Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

Global navigation satellite system (GlossaryTerm

GNSS

)-based atmosphere sounding techniques have become a widely recognized and operationally used remote sensing tool. A major milestone of this development was the beginning of the continuous use of GNSS data for improving regional and global forecasts in 2006. The principle behind these techniques is the utilization of atmospheric propagation effects on the GNSS signals on their way from the navigation satellites to receivers on the ground or aboard satellites. The atmosphere delays the time of arrival and introduces a curvature of the signal path. These effects can be accurately estimated and be used for the monitoring of the atmospheric variability. There are two different observation geometries. Therefore, we focus in the first part of this chapter on ground-based networks which are used to estimate the amount of water vapor above each receiver site. The second part deals with the use of radio occultation measurements from GNSS receivers aboard low Earth orbit satellites for global atmosphere sounding. We introduce and describe both techniques which provide observations suitable for the short-term weather forecasting and the long-term time series for climate research and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECMWF:

European Centre for Medium-Range Weather Forecasts

ESA:

European Space Agency

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GRAS:

GNSS receiver for atmospheric sounding

IGS:

International GNSS Service

ISS:

International Space Station

JPL:

Jet Propulsion Laboratory

LEO:

low Earth orbit

MEO:

medium Earth orbit

NASA:

National Aeronautics and Space Administration

NMF:

Niell mapping function

NWP:

numerical weather prediction

PCV:

phase center variation

PLL:

phase lock loop

QZSS:

Quasi-Zenith Satellite System

RO:

radio occultation

RTK:

real-time kinematic

SA:

selective availability

SLTA:

straight line tangent point altitude

SNR:

signal-to-noise ratio

UTC:

Coordinated Universal Time

VLBI:

very long baseline interferometry

ZHD:

zenith hydrostatic delay

ZTD:

zenith troposphere delay

ZWD:

zenith wet delay

References

  1. D.M. Tralli, T.H. Dixon, S.A. Stephens: Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the Global Positioning System, J. Geophys. Res. 93(B6), 6545–6557 (1988)

    Article  Google Scholar 

  2. D.M. Tralli, S.M. Lichten: Stochastic estimation of tropospheric path delays in Global Positioning System geodetic measurements, Bull. Geod. 64, 127–159 (1990)

    Article  Google Scholar 

  3. Y.E. Bar-Sever, P.M. Kroger, A.J. Börjesson: Estimating horizontal gradients of tropospheric path delay with a single GPS receiver, J. Geophys. Res. 103, 5019–5035 (1998)

    Article  Google Scholar 

  4. P. Elosegui, J.L. Davis: Accuracy assessment of GPS slant-path determinations, Int. Workshop GPS Meteorol., Tsukuba, ed. by T. Iwabuchi, Y. Shoji (Meteorological Society of Japan, Tsukuba 2004) pp. 1–6

    Google Scholar 

  5. A.E. Niell: Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res. 101(B2), 3227–3246 (1996)

    Article  Google Scholar 

  6. I.D. Thomas, M.A. King, P.J. Clarke, N.T. Penna: Precipitable water vapor estimates from homogeneously reprocessed GPS data: An intertechnique comparison in Antarctica, J. Geophys. Res. 116, D19101 (2011)

    Article  Google Scholar 

  7. T.A. Herring: Precision of vertical position estimates from very long baseline interferometry, J. Geophys. Res. 91, 9177–9182 (1986)

    Article  Google Scholar 

  8. S. Kedar, G.A. Hajj, B.D. Wilson, M.B. Heflin: The effect of the second order GPS ionospheric correction on receiver positions, Geophys. Res. Lett. 30(16), 1829 (2003)

    Article  Google Scholar 

  9. M. Hernandez-Pajares, J.M. Juan, J. Sanz, R. Ors: Second-order ionospheric term in GPS: Implementation and impact on geodetic estimates, J. Geophys. Res. 112, B08417 (2007)

    Article  Google Scholar 

  10. E.J. Petrie, M.A. King, P. Moore, D.A. Lavallè: Higher-order ionospheric effects on the GPS reference frame and velocities, J. Geophys. Res. 115(10), B03417 (2013)

    Google Scholar 

  11. R. Schmid, P. Steigenberger, G. Gendt, M. Ge, M. Rothacher: Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas, J. Geod. 81(5), 781–798 (2007)

