Skip to main content

Targeting Upstream Janus Kinases

  • Chapter
  • First Online:
STAT Inhibitors in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 601 Accesses

Abstract

Janus kinases (JAKs) are the tyrosine kinases that are the principal activators of STAT proteins – particularly downstream of cytokine receptors – during normal development and homeostasis. The JAKs also make a major contribution to the hyperactivation of STATs observed in various malignancies, including through mutation of the JAKs themselves in several neoplastic conditions. These properties have made JAKs attractive targets for the development of small molecule inhibitors based on similar approaches used for other tyrosine kinases. This chapter details the lead JAK inhibitors, which show variable specificity, including multi-kinase inhibitors that have demonstrated excellent clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397

    Article  CAS  PubMed  Google Scholar 

  2. Scott LM, Tong W, Levine RL et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356:459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barrio S, Gallardo M, Arenas A et al (2013) Inhibition of related JAK/STAT pathways with molecular targeted drugs shows strong synergy with ruxolitinib in chronic myeloproliferative neoplasm. Br J Haematol 161:667–676

    Article  CAS  PubMed  Google Scholar 

  4. Hu Y, Hong Y, Xu Y et al (2014) Inhibition of the JAK/STAT pathway with ruxolitinib overcomes cisplatin resistance in non-small-cell lung cancer NSCLC. Apoptosis 19:1627–1636

    Article  CAS  PubMed  Google Scholar 

  5. Cleeland CS, Dantzer R, Sloan J et al (2013) Cytokine profile changes in 309 myelofibrosis patients: comparison of JAK1/JAK2 inhibitor therapy vs. placebo-correltive analysis from the Comfort-I trial. Blood 122:4074a

    Google Scholar 

  6. Verstovsek S, Kantarjian H, Mesa RA et al (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363:1117–1127

    Article  CAS  PubMed  Google Scholar 

  7. Verstovsek S, Mesa RA, Gotlib J et al (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366:799–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harrison C, Kiladjian JJ, Al-Ali HK et al (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 366:787–798

    Article  CAS  PubMed  Google Scholar 

  9. Harrison C, Mesa R, Ross D et al (2013) Practical management of patients with myelofibrosis receiving ruxolitinib. Expert Rev Hematol 6:511–523

    Article  CAS  PubMed  Google Scholar 

  10. Cervantes F, Vannucchi AM, Kiladjian JJ et al (2013) Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood 122:4047–4053

    Article  CAS  PubMed  Google Scholar 

  11. Verstovsek S, Passamonti F, Rambaldi A et al (2014) A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 Inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer 120:513–520

    Article  CAS  PubMed  Google Scholar 

  12. Vannucchi AM, Kiladjian JJ, Griesshammer M et al (2015) Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med 372:426–435

    Article  PubMed  PubMed Central  Google Scholar 

  13. An HJ, Choi EK, Kim JS et al (2014) INCB018424 induces apoptotic cell death through the suppression of pJAK1 in human colon cancer cells. Neoplasma 61:56–62

    Article  CAS  PubMed  Google Scholar 

  14. Hurwitz HI, Uppal N, Wagner SA et al (2015) Randomized, double-blind, phase II study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. J Clin Oncol 33:4039–4047

    Google Scholar 

  15. Wernig G, Kharas MG, Okabe R et al (2008) Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 13:311–320

    Article  CAS  PubMed  Google Scholar 

  16. Lasho TL, Tefferi A, Hood JD et al (2008) TG101348, a JAK2-selective antagonist, inhibits primary hematopoietic cells derived from myeloproliferative disorder patients with JAK2V617F, MPLW515K or JAK2 exon 12 mutations as well as mutation negative patients. Leukemia 22:1790–1792

    Article  CAS  PubMed  Google Scholar 

  17. Pardanani A, Tefferi A, Jamieson C et al (2015) A phase 2 randomized dose-ranging study of the JAK2-selective inhibitor fedratinib (SAR302503) in patients with myelofibrosis. Blood Cancer J 5:e335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pardanani A, Gotlib JR, Jamieson C et al (2011) Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 29:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jamieson C, Hasserjian R, Gotlib J et al (2015) Effect of treatment with a JAK2-selective inhibitor, fedratinib, on bone marrow fibrosis in patients with myelofibrosis. J Transl Med 13:294

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pardanani A, Lasho T, Smith G et al (2009) CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia 23:1441–1445

    Article  CAS  PubMed  Google Scholar 

  21. Tyner JW, Bumm TG, Deininger J et al (2010) CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 115:5232–5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pardanani A, Laborde RR, Lasho TL et al (2013) Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia 27:1322–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olcaydu D, Harutyunyan A, Jager R et al (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:450–454

    Article  CAS  PubMed  Google Scholar 

  24. Liew SH, Nichols KK, Klamerus KJ et al (2012) Tofacitinib (CP-690,550), a Janus kinase inhibitor for dry eye disease: results from a phase 1/2 trial. Ophthalmology 119:1328–1335

