Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

Continuous geodetic observations are fundamental to characterize changes in space and time that affect the Earth system. The advent of global navigation satellite systems (GlossaryTerm

GNSS

s), starting with the Global Positioning System (GlossaryTerm

GPS

) in the early 1980s, has significantly increased the range of geodetic applications and their precision. Significant improvements have progressively been made in the GNSS software packages developed by research institutes, leading to the determination of high-precision geodetic parameters and their temporal variations. The proliferation of dense GNSS networks (local, national, continental and global), composed of continuously observing stations, allows for a variety of geodetic and Earth science applications. Most areas of science, Earth observation, georeferencing applications, and society at large, today depend on being able to determine positions to millimeter-level precision. Point positions, to be meaningful and fully exploitable, have to be determined and expressed in a well-defined reference frame. All current global and regional reference frames rely on the availability of the international terrestrial reference frame (GlossaryTerm

ITRF

), which is the most accurate realization of the international terrestrial reference system (GlossaryTerm

ITRS

). One of the major modern achievements in geodesy today is the ability to determine highly precise global and regional terrestrial reference frames based on GNSS observations, fully connected to the ITRF. This chapter describes the use and applications of GNSS in geodesy, focusing on its role in the International Association of Geodesy’s (IAG’s) global geodetic observing system (GGOS) for monitoring our planet in space and time, GNSS-based reference frame implementation, Earth rotation and sea level monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

analysis center

BIH:

Bureau International de l’Heure

BIPM:

Bureau International des Poids et Mesures

CODE:

Center for Orbit Determination in Europe

DORIS:

Doppler orbitography and radiopositioning integrated by satellite

GEO:

geostationary Earth orbit

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

IAU:

International Astronomical Union

IERS:

International Earth Rotation and Reference Systems Service

IGS:

International GNSS Service

ITRF:

International Terrestrial Reference Frame

ITRS:

International Terrestrial Reference System

IUGG:

International Union of Geodesy and Geophysics

NASA:

National Aeronautics and Space Administration

NGA:

National Geospatial-Intelligence Agency

PCV:

phase center variation

POD:

precise orbit determination

QZSS:

Quasi-Zenith Satellite System

RINEX:

receiver independent exchange (format)

SAR:

synthetic aperture radar

SINEX:

solution independent exchange (format)

SISRE:

signal-in-space range error

SLR:

satellite laser ranging

TCG:

Geocentric Coordinate Time

TRF:

terrestrial reference frame

UT:

Universal Time

VLBI:

very long baseline interferometry

References

  1. B. Hofmann-Wellenhof, H. Moritz: Physical Geodesy, 2nd edn. (Springer, Vienna 2006)

    Google Scholar 

  2. W. Torge, J. Müller: Geodesy, 4th edn. (De Gruyter, Berlin 2012)

    Book  Google Scholar 

  3. R. Rummel: Global integrated geodetic and geodynamic observing system (GIGGOS). In: Towards an Integrated Global Geodetic Observing System (IGGOS), IAG Symposia, Vol. 120, ed. by R. Rummel, H. Drewes, W. Bosch, H. Hornik (Springer, Berlin 2000) pp. 253–260

    Chapter  Google Scholar 

  4. H.-P. Plag, G. Beutler, R. Gross, T.A. Herring, C. Rizos, R. Rummel, D. Sahagian, J. Zumberge: Introduction. In: Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020, ed. by H.-P. Plag, M. Pearlman (Springer, Berlin 2009) pp. 1–13

    Chapter  Google Scholar 

  5. H. Drewes, H. Hornik, J. Ádám, S. Rózsa: The geodesist’s hand book 2012, J. Geod. 86(10), 787–974 (2012)

    Article  Google Scholar 

  6. H.-P. Plag, M. Pearlman (Eds.): Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020 (Springer, Berlin 2009)

    Google Scholar 

  7. G.W. Withee, D.B. Smith, M.B. Hales: Progress in multilateral earth observation cooperation: CEOS, IGOS, and the ad hoc group on earth observations, Space Policy 20, 37–43 (2004)

