographic distribution and breeding site preference of Aedes albopictus and Aedes aegypti (Diptera: culicidae) in Cameroon, Central Africa. J Med Entomol 42:726–731

    Article  PubMed  Google Scholar 

  • Singh KR, Pavri KM (1967) Experimental studies with chikungunya virus in Aedes aegypti and Aedes albopictus. Acta Virol 11:517–526

    CAS  PubMed  Google Scholar 

  • Smith CE (1956) The history of dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti. J Trop Med Hyg 59:243–251

    CAS  PubMed  Google Scholar 

  • Stapleford KA, Coffey LL, Lay S, Borderia AV, Duong V, Isakov O, Rozen-Gagnon K, Arias-Goeta C, Blanc H, Beaucourt S, Haliloglu T, Schmitt C, Bonne I, Ben-Tal N, Shomron N, Failloux AB, Buchy P, Vignuzzi M (2014) Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential. Cell Host Microbe 15:706–716

    Article  CAS  PubMed  Google Scholar 

  • Tabachnick WJ, Powell JR (1979) A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet Res 34:215–229

    Article  CAS  PubMed  Google Scholar 

  • Tesh RB, Gubler DJ, Rosen L (1976) Variation among goegraphic strains of Aedes albopictus in susceptibility to infection with chikungunya virus. Am J Trop Med Hyg 25:326–335

    CAS  PubMed  Google Scholar 

  • Tsetsarkin K (2011) Adaptation of chikungunya virus to Aedes albopictus mosquitoes: the role of mutations in the E1 and E2 glycoproteins. Ph.D, The University of Texas Medical Branch.

    Google Scholar 

  • Tsetsarkin KA, Weaver SC (2011) Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLoS Pathog 7, e1002412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsetsarkin KA, Vanlandingham DL, Mcgee CE, Higgs S (2007) A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3, e201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsetsarkin KA, Mcgee CE, Volk SM, Vanlandingham DL, Weaver SC, Higgs S (2009) Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to aedes albopictus and ae. Aegypti mosquitoes. PLoS One 4, e6835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, Huang J, Weaver SC (2011a) Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci U S A 108:7872–7877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsetsarkin KA, Chen R, Sherman MB, Weaver SC (2011b) Chikungunya virus: evolution and genetic determinants of emergence. Curr Opin Virol 1:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsetsarkin KA, Mcgee CE, Higgs S (2011c) Chikungunya virus adaptation to Aedes albopictus mosquitoes does not correlate with acquisition of cholesterol dependence or decreased pH threshold for fusion reaction. Virol J 8:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS, Guerbois M, Forrester N, Perng GC, Sreekumar E, Leal G, Huang J, Mukhopadhyay S, Weaver SC (2014) Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun 5:4084

    Article  CAS  PubMed  Google Scholar 

  • Turell MJ, Malinoski FJ (1992) Limited potential for mosquito transmission of a live, attenuated chikungunya virus vaccine. Am J Trop Med Hyg 47:98–103

    CAS  PubMed  Google Scholar 

  • Turell MJ, Spielman A (1992) Nonvascular delivery of Rift Valley fever virus by infected mosquitoes. Am J Trop Med Hyg 47:190–194

    CAS  PubMed  Google Scholar 

  • Turell MJ, Barth J, Coleman RE (1999) Potential for Central American mosquitoes to transmit epizootic and enzootic strains of Venezuelan equine encephalitis virus. J Am Mosq Control Assoc 15:295–298

    CAS  PubMed  Google Scholar 

  • Turell MJ, O’Guinn ML, Navarro R, Romero G, Estrada-Franco JG (2003) Vector competence of Mexican and Honduran mosquitoes (Diptera: Culicidae) for enzootic (IE) and epizootic (IC) strains of Venezuelan equine encephalomyelitis virus. J Med Entomol 40:306–310

    Article  PubMed  Google Scholar 

  • Van Den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O’Neill SL (2012) Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis 6, e1892

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaney MC, Duquerroy S, Rey FA (2013) Alphavirus structure: activation for entry at the target cell surface. Curr Opin Virol 3:151–158

    Article  CAS  PubMed  Google Scholar 

  • Vashishtha M, Phalen T, Marquardt MT, Ryu JS, Ng AC, Kielian M (1998) A single point mutation controls the cholesterol dependence of Semliki Forest virus entry and exit. J Cell Biol 140:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, Thiria J, Dehecq JS, Fontenille D, Schuffenecker I, Despres P, Failloux AB (2007) Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2, e1168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vazeille M, Moutailler S, Pages F, Jarjaval F, Failloux AB (2008) Introduction of Aedes albopictus in Gabon: what consequences for dengue and chikungunya transmission? Trop Med Int Health 13:1176–1179

    Article  PubMed  Google Scholar 

  • Vega-Rua A, Zouache K, Girod R, Failloux AB, Lourenco-De-Oliveira R (2014) High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus. J Virol 88:6294–6306

    Article  PubMed  PubMed Central  Google Scholar 

  • Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI, Sall AA, Nasar F, Schuh AJ, Holmes EC, Higgs S, Maharaj PD, Brault AC, Weaver SC (2010) Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol 84:6497–6504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, Thompson A, Bricogne G, Rey FA (2010) Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature 468:709–712

    Article  CAS  PubMed  Google Scholar 

  • Weaver SC (2014) Arrival of chikungunya virus in the new world: prospects for spread and impact on public health. PLoS Negl Trop Dis 8, e2921

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver SC, Scott TW, Lorenz LH (1990) Patterns of eastern equine encephalomyelitis virus infection in Culiseta melanura (Diptera: Culicidae). J Med Entomol 27:878–891

    Article  CAS  PubMed  Google Scholar 

  • Weaver SC, Scott TW, Lorenz LH, Repik PM (1991) Detection of eastern equine encephalomyelitis virus deposition in Culiseta melanura following ingestion of radiolabeled virus in blood meals. Am J Trop Med Hyg 44:250–259

    CAS  PubMed  Google Scholar 

  • Weinbren MP, Haddow AJ, Williams MC (1958) The occurrence of chikungunya virus in Uganda. I. Isolation from mosquitoes. Trans R Soc Trop Med Hyg 52:253–257

    Article  CAS  PubMed  Google Scholar 

  • Westbrook CJ, Reiskind MH, Pesko KN, Greene KE, Lounibos LP (2010) Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus. Vector Borne Zoonotic Dis 10:241–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Zouache K, Michelland RJ, Failloux AB, Grundmann GL, Mavingui P (2012) Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector. Mol Ecol 21:2297–2309

    Article  CAS  PubMed  Google Scholar 

  • Zouache K, Fontaine A, Vega-Rua A, Mousson L, Thiberge JM, Lourenco-De-Oliveira R, Caro V, Lambrechts L, Failloux AB (2014). Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc Biol Sci 281:1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Weaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsetsarkin, K., Coffey, L.L., Weaver, S.C. (2016). Interaction of Chikungunya Virus with the Mosquito Vector. In: Okeoma, C. (eds) Chikungunya Virus. Springer, Cham. https://doi.org/10.1007/978-3-319-42958-8_7

Download citation

Publish with us

Policies and ethics