    Article  PubMed  Google Scholar 

  25. Fleischmann R, Kremer J, Cush J et al (2012) Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 367:495–507

    Article  CAS  PubMed  Google Scholar 

  26. van Vollenhoven RF, Fleischmann R, Cohen S et al (2012) Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 367:508–519

    Article  PubMed  Google Scholar 

  27. Boy MG, Wang C, Wilkinson BE et al (2009) Double-blind, placebo-controlled, dose-escalation study to evaluate the pharmacologic effect of CP-690,550 in patients with psoriasis. J Invest Dermatol 129:2299–2302

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka Y, Suzuki M, Nakamura H et al (2011) Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res (Hoboken) 63:1150–1158

    Article  CAS  Google Scholar 

  29. Sandborn WJ, Ghosh S, Panes J et al (2012) Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med 367:616–624

    Article  CAS  PubMed  Google Scholar 

  30. Manshouri T, Quintas-Cardama A, Nussenzveig RH et al (2008) The JAK kinase inhibitor CP-690,550 suppresses the growth of human polycythemia vera cells carrying the JAK2V617F mutation. Cancer Sci 99:1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bilori B, Thota S, Clemente MJ et al (2015) Tofacitinib as a novel salvage therapy for refractory T-cell large granular lymphocytic leukemia. Leukemia 29:2427–2429

    Article  CAS  PubMed  Google Scholar 

  32. Xin H, Herrmann A, Reckamp K et al (2011) Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res 71:6601–6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ioannidis S, Lamb ML, Wang T et al (2011) Discovery of 5-chloro-N2-[(1S)-1-(5-fluoropyrimidin-2-yl)ethyl]-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine-2,4-diamine (AZD1480) as a novel inhibitor of the JAK/STAT pathway. J Med Chem 54:262–276

    Article  CAS  PubMed  Google Scholar 

  34. Hedvat M, Huszar D, Herrmann A et al (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan S, Li Z, Thiele CJ (2013) Inhibition of STAT3 with orally active JAK inhibitor, AZD1480, decreases tumor growth in neuroblastoma and pediatric sarcomas in vitro and in vivo. Oncotarget 4:433–445

    Article  PubMed  PubMed Central  Google Scholar 

  36. McFarland BC, Ma JY, Langford CP et al (2011) Therapeutic potential of AZD1480 for the treatment of human glioblastoma. Mol Cancer Ther 10:2384–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Houghton PJ, Kurmasheva RT, Lyalin D et al (2014) Initial solid tumor testing (stage 1) of AZD1480, an inhibitor of Janus kinases 1 and 2 by the pediatric preclinical testing program. Pediatr Blood Cancer 61:1972–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Plimack ER, Lorusso PM, McCoon P et al (2013) AZD1480: a phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist 18:819–820

    Article  PubMed  PubMed Central  Google Scholar 

  39. Verstovsek S, Hoffman R, Mascarenhas J et al (2015) A phase I, open-label, multi-center study of the JAK2 inhibitor AZD1480 in patients with myelofibrosis. Leuk Res 39:157–163

    Article  CAS  PubMed  Google Scholar 

  40. Ma L, Clayton JR, Walgren RA et al (2013) Discovery and characterization of LY2784544, a small-molecule tyrosine kinase inhibitor of JAK2V617F. Blood Cancer J 3:e109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mesa RA, Salama ME, Giles JL et al (2013) Phase I study of LY2784544, a JAK2 selective inhibitor, in patinets with myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET). Blood 122:665a

    Article  Google Scholar 

  42. Forsyth T, Kearney PC, Kim BG et al (2012) SAR and in vivo evaluation of 4-aryl-2-aminoalkylpyrimidines as potent and selective Janus kinase 2 (JAK2) inhibitors. Bioorg Med Chem Lett 22:7653–7658

    Article  CAS  PubMed  Google Scholar 

  43. Verstovsek S, Tam CS, Wadleigh M et al (2014) Phase I evaluation of XL019, an oral, potent, and selective JAK2 inhibitor. Leuk Res 38:316–322

    Article  CAS  PubMed  Google Scholar 

  44. Nakaya Y, Shide K, Niwa T et al (2011) Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms. Blood Cancer J 1:e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakaya Y, Shide K, Naito H et al (2014) Effect of NS-018, a selective JAK2V617F inhibitor, in a murine model of myelofibrosis. Blood Cancer J 4:e174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verstovsek S, Talpaz M, Ritchie EK et al (2014) A phase 1/2, open-label, dose escalation, multi-center study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of orally administered NS-018 in patients with primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (postPV MF) or post-essential thrombocythemia myelofibrosis (postET MF). Blood 124:1839a