    Google Scholar 

  12. P.O. Jarlemark, T.R. Emardson, J.M. Johansson, G. Elgered: Ground-based GPS for validation of climate models: The impact of satellite antenna phase center variations, IEEE Trans. Geosci. Remote Sens. GE-48(10), 3847–3854 (2010)

    Article  Google Scholar 

  13. T. Ning, G. Elgered, J.M. Johansson: The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapour, Adv. Space Res. 47, 186–196 (2011)

    Article  Google Scholar 

  14. National Institute of Standards and Technology, US, http://physics.nist.gov/cgi-bin/cuu/Value?r

  15. J.L. Davis, T.A. Herring, I.I. Shapiro, A.E.E. Rogers, G. Elgered: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci. 20(6), 1593–1607 (1985)

    Article  Google Scholar 

  16. S. Heise, G. Dick, G. Gendt, T. Schmidt, J. Wickert: Integrated water vapor from IGS ground-based GPS observations: Initial results from a 5-min data set, Ann. Geophysicae 27, 2851–2859 (2009)

    Article  Google Scholar 

  17. T. Nilsson, G. Elgered: Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data, J. Geophys. Res. 113(D19101), 1–12 (2008)

    Google Scholar 

  18. S. Vey, R. Dietrich, M. Fritsche, A. Rülke, P. Steigenberger, M. Rothacher: On the homogeneity and interpretation of precipitable water time series derived from global GPS observations, J. Geophys. Res. 114(D10101), 1–15 (2009)

    Google Scholar 

  19. K. Lagler, M. Schindelegger, J. Böhm, H. Krásná, T. Nilsson: GPT2: Empirical slant delay model for radio space geodetic techniques, Geophys. Res. Lett. 40, 1069–1073 (2013)

    Article  Google Scholar 

  20. R.B. Stull: An introduction +to boundary layer meteorology, 3rd edn. (Academic Press, San Diego 1992)

    Google Scholar 

  21. J.P. Hauser: Effects of deviations from hydrostatic equilibrium on atmospheric corrections to satellite and lunar laser range measurements, J. Geophys. Res. 94, 10182–10186 (1991)

    Article  Google Scholar 

  22. M. Bevis, S. Chiswell, T.A. Herring, R.A. Anthes, C. Rocken, R.H. Ware: GPS meteorology: Mapping zenith wet delays onto precipitable water, J. Appl. Meteorol. 33, 379–386 (1994)

    Article  Google Scholar 

  23. J. Wang, L. Zhang, A. Dai: Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications, J. Geophys. Res. 110(D21101), 1–17 (2005)

    Google Scholar 

  24. T.R. Emardson, G. Elgered, J.M. Johansson: Three Months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers, J. Geophys. Res. 103, 1807–1820 (1998)

    Article  Google Scholar 

  25. T.R. Emardson, H.J.P. Derks: On the Relation Between the Wet Delay and the Integrated Precipitable Water Vapour in the European Atmosphere, Meteorol. Appl. 7, 61–68 (2000)

    Article  Google Scholar 

  26. G.S. Kell: Density, thermal expansivity, and compressibility of liquid water from 0 to 150 \({}^{\circ}\)C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Engineering Data 20(1), 97–105 (1975)

    Article  Google Scholar 

  27. G. Elgered, J.M. Johansson, B.O. Rönnäng, J.L. Davis: Measuring regional atmospheric water vapor using the Swedish permanent GPS network, Geophys. Res. Lett. 24, 2663–2666 (1997)

    Article  Google Scholar 

  28. J.L. Davis, G. Elgered: The spatio-temporal structure of GPS water-vapor determinations, Phys. Chem. Earth 23(1), 91–96 (1998)

    Article  Google Scholar 

  29. T.R. Emardson, F.H. Webb: Estimating the motion of atmospheric water vapor using the Global Positioning System, GPS Solutions 6, 58–64 (2002)

    Article  Google Scholar 

  30. EUMETNET, The Network of European Meteorological Services, http://egvap.dmi.dk/

  31. H.-S. Bauer, V. Wulfmeyer, T. Schwitalla, F. Zus, M. Grzeschik: Operational assimilation of GPS slant path delay measurements into the MM5 4DVAR system, Tellus 63A, 263–282 (2011)

    Article  Google Scholar 

  32. P. Poli, P. Moll, F. Rabier, G. Desroziers, B. Chapnik, L. Berre, S.B. Healy, E. Andersson, F.-Z. El Guelai: Forecast impact studies of zenith total delay data from European near real-time GPS stations in Météo France 4DVAR, J. Geophys. Res. 112(D06114), 1–16 (2007)

    Google Scholar 

  33. M. Bender, G. Dick, M. Ge, Z. Deng, J. Wickert, H.-G. Kahle, A. Raabe, G. Tetzlaff: Operational assimilation of GPS zenith total delay observations into the Met Office numerical weather prediction models, Mon. Weather Rev. 140, 2706–2719 (2012)

    Article  Google Scholar 

  34. R. Eresmaa, H. Järvinen: An observation operator for ground-based GPS slant delays, Tellus 58A, 131–140 (2006)

    Article  Google Scholar 

  35. T. Nilsson, L. Gradinarsky: Water vapor tomography using GPS phase observations: Simulation results, IEEE Trans. Geosci. Remote Sens. GE-44(10), 2927–2941 (2006)

    Article  Google Scholar 

  36. M. Bender, G. Dick, M. Ge, Z. Deng, J. Wickert, H.-G. Kahle, A. Raabe, G. Tetzlaff: Development of a GNSS water vapour tomography system using algebraic reconstruction techniques, Adv. Space Res. 47/10, 1704–1720 (2011)

    Article  Google Scholar 

  37. A. Flores, G. Ruffini, A. Rius: 4D tropospheric tomography using GPS slant wet delays, Annal. Geophysicae 18, 223–234 (2001)

    Article  Google Scholar 

  38. S.A. Buehler, A. von Engeln, E. Brocard, V.O. John, T. Kuhn, P. Eriksson: Recent developments in the line-by-line modeling of outgoing longwave radiation, J. Quant. Spectrosc. Radiat. Transfer 98(3), 446–457 (2006)

    Article  Google Scholar 

  39. N.D. Gordon, A.K. Jonko, P.M. Forster, K.M. Shell: An observationally based constraint on the water-vapor feedback, J. Geophys. Res. 118, 12435–12443 (2014)

    Google Scholar 

  40. D.J. Seidel, F.H. Berger, H.J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, J. Wang: Reference upper-air observations for climate: Rationale, progress, and plans, Bull. Am. Meteorol. Soc. 90, 361–369 (2009)

    Article  Google Scholar 

  41. H.-G. Scherneck, J.M. Johansson, H. Koivula, T. van Dam, J.L. Davis: Vertical crustal motion observed in the BIFROST project, J. Geodyn. 35, 425–441 (2003)

    Article  Google Scholar 

  42. T. Ning, G. Elgered: Trends in the atmospheric water vapor content from ground-based GPS: The impact of the elevation cutoff angle, IEEE J-STARS 5(3), 744–751 (2012)

    Google Scholar 

  43. S. Jin, O.F. Luo: Variability and Climatology of PWV From Global 13-Year GPS Observations, IEEE Trans. Geosci. Remote Sens. GE-47, 1918–1924 (2009)

    Google Scholar 

  44. J.P. Ortiz de Galisteo, Y. Bennouna, C. Toledano, V. Cachorro, P. Romero, M.I. Andrès, B. Torres: Analysis of the annual cycle of the precipitable water vapour over Spain from 10-year homogenized series of GPS data, Quart. J. Roy. Meteorol. Soc. 139, 948–958 (2013)

    Google Scholar 

  45. Y.S. Bennouna, B. Torres, V.E. Cachorro, J.P. Ortiz de Galisteo, C. Toledano: The evaluation of the integrated water vapour annual cycle over the Iberian Peninsula from EOS-MODIS against different ground-based techniques, Quart. J. Roy. Meteorol. Soc. 139, 1935–1956 (2013)

    Article  Google Scholar 

  46. S. Jin, O.F. Luo, S. Gleason: Characterization of diurnal cycles in ZTD from a decade of global GPS observations, J. Geod. 83, 537–545 (2009)

    Google Scholar 

  47. J. Wang, L. Zhang: Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products, J. Geod. 83, 209–217 (2009)

    Google Scholar 

  48. S. Pramualsakdikul, R. Haas, G. Elgered, H.-G. Scherneck: Sensing of diurnal and semi-diurnal variability in the water vapour content in the tropics using GPS measurements, Meteorol. Appl. 14, 403–412 (2007)

    Article  Google Scholar 

  49. E. Jakobson, H. Ovril, G. Elgered: Diurnal variability of precipitable water in the Baltic region, impact on transmittance of the direct solar radiation, Boreal Environment Res. 14, 45–55 (2009)

    Google Scholar 

  50. S. Vey, R. Dietrich, A. Rülke, M. Fritsche, P. Steigenberger, M. Rothacher: Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade, J. Climate 23, 1675–1695 (2010)

    Article  Google Scholar 

  51. T. Ning, G. Elgered, U. Willén, J.M. Johansson: Evaluation of the atmospheric water vapor content in a regional climate model using ground-based GPS measurements, J. Geophys. Res. 118, 329–339 (2013)

    Google Scholar 

  52. C. Rocken, R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R. Ware, M. Gorbunov, W. Schreiner, D. Feng, B. Herman, Y.-H. Kuo, X. Zou: Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res. 102, 29849–29866 (1997)

    Article  Google Scholar 

  53. R. Ware, D. Exner, M. Feng, M. Gorbunov, K. Hardy, B. Herman, Y. Kuo, T.K. Meehan, W.G. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anthes, S. Businger, K. Trenberth: GPS sounding of the atmosphere from low Earth orbit – Preliminary results, Bull. Am. Met. Soc. 77, 19–40 (1996)

    Article  Google Scholar 

  54. E.R. Kursinski, G.A. Hajj, K.R. Hardy, J.T. Schofield, R. Linfield: Observing the Earth’s atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res. 102, 23429–23465 (1997)

    Article  Google Scholar 

  55. R.A. Anthes, P.A. Bernhardt, Y. Chen, K. Cucurull, K.F. Dymond, S. Ector, S.B. Healy, S.-P. Ho, D.C. Hunt, Y.-H. Kuo, H. Liu, K. Manning, C. McCormick, T.K. Meehan, W.J. Randel, C. Rocken, W.S. Schreiner, S.V. Sokolovskiy, S. Syndergaard, D.C. Thompson, K.E. Trenberth, T.-K. Wee, N.L. Yen, Z. Zhang: The COSMIC/Formosat-3 Mission: Early results, Bull. Am. Met. Soc. 89(3), 313–333 (2008)

    Google Scholar 

  56. S. Healy: Operational assimilation of GPS radio occultation measurements at ECMWF, ECMWF Newsletter 111 (2007)

    Google Scholar 

  57. J. Wickert, C. Reigber, G. Beyerle, R. König, C. Marquardt, T. Schmidt, L. Grunwaldt, R. Galas, T.K. Meehan, W.G. Melbourne, K. Hocke: Atmosphere sounding by GPS radio occultation: First results from CHAMP, Geophys. Res. Lett. 28(17), 3263–3266 (2001)

    Article  Google Scholar 

  58. J. Wickert, R. Galas, G. Beyerle, R. König, C. Reigber: GPS ground station data for CHAMP radio occultation measurements, PCE 26(6–8), 503–511 (2001)

    Google Scholar 

  59. G.A. Hajj, E.R. Kursinski, L.J. Romans, W.I. Bertiger, S.S. Leroy: A technical description of atmospheric sounding by GPS occultation, J. Atmos. Sol.-Terr. Phys. 64, 451–469 (2002)

    Article  Google Scholar 

  60. W.G. Melbourne, E. Davis, C. Duncan, G. A. Hajj, K. Hardy, E. Kursinski, T. Meehan, L. Young: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring Publication 94-18 (Jet Propulsion Laboratory, Pasadena 1994)

    Google Scholar 

  61. J. Wickert, G. Beyerle, G.A. Hajj, V. Schwieger, C. Reigber: GPS radio occultation with CHAMP: Atmospheric profiling utilizing the space-based single difference technique, Geophys. Res. Lett. 29(81187), 1–4 (2002)

    Google Scholar 

  62. G. Beyerle, T. Schmidt, G. Michalak, S. Heise, J. Wickert, C. Reigber: GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique, Geophys. Res. Lett. 32(L13806), 1–5 (2005)

    Google Scholar 

  63. M.E. Gorbunov, S.V. Sokolovskiy, L. Bengtsson: Space refractive tomography of the atmosphere: Modeling of direct and inverse problems, Report 210 (Max Planck Institute for Meteorology, Hamburg 1996)

    Google Scholar 

  64. V.V. Vorob’ev, T.G. Krasil’nikova: Estimation of the accuracy of the atmospheric refractive index recovery from doppler shift measurements at frequencies used in the NAVSTAR system, Phys. Atmos. Ocean 29, 602–609 (1994)

    Google Scholar 

  65. E.K. Smith, S. Weintraub: The constants in the equation for atmospheric refractive index at radio frequencies, Proc. IRE 41, 1035–1037 (1953)

    Article  Google Scholar 

  66. K. Hocke: Inversion of GPS meteorology data, Annales Geophysicae 15, 443–450 (1997)

    Article  Google Scholar 

  67. M.E. Gorbunov, S.V. Sokolovskiy: Remote sensing of refractivity from space for global observations of atmospheric parameters, Report 119 (Max Planck Institute for Meteorology, Hamburg 1993)

    Google Scholar 

  68. C. Marquardt, K. Labitzke, Ch. Reigber, T. Schmidt, J. Wickert: An assessment of the quality of GPS/MET radio limb soundings during February 1997, Phys. Chem. Earth 26, 125–130 (2001)

    Google Scholar 

  69. S. Heise, J. Wickert, G. Beyerle, T. Schmidt, C. Reigber: Global monitoring of tropospheric water vapor with GPS radio occultation aboard CHAMP, Adv. Space Res. 27, 2222–2227 (2006)

    Article  Google Scholar 

  70. S. Healy, J. Eyre: Retrieving temperature, water vapor and surface pressure information from refractive-index profiles derived by radio occultation: A simulation study, Quart. J. Roy. Meteorol. Soc. 126, 1661–1683 (2000)

    Article  Google Scholar 

  71. M.A. Ringer, S.B. Healy: Monitoring twenty-first century climate using GPS radio occultation bending angles, Geophys. Res. Lett. 35(L05708), 1–6 (2007)

    Google Scholar 

  72. G. Beyerle, T. Schmidt, J. Wickert, S. Heise, M. Rothacher, G. König-Langlo, K.B. Lauritsen: Observations and simulations of receiver-induced refractivity biases in GPS radio occultation, J. Geophys. Res. 111(D12101), 1–13 (2006)

    Google Scholar 

  73. S.V. Sokolovskiy, C. Rocken, D. Hunt, W. Schreiner, J. Johnson, D. Masters, S. Esterhuizen: GPS profiling of the lower troposphere from space: Inversion and demodulation of the open-loop radio occultation signals, Geophys. Res. Lett. 33(L14816), 1–5 (2006)

    Google Scholar 

  74. C.O. Ao, T.K. Meehan, G.A. Hajj, A.J. Mannucci, G. Beyerle: Lower-troposphere refractivity bias in GPS occultation retrievals, J. Geophys. Res. 108(D18), 4577 (2003)

    Article  Google Scholar 

  75. A.S. Jensen, M. Lohmann, H.H. Benzon, A. Nielsen: Full spectrum in version of radio occultation signal, Radio Sci. 38(3), 1–15 (2003)

    Article  Google Scholar 

  76. M.E. Gorbunov: Canonical transform method for processing radio occultation data in the lower troposphere, Radio Sci. 37(5), 1076 (2002)

    Google Scholar 

  77. C.O. Ao, A.J. Mannucci, E.R. Kursinski: Improving GPS radio occultation stratospheric refractivity for climate benchmarking, Geophys. Res. Lett. 39(L12701), 1–6 (2012)

    Google Scholar 

  78. A.J. Mannucci, C.O. Ao, L.E. Young, T.K. Meehan: Studying the atmosphere using global navigation satellites, EOS Trans. 95(43), 389–390 (2014)

    Article  Google Scholar 

  79. J. Wickert, G. Michalak, T. Schmidt, G. Beyerle, C.Z. Cheng, S.B. Healy, S. Heise, C.Y. Huang, N. Jakowski, W. Köhler, C. Mayer, D. Offiler, E. Ozawa, A.G. Pavelyev, M. Rothacher, B. Tapley, C. Arras: GPS radio occulation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC, Terr. Atmos. Ocean. Sci. 1, 35–50 (2009)

    Article  Google Scholar 

  80. S.B. Healy, J. Wickert, G. Michalak, T. Schmidt, G. Beyerle: Combined forecast impact of GRACE-A and CHAMP GPS radio occultation bending angle profiles, Atmos. Sci. Lett. 8, 43–50 (2007)

    Article  Google Scholar 

  81. S. Healy, A. Jupp, C. Marquardt: Forecast impact experiment with GPS radio occultation measurements, Geophys. Res. Lett. 32(L03804), 1–4 (2005)

    Google Scholar 

  82. A.K. Steiner, B.C. Lackner, F. Ladstädter, B. Scherllin-Pirscher, U. Foelsche, G. Kirchengast: GPS radio occultation for climate applications, Radio Sci. 46(RS0D24), 1–17 (2011)

    Google Scholar 

  83. T. Schmidt, J. Wickert, A. Haser: Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation temperaturesariability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures, Adv. Space Res. 46(2), 150–161 (2010)

    Article  Google Scholar 

  84. T. Schmidt, J. Wickert, G. Beyerle, S. Heise: Global tropopause height trends estimated from GPS radio occultation data, Geophys. Res. Lett. 35(L11806), 1–5 (2008)

    Google Scholar 

  85. A.K. Steiner, D. Hunt, S.P. Ho, G. Kirchengast, A.J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S.S. Leroy, E.R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.H. Kuo, K.B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, J. Wickert: Quantification of structural uncertainty in climate data records from GPS radio occultation, Atmos. Chem. Phys. 13, 1469–1484 (2013)

    Article  Google Scholar 

  86. S.P. Ho, D. Hunt, A.K. Steiner, A.J. Mannucci, G. Kirchengast, H. Gleisner, S. Heise, A. von Engeln, C. Marquardt, S. Sokolovskiy, W. Schreiner, B. Scherllin-Pirscher, C.O. Ao, J. Wickert, S. Syndergaard, K.B. Lauritsen, S. Leroy, E.R. Kursinski, Y.H. Kuo, U. Foelsche, T. Schmidt, M. Gorbunov: Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers, J. Geophys. Res. 117, D18111 (2012)

    Google Scholar 

  87. S.P. Ho, G. Kirchengast, S. Leroy, J. Wickert, A. Mannucci, A. Steiner, C.O. Ao, M. Borsche, A. von Engeln, U. Foelsche, S. Heise, D. Hunt, B. Iijima, Y.H. Kuo, R. Kursinski, B. Lackner, B. Pirscher, M. Ringer, C. Rocken, T. Schmidt, W. Schreiner, S. Sokolovskiy: Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers, J. Geophys. Res. 114, D23107 (2009)

    Article  Google Scholar 

  88. A. von Engeln, S. Healy, C. Marquardt, Y. Andres, F. Sancho: Validation of operational GRAS radio occultation data, Geophys. Res. Lett. 36(L1780), 1–4 (2009)

    Google Scholar 

  89. F. Zus, G. Beyerle, L. Grunwaldt, S. Heise, G. Michalak, T. Schmidt, J. Wickert: Atmosphere sounding by GPS radio occultation: First results from TanDEM-X and comparison with TerraSAR-X, Adv. Space Res. 53(2), 272–279 (2014)

    Article  Google Scholar 

  90. Status of the Global Observing System for Radio Occultation (Update 2013), IROWG/DOC/2013/02 (IROWG, 2013). www.irowg.org

  91. Y.-H. Kuo, W.S. Schreiner, J. Wang, D.L. Rossiter, Y. Zhang: Comparison of GPS radio occultation soundings with radiosondes, Geophys. Res. Lett. 32, 1–4 (2005)

    Google Scholar 

  92. W. Schreiner, C. Rocken, S. Sokolovskiy, S. Syndergaard, D. Hunt: Estimates of the precision of GPS radio occultations from the COSMIC/Formosat-3 mission, Geophys. Res. Lett. 34(L04808), 1–5 (2007)

    Google Scholar 

  93. G.F. Lindal, G.E. Wood, H.B. Hotz, D.N. Sweetnam, V.R. Eshleman, G.L. Tyler: The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements, Icarus 53, 348–363 (1983)

    Article  Google Scholar 

  94. Y.-H. Sokolovskiy, S.V. Kuo, C. Rocken, W.S. Schreiner, D. Hunt, R.A. Anthes: Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode, Geophys. Res. Lett. 33, L12813 (2006)

    Article  Google Scholar 

  95. S.P. Ho, M. Goldberg, Y.-H. Kuo, Z.Z. Zou, W. Schreiner: Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: Preliminary results, Terr. Atmos. Ocean. Sci. 20(1), 87–100 (2009)

    Article  Google Scholar 

  96. J. Wickert, C. Arras, G. Beyerle, M. Ge, F. Flechtner, S.B. Healy, S. Heise, C.Y. Huang, B. Kuo, C. Marquardt, G. Michalak, N. Jakowski, T. Schmidt, M. Semmling: Radio occultation with navigation satellites: Recent results and prospects with Galileo, Proc. 3rd Int. Coll. Sci. Aspects of Galileo, Copenhagen (ESA, Noordwijk 2011)

    Google Scholar 

  97. L. Cucurull: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting, Wea. Forecast. 25, 749–767 (2010)

    Article  Google Scholar 

  98. J. Aparicio, G. Deblonde: Impact of the assimilation of CHAMP refractivity profiles in Environment Canada global forecasts, Mon. Weather Rev. 136, 257–275 (2008)

    Article  Google Scholar 

  99. P. Poli, S. Healy, F. Rabier, J. Pailleux: Preliminary assessment of the scalability of GPS radio occultations impact in numerical weather prediction, Geophys. Res. Lett. 35(L23811), 1–5 (2008)

    Google Scholar 

  100. F. Harnisch, S.B. Healy, P. Bauer, J. Engish: Scaling of GNSS radio occultation impact with observation number using an ensemble of data assimilations, Mon. Weather Rev. 149, 4395–4413 (2013)

    Article  Google Scholar 

  101. B. Scherllin-Pirscher, C. Deser, S.P. Ho, C. Chou, W. Randel, Y.-H. Kuo: The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements, Geophys. Res. Lett. 39(L20801), 1–6 (2012)

    Google Scholar 

  102. A.J. Mannucci, C.O. Ao, T.P. Yunck, L.E. Young, G.A. Hajj, B.A. Iijima, D. Kuang, T.K. Meehan, S.S. Leroy: Generating climate benchmark atmospheric soundings using GPS occultation data. In: Atmospheric and Environmental Remote Sensing Data Processing and Utilization II: Perspective on Calibration/Validation Initiatives and Strategies, ed. by H.L. Huang, H.J. Bloom (International Society for Optical Engineering, Bellingham, WA, 630108 2006) p. 630108

    Chapter  Google Scholar 

  103. B.C. Lackner, A.K. Steiner, G.C. Hegerl, G. Kirchengast: Atmospheric climate change detection by radio occultation data using a fingerprinting method, J. Climate 24, 5275–5291 (2011)

    Article  Google Scholar 

  104. B.C. Santer, T.M.L. Wigley, A.J. Simmons, P.W. Kållberg, G.A. Kelly, S.M. Uppala, C. Ammann, J.S. Boyle, W. Brüggemann, C. Doutriaux, M. Fiorino, C. Mears, G.A. Meehl, R. Sausen, K.E. Taylor, W.M. Washington, M.F. Wehner, F.J. Wentz: Identification of anthropogenic climate change using a second-generation reanalysis, J. Geophys. Res. 109, D21104 (2004)

    Article  Google Scholar 

  105. R. Sausen, B.D. Santer: Use of changes in tropopause height to detect human influences on climate, Meteorologische Zeitschrift 12, 131–136 (2003)

    Article  Google Scholar 

  106. T. Schmidt, G. Beyerle, S. Heise, J. Wickert, M. Rothacher: A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C, Geophys. Res. Lett. 33(L04808), 1–4 (2006)

    Google Scholar 

  107. W.J. Randel, F. Wu, W.R. Rios: Thermal variability of the tropical tropopause region derived from GPS/MET observations, J. Geophys. Res. 108(D1, 4024), 1–12 (2003)

    Google Scholar 

  108. M. Nishida, A. Shimizu, T. Tsuda, C. Rocken, R.H. Ware: Seasonal and longitudinal variations in the tropical tropopause observed with the GPS occultation technique (GPS/MET), J. Meteorol. Soc. Jpn. 78, 691–700 (2000)

    Article  Google Scholar 

  109. T. Schmidt, J. Wickert, G. Beyerle, S. Heise: Global tropopause height trends estimated from GPS radio occultation data, Geophys. Res. Lett. 35, L11806 (2008)

    Article  Google Scholar 

  110. T. Tsuda, M. Nishida, C. Rocken, R.H. Ware: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET), J. Geophys. Res. 105, 7257–7273 (2000)

    Article  Google Scholar 

  111. A. Faber, P. Llamedo, T. Schmidt, A. de la Torre, J. Wickert: On the determination of gravity wave momentum flux from GPS radio occultation data, Atmos. Meas. Tech. 6, 3169–3180 (2013)

    Article  Google Scholar 

  112. C. Arras, J. Wickert, C. Jacobi, G. Beyerle, S. Heise, T. Schmidt: Global sporadic E characteristics obtained from GPS radio occultation measurements. In: Climate And Weather of the Sun-Earth System (CAWSES): Highlights from a priority program, ed. by F.-J. Luebken (Springer, Berlin 2013) pp. 207–221

    Chapter  Google Scholar 

  113. C.O. Ao, D.E. Waliser, S.K. Chan, J.L. Li, B. Tian, F. Xie, A.J. Mannucci: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles, J. Geophys. Res. 117(D16117), 1–18 (2012)

    Google Scholar 

  114. A. von Engeln, J. Teixeira, J. Wickert, S.A. Buehler: Using CHAMP radio occultation data to determine the top altitude of the Planetary Boundary Layer, Geophys. Res. Lett. 32(L06815), 1–4 (2005)

    Google Scholar 

  115. J. Wickert, E. Cardellach, M. Martin-Neira, J. Bandeiras, L. Bertino, O.B. Andersen, A. Camps, N. Catarino, B. Chapron, F. Fabra, N. Floury, G. Foti, C. Gommenginger, J. Hatton, P. Høeg, A. Jäggi, M. Kern, T. Lee, Z. Li, H. Park, N. Pierdicca, G. Ressler, A. Rius, J. Rosello, J. Saynisch, N. Soulat, C.K. Shum, M. Semmling, A. Sousa, J. Xie, C. Zuffada: GEROS-ISS: GNSS REflectometry, Radio Occultation, and Scatterometry Onboard the International Space Station, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(10), 1–30 (2016), doi:10.1109/JSTARS.2016.2614428

    Article  Google Scholar 

  116. E. Cardellach, F. Fabra, O. Nogués-Correig, S. Oliveras, S. Ribó, A. Rius: GNSS-R ground-based and airborne campaigns for ocean, land, ice and snow techniques: Application to the GOLD-RTR datasets, Radio Sci. 46(RS0C04), 1–16 (2011)

    Google Scholar 

  117. C. Ruf, S. Gleason, Z. Jelenak, S. Katzberg, A. Ridley, R. Rose, J. Scherrer, V. Zavorotny: The CYGNSS nanosatellite constellation hurricane mission, Proc. 2012 Int. Geosci. Remote Sens. Symp., Munich (IEEE, 2012) pp. 214–216 doi:10.1109/IGARSS.2012.6351600

  118. E. Cardellach, C.O. Ao, M. de la Torre Juarez, G.A. Hajj: Carrier phase delay altimetry with GPS – Reflection/occultation interferometry from low Earth orbiters, Geophys. Res. Lett. 31(L10402), 1–4 (2004)

    Google Scholar 

  119. G. Beyerle, K. Hocke, J. Wickert, T. Schmidt, C. Marquardt, C. Reigber: GPS radio occultations with CHAMP: A radio holographic analysis of GPS signal propagation in the troposphere and surface reflections, J. Geophys. Res. 107(D24, 4802), 1–14 (2002)

    Google Scholar 

  120. A.G. Pavelyev, A.V. Volkov, A.I. Zakharov, S.A. Krutikh, A.I. Kucherjavenkov: Bistatic radar as a tool for Earth investigation using small satellites, Acta Astronaut. 39(9–12), 721–730 (1996)

    Article  Google Scholar 

  121. C.D. Chadwell, Y. Bock: Direct estimation of absolute precipitable water in oceanic regions by GPS tracking of a coastal buoy, Geophys. Res. Lett. 28(19), 3701–3704 (2001)

    Article  Google Scholar 

  122. C. Rocken, J. Johnson, T.V. Hove, T. Iwabuchi: Atmospheric water vapor and geoid measurements in the open ocean with GPS, Geophys. Res. Lett. 32, L12813 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank several colleagues for providing information and figures: Chi On Ao (JPL), Christina Arras (GFZ), Georg Beyerle (GFZ), Galina Dick (GFZ), Axel von Engeln (EUMETSAT), Antonia Faber (GFZ), Rüdiger Haas (Chalmers), Sean Healy (ECMWF), Stefan Heise (GFZ), Tong Ning (Swedish Mapping, Cadastral and Land Registration Authority), Torsten Schmidt (GFZ), Hans-Georg Scherneck (Chalmers), Bill Schreiner (UCAR), Andrea Steiner (Wegener Center), Tom Yunck (GeoOptics), and Florian Zus (GFZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Elgered .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elgered, G., Wickert, J. (2017). Monitoring of the Neutral Atmosphere. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_38

Download citation

Publish with us

Policies and ethics