    Article  Google Scholar 

  8. G. Petit, B. Luzum: (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt 2010), IERS Technical Note, IERS Conventions, Vol. 36, 2010)

    Google Scholar 

  9. Z. Altamimi, L. Métivier, X. Collilieux: ITRF2008 plate motion model, J. Geophys. Res. 117(B07402), 1–14 (2012)

    Google Scholar 

  10. J. Ray (Ed.): IERS Technical, IERS Analysis Campaign to Investigate Motions of the Geocenter, Vol. 25 (Central Bureau of IERS, Observatoire de Paris, Paris 1999) p. 121

    Google Scholar 

  11. X. Wu, J. Ray, T. van Dam: Geocenter motion and its geodetic and geophysical implications, J. Geodyn. 58, 44–61 (2012)

    Article  Google Scholar 

  12. L. Métivier, M. Greff-Lefftz, Z. Altamimi: On secular geocenter motion: The impact of climate changes, Earth Planet. Sci. Lett. 296(3/4), 360–366 (2010)

    Article  Google Scholar 

  13. E. Pavlis: Fortnightly resolution geocenter series: A combined analysis of Lageos 1, 2 SLR data (1993–1996). In: IERS Analysis Campaign to Investigate Motions of the Geocenter, ed. by J. Ray (Observatoire de Paris, Paris 1999) pp. 75–84

    Google Scholar 

  14. X. Collilieux, Z. Altamimi, J. Ray, T. van Dam, X. Wu: Effect of the satellite laser ranging network distribution on geocenter motion estimation, J. Geophys. Res. 114(B04402), 1–17 (2009)

    Google Scholar 

  15. U. Hugentobler, H. van der Marel, T. Springer: Identification, mitigation of GNSS errors, Proc. IGS Workshop 2006 Darmstadt, ed. by T. Springer, G. Gendt, J.M. Dow (IGS, Pasadena 2006)

    Google Scholar 

  16. M. Meindl, G. Beutler, D. Thaller, R.R. Dach, A. Jäggi: Geocenter coordinates estimated from GNSS data as viewed by perturbation theory, Adv. Space Res. 51(7), 1047–1064 (2013)

    Article  Google Scholar 

  17. P. Rebischung, Z. Altamimi, T. Springer: A collinearity diagnosis of the GNSS geocenter determination, J. Geod. 88, 65–85 (2014)

    Article  Google Scholar 

  18. G. Blewitt, D. Lavallée, P. Clarke, K. Nurutdinov: A new global mode of Earth deformation: Seasonal cycle detected, Science 294(5550), 2342–2345 (2001)

    Article  Google Scholar 

  19. X. Wu, D.F. Argus, M.B. Heflin, E.R. Ivins, F.H. Webb: Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data, Geophys. Res. Lett. 29(24), 63-1–63-4 (2002)

    Article  Google Scholar 

  20. J. Ray, Z. Altamimi, X. Collilieux, T. van Dam: Anomalous harmonics in the spectra of GPS position estimates, GPS Solutions 12, 55–64 (2008)

    Article  Google Scholar 

  21. J. Griffiths, J. Ray: Sub-daily alias and draconitic errors in the IGS orbits, GPS Solutions 17, 413–422 (2012)

    Article  Google Scholar 

  22. Z. Altamimi: ITRF and co-location sites, Proc. IERS Workshop Site Co-Location, ed. by B. Richter, W.R. Dick, W. Schwegmann (2005), IERS Technical Note No. 33

    Google Scholar 

  23. R. Schmid, P. Steigenberger, G. Gendt, M. Ge, M. Rothacher: Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas, J. Geod. 81, 781–798 (2007)

    Article  Google Scholar 

  24. Z. Altamimi, P. Sillard, C. Boucher: ITRF2000: A new release of the international terrestrial reference frame for Earth science applications, J. Geophys. Res. 107(B10), 2214 (2002)

    Article  Google Scholar 

  25. Z. Altamimi, X. Collilieux, J. Legrand, B. Garayt, C. Boucher: ITRF2005: A new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters, J. Geophys. Res. 112(B09401), 1–19 (2007)

    Google Scholar 

  26. Z. Altamimi, X. Collilieux, L. Métivier: ITRF2008: An improved solution of the international terrestrial reference frame, J. Geod. 85(8), 457–473 (2011)

    Article  Google Scholar 

  27. G. Blewitt, Y. Bock, J. Kouba: Constraining the IGS polyhedron by distributed processing, Proc. IGS Workshop Densif. ITRF Reg. GPS Netw., Pasadena, ed. by J.F. Zumberge, R. Liu (1994) pp. 21–37

    Google Scholar 

  28. Z. Altamimi, D. Gambis, C. Bizouard: Rigorous combination to ensure ITRF and EOP consistency, Proc. Journées 2007 Celest. Ref. Frame Futur., Meudon (Observatoire de Paris, Paris 2008) pp. 151–154

    Google Scholar 

  29. R. Neilan, J.M. Dow, G. Gendt: The international GPS service (IGS): Celebrating the 10th anniversary and looking to the next decade, Adv. Space Res. 36(3), 320–326 (2005)

    Article  Google Scholar 

  30. M.R. Pearlman, J.J. Degnan, J.M. Bosworth: The international laser ranging service, Adv. Space Res. 30(2), 135–143 (2002)

    Article  Google Scholar 

  31. P. Willis, H. Fagard, P. Ferrage, F.G. Lemoine, C.E. Noll, R. Noomen, M. Otten, J.C. Ries, M. Rothacher, L. Soudarin, G. Tavernier, J.J. Valette: The international DORIS service, toward maturity, Adv. Space Res. 45(12), 1408–1420 (2010)

    Article  Google Scholar 

  32. W. Schlüter, E. Himwich, A. Nothnagel, N. Vandenberg, A. Whitney: IVS and its important role in the maintenance of the global reference systems, Adv. Space Res. 30(2), 145–150 (2002)

    Article  Google Scholar 

  33. R. Ferland, M. Piraszewski: The IGS-combined station coordinates, Earth rotation parameters and apparent geocenter, J. Geod. 83(3/4), 385–392 (2009)

    Article  Google Scholar 

  34. Z. Altamimi, C. Boucher, P. Sillard: New trends for the realization of the international terrestrial reference system, Adv. Space Res. 30(2), 175–184 (2002)

    Article  Google Scholar 

  35. Z. Altamimi, A. Dermanis: The choice of reference system in ITRF formulation, Proc. 7th Hotine-Marussi Symp. Mathem. Geod., Int. Assoc. Geod., Vol. 137, ed. by N. Sneeuw, P. Novák, M. Crespi, F. Sansò (Springer, Berlin, Heidelberg 2012) pp. 329–334

    Chapter  Google Scholar 

  36. Z. Altamimi, C. Boucher, L. Duhem: The worldwide centimetric terrestrial reference frame and its associated velocity field, Adv. Space Res. 13(11), 151–160 (1993)

    Article  Google Scholar 

  37. J. Kouba, Y. Mireault, G. Beutler, T. Springer: A discussion of IGS solutions and their impact on geodetic and geophysical applications, GPS Solutions 2(2), 3–15 (1998)

    Article  Google Scholar 

  38. J. Kouba, Y. Mireault: 1998 Analysis Coordinator Report. In: 1998 Technical Reports, ed. by K. Gowey, R.E. Neilan, A. Moore (IGS Central Bureau, Jet Propulsion Laboratory, Pasadena 1999) pp. 15–58

    Google Scholar 

  39. J. Kouba, P. Héroux: Precise point positioning using IGS orbit and clock products, GPS Solutions 5(2), 12–28 (2001)

    Article  Google Scholar 

  40. J. Kouba: The GPS toolbox ITRF transformations, GPS Solutions 5(3), 88–90 (2002)

    Article  Google Scholar 

  41. R. Ferland: Reference frame working group technical report. In: IGS 2001-2002 Technical Reports, ed. by K. Gowey, R. Neilan, A. Moore (JPL, Pasadena 2004) pp. 25–33

    Google Scholar 

  42. J. Ray: Reinforcing and securing the IGS reference tracking network, Proc. Workshop State GPS Vert. Position. Precis.: Sep. Earth Process. Space Geod., Cahiers du Centre Europeéen de Géodynamique et de Séismologie, Vol. 23, ed. by T. van Dam, O. Francis (Centre Europeéen de Géodynamique et de Séismologie, Luxembourg 2004) pp. 1–15

    Google Scholar 

  43. J. Ray, D. Dong, Z. Altamimi: IGS reference frames: Status and future improvements, GPS Solutions 8(4), 251–266 (2004)

    Article  Google Scholar 

  44. R. Schmid, M. Rothacher, D. Thaler, P. Steigenberger: Absolute phase center corrections of satellite and receiver antennas, J. Geod. 81, 781–798 (2007)

    Article  Google Scholar 

  45. P. Rebischung, J. Griffiths, J. Ray, R. Schmid, X. Collilieux, B. Garayt: IGS08: The IGS realization of ITRF2008, GPS Solutions 16(4), 483–494 (2012)

    Article  Google Scholar 

  46. R.F. Wong, C.M. Rollins, C.F. Minter: Recent updates to the WGS 84 reference frame, Proc. ION GNSS, Nashville (ION, Virginia 2012) pp. 1164–1172

    Google Scholar 

  47. V. Vdovin, A. Dorofeeva: Global geocentric coordinate system of the Russian federation, Proc. 7th Meet. Int. Comm. GNSS (ICG), Work. Group D, Bejing (UNOOSA, Vienna 2012) pp. 1–15

    Google Scholar 

  48. Y. Yang: Chinese geodetic coordinate system 2000, Chin. Sci. Bull. 54(15), 2714–2721 (2009)

    Google Scholar 

  49. G. Gendt, Z. Altamimi, R. Dach, W. Söhne, T. Springer: GGSP: Realisation, maintenance of the Galileo terrestrial reference frame, Adv. Space Res. 47(2), 174–185 (2010)

    Article  Google Scholar 

  50. Y. Hiyama, A. Yamagiwa, T. Kawahara, M. Iwata, Y. Fukuzaki, Y. Shouji, Y. Sato, T. Yutsudo, T. Sasaki, H. Shigematsu, H. Yamao, T. Inukai, M. Ohtaki, K. Kokado, S. Kurihara, I. Kimura, T. Tsutsumi, T. Yahagi, Y. Furuya, I. Kageyama, S. Kawamoto, K. Yamaguchi, H. Tsuji, S. Matsumura: Revision of survey results of control points after the 2011 off the Pacific coast of Tohoku earthquake, Bull. Geospatial Inf. Auth. Jpn. 59, 31–42 (2011)

    Google Scholar 

  51. O. Montenbruck, P. Steigenberger, A. Hauschild: Broadcast versus precise ephemerides: A multi-GNSS perspective, GPS Solutions 19(2), 321–333 (2015)

    Article  Google Scholar 

  52. M.R. Craymer: The evolution of NAD83 in Canada, Geomatica 60(2), 151–164 (2006)

    Google Scholar 

  53. T. Soler, R. Snay: Transforming positions and velocities between the international terrestrial reference frame of 2000 and North American datum of 1983, J. Surv. Eng. 130(2), 130–249 (2004)

    Article  Google Scholar 

  54. A. Milani, A.M. Nobili, P. Farinella: Non-Gravitational Perturbations and Satellite Geodesy (Adam Hilger, Bristol 1987)

    Google Scholar 

  55. J. Dawson, A. Woods: ITRF to GDA94 coordinate transformations, J. Appl. Geod. 4, 189–199 (2010)

    Google Scholar 

  56. Z. Altamimi: ETRS89 realization: Current status, ETRF2005 and future development, Bull. Geod. Geom. LXVIII(3), 255–267 (2009)

    Google Scholar 

  57. G. Blick, C. Crook, D. Grant, J. Beavan: Implementation of a semi-dynamic datum for New Zealand. In: A Window to the Future of Geodesy, ed. by F. Sansò, Int. Assoc. Geod. Symp. Ser., Vol. 128 (2005) pp. 38–43

    Google Scholar 

  58. Z. Altamimi, P. Sillard, C. Boucher: ITRF2000: From theory to implementation, 5th Hotine-Marussi Symp. Mathem. Geod., Int. Assoc. Geod., Vol. 127, ed. by F. Sansò (2004) pp. 157–163

    Chapter  Google Scholar 

  59. F.G. Lemoine, N.P. Zelensky, D.S. Chinn, D.E. Pavlis, D.D. Rowlands, B.D. Beckley, S.B. Luthcke, P. Willis, M. Ziebart, A. Sibthorpe, J.P. Boy, V. Luceri: Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2, Adv. Space Res. 46(12), 1513–1540 (2010)

    Article  Google Scholar 

  60. L. Cerri, J.P. Berthias, W.I. Bertiger, B.J. Haines, F.G. Lemoine, F. Mercier, J.C. Ries, P. Willis, N.P. Zelensky, M. Ziebart: Precision orbit determination standards for the Jason series of altimeter missions, Mar. Geod. 33(S1), 379–418 (2010)

    Article  Google Scholar 

  61. G. Wöppelmann, C. Letetrel, A. Santamaria, M.-N. Bouin, X. Collilieux, Z. Altamimi, S.D.P. Williams, B. Martin Miguez: Rates of sea-level change over the past century in a geocentric reference frame, Geophys. Res. Lett. 36(L12607), 1–6 (2009)

    Google Scholar 

  62. B.D. Beckley, F.G. Lemoine, S.B. Luthcke, R.D. Ray, N.P. Zelensky: A reassessment of TOPEX and Jason-1 altimetry based on revised reference frame and orbits, Geophys. Res. Lett. 34(L14608), 1–5 (2007)

    Google Scholar 

  63. W.H. Munk, G.J.F. MacDonald: The Rotation of the Earth: A Geophysical Discussion (Cambridge Univ. Press, New York 1960)

    Google Scholar 

  64. K. Lambeck: The Earth’s Variable Rotation: Geophysical Causes and Consequences (Cambridge Univ. Press, New York 1980)

    Book  Google Scholar 

  65. K. Lambeck: Geophysical Geodesy: The Slow Deformations of the Earth (Oxford Univ. Press, New York 1988)

    Google Scholar 

  66. T.M. Eubanks: Contributions of space geodesy to geodynamics: Earth dynamics. In: Variations in the Orientation of the Earth, ed. by D.E. Smith, D.L. Turcotte (American Geophysical Union, Washington DC 1993) pp. 1–54

    Google Scholar 

  67. R.S. Gross: Earth rotation variations – Long period. In: Physical Geodesy, ed. by T.A. Herring (Elsevier, Oxford 2007) pp. 239–294

    Google Scholar 

  68. M.L. Smith, F.A. Dahlen: The period and Q of the Chandler wobble, Geophys. J. Roy. Astron. Soc. 64, 223–281 (1981)

    Article  Google Scholar 

  69. J.M. Wahr: The effects of the atmosphere, oceans on the Earth’s wobble – I. Theory, Geophys. J. Roy. Astron. Soc. 70, 349–372 (1982)

    Article  Google Scholar 

  70. J.M. Wahr: The effects of the atmosphere and oceans on the Earth’s wobble and on the seasonal variations in the length of day – II. Results, Geophys. J. Roy. Astron. Soc. 74, 451–487 (1983)

    Google Scholar 

  71. H. Goldstein: Classical Mechanics (Addison-Wesley, Reading 1950)

    Google Scholar 

  72. J.L. Chen, C.R. Wilson, J.C. Ries, B.D. Tapley: Rapid ice melting drives Earth’s pole to the east, Geophys. Res. Lett. 40, 2625–2630 (2013)

    Article  Google Scholar 

  73. M. Rothacher, G. Beutler, T.A. Herring, R. Weber: Estimation of nutation using the global positioning system, J. Geophys. Res. 104(B3), 4835–4859 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The work of Zuheir Altamimi described in this chapter was performed at IGN France, host of the ITRF Center. The work of Richard Gross described in this chapter was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuheir Altamimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altamimi, Z., Gross, R. (2017). Geodesy. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_36

Download citation

Publish with us

Policies and ethics