    Google Scholar 

  47. Purandare AV, McDevitt TM, Wan H et al (2012) Characterization of BMS-911543, a functionally selective small-molecule inhibitor of JAK2. Leukemia 26:280–288

    Article  CAS  PubMed  Google Scholar 

  48. Pomicter AD, Eiring AM, Senina AV et al (2015) Limited efficacy of BMS-911543 in a murine model of Janus kinase 2 V617F myeloproliferative neoplasm. Exp Hematol 43:537–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pardanani A, Roberts AW, Seymour JF et al (2013) BMS-911543, a selective JAK2 inhibitor: a multicenter phase 1/2a study in myelofibrosis. Blood 122:664a

    Google Scholar 

  50. Liu PC, Caulder E, Li J et al (2009) Combined inhibition of Janus kinase 1/2 for the treatment of JAK2V617F-driven neoplasms: selective effects on mutant cells and improvements in measures of disease severity. Clin Cancer Res 15:6891–6900

    Article  CAS  PubMed  Google Scholar 

  51. Koppikar P, Abdel-Wahab O, Hedvat C et al (2010) Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood 115:2919–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li J, Favata M, Kelley JA et al (2010) INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Neoplasia 12:28–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baffert F, Regnier CH, De Pover A et al (2010) Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol Cancer Ther 9:1945–1955

    Article  CAS  PubMed  Google Scholar 

  54. Hart S, Goh KC, Novotny-Diermayr V et al (2011) SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia 25:1751–1759

    Article  CAS  PubMed  Google Scholar 

  55. Komrokji RS, Seymour JF, Roberts AW et al (2015) Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood 125:2649–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Younes A, Romaguera J, Fanale M et al (2012) Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. J Clin Oncol 30:4161–4167

    Article  CAS  PubMed  Google Scholar 

  57. Hexner EO, Serdikoff C, Jan M et al (2008) Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 111:5663–5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Santos FP, Kantarjian HM, Jain N et al (2010) Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood 115:1131–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hexner E, Roboz G, Hoffman R et al (2014) Open-label study of oral CEP-701 (lestaurtinib) in patients with polycythaemia vera or essential thrombocythaemia with JAK2-V617F mutation. Br J Haematol 164:83–93

    Article  CAS  PubMed  Google Scholar 

  60. Carter TA, Wodicka LM, Shah NP et al (2005) Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci USA 102:11011–11016

    Google Scholar 

  61. Harrington EA, Bebbington D, Moore J et al (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10:262–267

    Article  CAS  PubMed  Google Scholar 

  62. Giles FJ, Swords RT, Nagler A et al (2013) MK-0457, an Aurora kinase and BCR-ABL inhibitor, is active in patients with BCR-ABL T315I leukemia. Leukemia 27:113–117

    Article  CAS  PubMed  Google Scholar 

  63. Giles FJ, Cortes J, Jones D et al (2007) MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109:500–502

    Article  CAS  PubMed  Google Scholar 

  64. Lipka DB, Hoffmann LS, Heidel F et al (2008) LS104, a non-ATP-competitive small-molecule inhibitor of JAK2, is potently inducing apoptosis in JAK2V617F-positive cells. Mol Cancer Ther 7:1176–1184

    Article  CAS  PubMed  Google Scholar 

  65. Grunberger T, Demin P, Rounova O et al (2003) Inhibition of acute lymphoblastic and myeloid leukemias by a novel kinase inhibitor. Blood 102:4153–4158

    Article  CAS  PubMed  Google Scholar 

  66. Kasper S, Breitenbuecher F, Hoehn Y et al (2008) The kinase inhibitor LS104 induces apoptosis, enhances cytotoxic effects of chemotherapeutic drugs and is targeting the receptor tyrosine kinase FLT3 in acute myeloid leukemia. Leuk Res 32:1698–1708

    Article  CAS  PubMed  Google Scholar 

  67. Jatiani SS, Baker SJ, Silverman LR et al (2010) Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer 1:979–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reddy MV, Pallela VR, Cosenza SC et al (2010) Design, synthesis and evaluation of (E)-alpha-benzylthio chalcones as novel inhibitors of BCR-ABL kinase. Bioorg Med Chem 18:2317–2326

    Article  CAS  PubMed  Google Scholar 

  69. Jatiani SS, Cosenza SC, Reddy MV et al (2010) A non-ATP-competitive dual inhibitor of JAK2 and BCR-ABL kinases: elucidation of a novel therapeutic spectrum based on substrate competitive inhibition. Genes Cancer 1:331–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors recognize the support of a Faculty of Health Postdoctoral Research Fellowship (PR) from Deakin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Rasighaemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rasighaemi, P., Ward, A.C. (2016). Targeting Upstream Janus Kinases. In: Ward, A. (eds) STAT Inhibitors in Cancer. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-42949-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42949-6_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-42947-2

  • Online ISBN: 978-3-319-42949-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics