Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

The Global’naya Navigatsionnaya Sputnikova Sistema (GlossaryTerm

GLONASS

) is a global navigation satellite system developed by the Russian Federation. Similar to its US counterpart, the NAVSTAR global positioning system (GlossaryTerm

GPS

), GLONASS provides dual-frequency L-band navigation signals for civil and military navigation. Initiated in the 1980s, the system first achieved its full operational capability in 1995. Following a temporary degradation, the nominal constellation of 24 satellites was ultimately reestablished in 2011 and the system has been in continued service since then. This chapter describes the architecture and operations of GLONASS and discusses its current performance. In addition, the planned evolution of the space and ground segment are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADEV:

Allan deviation

AFS:

atomic frequency standard

BC:

Barker code

BIH:

Bureau International de l’Heure

BIPM:

Bureau International des Poids et Mesures

BPSK:

binary phase-shift keying

CDMA:

code division multiple access

CNAV:

civil navigation message

CRC:

cyclic redundancy check

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

ESA:

European Space Agency

FDMA:

frequency division multiple access

GIOVE:

Galileo In-Orbit Validation Element

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GLST:

GLONASS System Time

GNSS:

global navigation satellite system

GPS:

Global Positioning System

ICAO:

International Civil Aviation Organization

ICD:

interface control document

IERS:

International Earth Rotation and Reference Systems Service

IGS:

International GNSS Service

ITRF:

International Terrestrial Reference Frame

ITRS:

International Terrestrial Reference System

ITU:

International Telecommunication Union

LEO:

low Earth orbit

LEOP:

launch and early orbit phase

LRA:

laser retro-reflector array

MEO:

medium Earth orbit

NH:

Neuman-Hofman (code)

NUDET:

nuclear detection (payload)

PDOP:

position dilution of precision

PRN:

pseudo-random noise

RFSA:

Russian Federal Space Agency

RMS:

root mean square

SDCM:

System for Differential Corrections and Monitoring

SISRE:

signal-in-space range error

SLR:

satellite laser ranging

UTC:

Coordinated Universal Time

References

  1. N.L. Johnson: GLONASS spacecraft, GPS World 5(11), 51–58 (1994)

    Google Scholar 

  2. V.V. Dvorkin, Y.I. Nosenko, Y.M. Urlichich, A.M. Finkel’shtein: The Russian global navigation satellite program, Her. Russ. Acad. Sci. 79(1), 7–13 (2009)

    Article  Google Scholar 

  3. T.G. Anodina: The GLONASS System Technical Characteristics and Performance (International Civil Aviation Organization, Montreal, Canada 1988), Working Paper FANS/4-WP/75

    Google Scholar 

  4. S.A. Dale, P. Daly: The Soviet Union’s GLONASS navigation satellites, IEEE Aerosp. Electron. Syst. Mag. 2(5), 13–17 (1987)

    Article  Google Scholar 

  5. G.R. Lennen: The USSR’s GLONASS P-code-determination and initial results, ION GPS 1989, Colorado Springs (ION, Virginia 1989) pp. 77–83

    Google Scholar 

  6. S.A. Dale, P. Daly, I.D. Kitching: Understanding signals from GLONASS navigation satellites, Int. J. Sat. Commun. 7(1), 11–22 (1989)

    Article  Google Scholar 

  7. Global Navigation Satellite System GLONASS – Interface Control Document, v5.1, (Russian Institute of Space Device Engineering, Moscow, 2008)

    Google Scholar 

  8. Y. Urlichich, V. Subbotin, G. Stupak, V. Dvorkin, A. Povaliaev, S. Karutin: GLONASS modernization, ION GNSS 2011, Portland (ION, Virginia 2010) pp. 3125–3128

    Google Scholar 

  9. V. Putin: On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation, Presidental Decree No. 638, Kremlin, Moscow (2007)

    Google Scholar 

  10. T. Mirgorodskaya: GLONASS and critical infrastructure, Proc. 9th Meet. Int. Comm. GNSS (ICG), Work. Group A, Prague (UNOOSA, Vienna 2014)

    Google Scholar 

  11. N. Zarraoa, W. Mai, E. Sardon, A. Jungstand: Preliminary evaluation of the Russian GLONASS system as a potential geodetic tool, J. Geod. 72(6), 356–363 (1998)

    Article  Google Scholar 

  12. P. Willis, J. Slater, G. Beutler, W. Gurtner, C. Noll, R. Weber, R.E. Neilan, G. Hein: The IGEX-98-campaign: Highlights and perspective. In: Geodesy Beyond 2000, International Association of Geodesy Symposia, Vol. 121, ed. by K.-P. Schwarz (Springer, Berlin 2000) pp. 22–25

    Chapter  Google Scholar 

  13. R. Weber, J.A. Slater, E. Fragner, V. Glotov, H. Habrich, I. Romero, S. Schaer: Precise GLONASS orbit determination within the IGS/IGLOS–pilot project, Adv. Space Res. 36(3), 369–375 (2005)

    Article  Google Scholar 

  14. J.G. Walker: Satellite constellations, J. Br. Interplanet. Soc. 37, 559–572 (1984)

    Google Scholar 

  15. Parametry Zemli 1990 goda. Version PZ-90.11 (Earth Model PZ-90.11; In Russian). Military Topography Agency of the General Staff of the Armed Forces of the Russian Federation (Moscow 2014) http://structure.mil.ru/files/pz-90.pdf

  16. S. Feairheller, J. Purvis, R. Clark: The Russian GLONASS system. In: Understanding GPS – Principles and Applications, ed. by E.D. Kaplan (Arctech House, Boston, London 1996) pp. 439–465

    Google Scholar 

  17. V. Vdovin, A. Dorofeeva: Global geocentric coordinate system of the Russian federation, Proc. 7th Meet. Int. Comm. GNSS (ICG), Work. Group D, Bejing (UNOOSA, Vienna 2012)

    Google Scholar 

  18. A.N. Zueva, E.V. Novikov, D.I. Pleshakov, I.V. Gusev: System of geodetic parameters parametry zemli 1990 PZ-90.11, Proc. 9th Meet. Int. Comm. GNSS (ICG), Work. Group D, Prague (UNOOSA, Vienna 2014)

    Google Scholar 

  19. P.N. Misra, R.I. Abbot, E.M. Gaposcbkin: Integrated Use of GPS and GLONASS: Transformation between WGS 84 and PZ-90, ION GPS 1996, Kansas City (ION, Virginia 1996) pp. 307–314

    Google Scholar 

  20. U. Rossbach, H. Habrich, N. Zarraoa: Transformation Parameters between PZ-90 and WGS 84, ION GPS 1996, Kansas City (ION, Virginia 1996) pp. 279–285

    Google Scholar 

  21. C. Boucher, Z. Altamimi: ITRS, PZ-90 and WGS 84: Current realizations and the related transformation parameters, J. Geod. 75(11), 613–619 (2001)

    Article  Google Scholar 

  22. S.G. Revnivykh: GLONASS status and progress, Proc. 47th CGSIC Meet., Fort Worth (CGSIC, Alexandria 2007)

    Google Scholar 

  23. Global Navigation Satellite System and Global Positioning System: Coordinate Systems, Methods of Transformations for Determinated Points Coordinate; STB GOST Standard 51794-2008 (Federalnoje agentstwo po technitscheskomu regulirowaniju i metrologii, Moscow, 2008) in Russian

    Google Scholar 

  24. Yu. Domnin, B. Gaigerov, N. Koshelyaevsky, S. Poushkin, F. Rusin, V. Tatarenkov, G. Yolkin: Fifty years of atomic time-keeping at VNIIFTRI, Metrologia 42(3), S55–S63 (2005)

    Article  Google Scholar 

  25. I. Blinov, Y. Domnin, S. Donchenko, N. Koshelyaevsky, V. Kostromin: Progress at the state time and frequency standard of Russia, European Frequency and Time Forum (EFTF) 2012, Gothenburg (2012) pp. 144–147

    Chapter  Google Scholar 

  26. W. Lewandowski, E.F. Arias: GNSS times and UTC, Metrologia 48(4), S219–S224 (2011)

    Article  Google Scholar 

  27. A. Shchipunov: Generating and transferring the national time scale in GLONASS, ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 3950–3962

    Google Scholar 

  28. A.V. Druzhin, V. Palchikov: Current state and perspectives of UTC(SU) broadcast by GLONASS, Proc. 9th Meet. Int. Comm. GNSS (ICG), Prague (UNOOSA, Vienna 2014) pp. 1–9

    Google Scholar 

  29. A. Bolkonov: GLONASS open service performance parameters standard and GNSS open service performance parameters template status, Proc. 9th Meet. Int. Comm. GNSS (ICG), Work. Group A, Prague (UNOOSA, Vienna 2014)

    Google Scholar 

  30. R.B. Langley: GLONASS: Review and update, GPS World 8(11), 51–58 (1994)

    Google Scholar 

  31. Protection criteria used for radio astronomical observations, Recommendation RA 769, rev. 2, May 2003 (ITU, 2003) http://www.itu.int/rec/R-REC-RA.769/en/

  32. J. Galt: Interference with Astronomical Observations of OH Masers from the Soviet Union’s GLONASS satellites. In: IAU Colloq. 112 Light Pollution, Radio Interference, and Space Debris, ed. by D.L. Crawford (IAU, Paris 1991) pp. 213–221

    Google Scholar 

  33. J.A. Ávila Rodríguez: On Generalized Signal Waveforms for Satellite Navigation, Ph.D. Thesis (Univ. der Bundeswehr, Neubiberg 2008)

    Google Scholar 

  34. B.A. Stein: PRN codes for GPS/GLONASS: A comparison, ION NTM 1990, San Diego (ION, Virginia 1990) pp. 31–35

    Google Scholar 

  35. J. Beser, J. Danaher: The 3S navigation R-100 family of integrated GPS/GLONASS receivers: Description and performance results, ION NTM 1993, San Francisco (ION, Virginia 1993) pp. 25–45

    Google Scholar 

  36. P. Daly, S. Riley: GLONASS P-code data message, ION NTM 1994, San Diego (ION, Virginia 1994) pp. 195–202

    Google Scholar 

  37. S. Zaminpardaz, P.J.G. Teunissen, N. Nadarajah: GLONASS CDMA L3 ambiguity resolution and positioning, GPS Solut. (2016) doi:10.1007/s10291-016-0544-y

  38. Y. Urlichich, V. Subbotin, G. Stupak, V. Dvorkin, A. Povaliaev, S. Karutin: GLONASS developing strategy, ION GNSS 2010, Portland (ION, Virginia 2010) pp. 1566–1571

    Google Scholar 

  39. S. Karutin: GLONASS Signals and Augmentations, ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 3878–3911

    Google Scholar 

  40. T. Kasami: Weight Distribution Formula for Some Class of Cyclic Codes, Tech. Rep. R285 (Univ. Illinois, Illinois 1966) pp. 1–24

    Google Scholar 

  41. T. Helleseth, P.V. Kumar: Pseudonoise sequences. In: The Mobile Communications Handbook, ed. by J.D. Gibson (CRC, Boca Raton 1999) pp. 237–252

    Google Scholar 

  42. S. Thoelert, S. Erker, J. Furthner, M. Meurer, G.X. Gao, L. Heng, T. Walter, P. Enge: First signal in space analysis of GLONASS K-1, ION GNSS 2011, Portland (ION, Virginia 2011) pp. 3076–3082

    Google Scholar 

  43. A.A. Povalyaev: GLONASS navigation message format for flexible row structure, ION GNSS 2013, Nashville (ION,, Virginia 2013) pp. 972–974

    Google Scholar 

  44. G.M. Appleby: Orbit determinations of the lageos and etalon satellites – A comparison of geodetic results and orbital evolution of the etalons, dynamics and astrometry of natural and artificial celestial bodies, Proc. Conf. Astrom. Celest. Mech., Poznan 1993, ed. by K. Kurzynska, F. Barlier, P.K. Seidelmann, I. Wyrtrzyszczak (IAU, Pairs 1994)

    Google Scholar 

  45. T. Otsubo, G.M. Appleby, P. Gibbs: GLONASS laser ranging accuracy with satellite signature effect, Surv. Geophys. 22(5/6), 509–516 (2001)

    Article  Google Scholar 

  46. Y.G. Gouzhva, A.G. Gevorkyan, P.P. Bogdanov: Accuracy estimation of GLONASS satellite oscillators, Proc. 46th Freq. Control Symp., Hershey (1992) pp. 306–309

    Google Scholar 

  47. A.B. Bassevich, P.P. Bogdanov, A.G. Gevorkyan, A.E. Tyulyakov: GLONASS onboard time/frequency standards: Ten years of operation, Proc. 28th Ann. PTTI Meet., Reston (DTIC, Fort Belvoir 1996) pp. 455–462

    Google Scholar 

  48. R. Fatkulin, V. Kossenko, S. Storozhev, V. Zvonar, V. Chebotarev: GLONASS space segment: Satellite constellation, GLONASS-M and GLONASS-K spacecraft, main features, ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 3912–3930

    Google Scholar 

  49. A. Bolkunov, I. Zolkin, E. Ignatovich, A. Schekutiev: Intersatellite links as critical element of advanced satellite navigation technologies, Sci. Tech. J. ‘Polyot’ (Flight) 4, 29–33 (2013)

    Google Scholar 

  50. A. Chubykin, S. Dmitriev, V. Shargorodskiy, V. Sumerin: Intersatellite laser navigating link system, Proc. WPLTN Tech. Workshop One-Way Two-Way SLR GNSS Co-located RF Tech., St.Petersburg (2012) pp. 1–18

    Google Scholar 

  51. V.D. Shargorodsky, V.V. Pasynkov, M.A. Sadovnikov, A.A. Chubykin: Laser GLONASS: Era of extended precision, GLONASS Herald 14, 22–26 (2013)

    Google Scholar 

  52. G.M. Polischuk, V.I. Kozlov, V.V. Ilitchov, A.G. Kozlov, V.A. Bartenev, V.E. Kossenko, N.A. Anphimov, S.G. Revnivykh, S.B. Pisarev, A.E. Tyulyakov: The global navigation satellite system GLONASS: Development and usage in the 21st century, Proc. 34th PTTI Meet. 2002, Reston (DTIC, Fort Belvoir 2002) pp. 39–50

    Google Scholar 

  53. D.S. Ilcev: Cospas–Sarsat LEO and GEO: Satellite distress and safety systems (SDSS), Int. J. Satell. Commun. Netw. 25(6), 559–573 (2007)

    Article  Google Scholar 

  54. Th. Pirard: Space centres-launch sites: The USSR. In: The Cambridge Encyclopedia of Space, ed. by M. Rycroft (Cambridge Univ. Press, Cambridge 1990) pp. 126–127

    Google Scholar 

  55. Y. Tchourianov: Baikonur – The Advent of a New Century (Voennyi parad, Moscow 2005)

    Google Scholar 

  56. S. Revnivykh: GLONASS status and progress, Proc. CGSIC Meet., Savannah (2008)

    Google Scholar 

  57. V. Burmistrov, A. Fedotov, N. Parkhomenko, V. Pasinkov, V. Shargorodsky, V. Vasiliev: The Russian laser tracking network, Proc. 15th ILRS Workshop 2006, Canberra (2006) pp. 1–3

    Google Scholar 

  58. G. Stupak: SDCM status and plans, Proc. 7th Meet. Int. Comm. GNSS (ICG), Bejing (UNOOSA, Vienna 2012) pp. 1–15

    Google Scholar 

  59. Russian System of Differentional Correction and Monitoring (SDCM): www.sdcm.ru/index_eng.html

  60. V.V. Dvorkin, S.N. Karutin: Construction of a system for precise determination of the position of users of global navigation satellite systems, Meas. Tech. 54(5), 517–523 (2011)

    Article  Google Scholar 

  61. M.A. Sadovnikov, V.D. Shargorodskiy: Stages of development of stations, networks and SLR usage methods for global space geodetic and navigation systems in Russia, Proc 19th ILRS Workshop 2014, Annapolis (2014) pp. 1–23

    Google Scholar 

  62. Positioning, Navigation and Timing Information and Analysis Centre, GLONASS system status information: www.glonass-center.ru/en/

  63. A.Y. Suslov, E.V. Titov, A.A. Fedotov, V.D. Shargorodskiy: System for high-accuracy determination of ephemeris and time corrections (SVOEVP) GLONASS, Proc. WPLTN Tech. Workshop One-Way Two-Way SLR GNSS Co-located RF Tech., St.Petersburg (2012) pp. 1–18

    Google Scholar 

  64. GLONASS navigation performance information: www.glonass-svoevp.ru/Func/plotnosti/

  65. J.M. Dow, R.E. Neilan, C. Rizos: The International GNSS Service in a changing landscape of global navigation satellite systems, J. Geod. 83(3/4), 191–198 (2009)

    Article  Google Scholar 

  66. O. Montenbruck, P. Steigenberger, A. Hauschild: Broadcast versus precise ephemerides: A multi-GNSS perspective, GPS Solutions 19(2), 321–333 (2015)

    Article  Google Scholar 

  67. L. Heng, G.X. Gao, T. Walter, P. Enge: Statistical characterization of GLONASS broadcast clock errors and signal-in-space errors, ION ITM 2012, Newport Beach (ION, Virginia 2012) pp. 1697–1707

    Google Scholar 

  68. M. Fritsche, K. Sośnica, C.J. Rodríguez-Solano, P. Steigenberger, K. Wang, R. Dietrich, R. Dach, U. Hugentobler, M. Rothacher: Homogeneous reprocessing of GPS, GLONASS and SLR observations, J. Geod. 88(7), 625–642 (2014)

    Article  Google Scholar 

  69. A. Hauschild, O. Montenbruck, P. Steigenberger: Short-term analysis of GNSS clocks, GPS Solutions 17(3), 295–307 (2013)

    Article  Google Scholar 

  70. E. Griggs, E.R. Kursinski, D. Akos: Short-term GNSS satellite clock stability, Radio Sci. 50(8), 813–826 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Revnivykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Revnivykh, S., Bolkunov, A., Serdyukov, A., Montenbruck, O. (2017). GLONASS. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_8

Download citation

Publish with us

Policies and ethics