Skip to main content

GNSS/INS Integration

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

This chapter discusses the role of global navigation satellite systems (GlossaryTerm

GNSS

s) and inertial measurements in the estimation of the state vector for a maneuvering system. The chapter considers the main objectives of accuracy, continuity, availability, and integrity; and, the contributions that the different types of sensors make toward achieving these objectives. The chapter includes an example design. Then, the chapter reviews the concepts of loose, tight, and ultratight or deeply coupled systems. Throughout, the advantages, disadvantages, and tradeoffs between alternative approaches are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ARW:

angular random walk

DLL:

delay lock loop

ECEF:

Earth-centered Earth-fixed

EKF:

extended Kalman filter

FOG:

fiber optic gyroscope

GNSS:

global navigation satellite system

GPS:

Global Positioning System

HDOP:

horizontal dilution of precision

IMU:

inertial measurement unit

INS:

inertial navigation system

LIDAR:

light detection and ranging

MAP:

maximum a posteriori

MEMS:

micro-electromechanical system

PDOP:

position dilution of precision

PF:

particle filter

PLL:

phase lock loop

PSD:

power spectral density

RLG:

ring laser gyroscope

SDA:

strapdown algorithm

SLAM:

simultaneous location and mapping

VDOP:

vertical dilution of precision

VRE:

vibration rectification error

VRW:

velocity random walk

WLS:

weighted least-squares

References

  1. B.L. Stevens, F.L. Lewis: Aircraft Control and Simulation (Wiley, New York 1992)

    Google Scholar 

  2. Global Positioning System Wide Area Augmentation System (WAAS) Performance Standard (US Federal Aviation Administration, Washington DC 2008)

    Google Scholar 

  3. T. Walter, P. Enge: Weighted RAIM for precision approach, Proc. ION GPS 1995, Palm Springs (ION, Virginia 1995) pp. 1985–2004

    Google Scholar 

  4. S. Hewitson, J. Wang: GNSS receiver autonomous integrity monitoring (RAIM) performance analysis, GPS Solutions 10(3), 155–170 (2006)

    Article  Google Scholar 

  5. J.J. Gertler: Analytical redundancy methods in fault detection and isolation, Proc. IFAC/IMACS Symp. Fault Detect. Superv. Saf. Tech. Process. SAFEPROCESS’91, Baden-Baden (1991) pp. 9–21

    Google Scholar 

  6. E.Y. Chow, A.S. Willsky: Analytical redundancy and the design of robust failure detection systems, IEEE Trans. Autom. Contr. 29, 603–614 (1984)

    Article  Google Scholar 

  7. K.R. Britting: Inertial Navigation Systems Analysis (Wiley-Interscience, New York 1971)

    Google Scholar 

  8. J.A. Farrell: Aided Navigation: GPS with High Rate Sensors (McGraw-Hill, New York 2008)

    Google Scholar 

  9. J.L. Farrell: Integrated Aircraft Navigation (Academic, New York 1976)

    Google Scholar 

  10. C. Jekeli: Inertial Navigation Systems with Geodetic Applications (Walter de Gruyter, Berlin 2001)

    Book  Google Scholar 

  11. J. Wendel: Integrierte Navigationssysteme: Sensordatenfusion, GPS und Inertiale Navigation (Oldenbourg Wissenschaftsverlag, Munich 2011), in German

    Book  Google Scholar 

  12. P.D. Groves: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (Artech House, Norwood 2013)

    Google Scholar 

  13. M.D. Shuster: Survey of attitude representations, J. Astronaut. Sci. 41(4), 439–517 (1993)

    Google Scholar 

  14. R.G. Brown, P.Y.C. Hwang: Introduction to Random Signals and Applied Kalman Filtering, 4th edn. (Wiley, New York 2012)

    Google Scholar 

  15. A.H. Jazwinski: Stochastic Processes and Filtering Theory (Academic, San Diego 1970)

    Google Scholar 

  16. P.S. Maybeck: Stochastic Models, Estimation, and Control (Academic, San Diego 1979)

    Google Scholar 

  17. D.W. Allan: Statistics of atomic frequency standard, Proc. IEEE 54(2), 221–231 (1966)

    Article  Google Scholar 

  18. P. Savage: Strapdown system algorithms. In: Advances in Strapdown Inertial Systems, AGARD Lecture Series, Vol. 133, ed. by G.T. Schmid (NATO Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine 1984), pp. 3.1–3.30

    Google Scholar 

  19. L.M. Silverman, H.E. Meadows: Controllability and observability in time-variable linear systems, SIAM J. Contr. 5(1), 64–73 (1967)

    Article  Google Scholar 

  20. I.Y. Bar-Itzhack, N. Bergman: Control theoretic approach to inertial navigation systems, J. Guid. 11(3), 237–245 (1988)

    Article  Google Scholar 

  21. F.M. Ham, R.G. Brown: Observability, eigenvalues, and Kalman filtering, IEEE Trans. Aerosp. Electron. Syst. 19, 269–273 (1983)

    Article  Google Scholar 

  22. D. Goshen-Meskin, I.Y. Bar-Itzhack: Observability analysis of piece-wise constant systems Part 1: Theory, IEEE Trans. Aerosp. Electron. Syst. 28, 1056–1067 (1992)

    Article  Google Scholar 

  23. A.B. Chatfield: Fundamentals of High Accuracy Inertial Navigation (AIAA, Reston 1997)

    Book  Google Scholar 

  24. A. Lawrence: Modern Inertial Technology: Navigation, Guidance, and Control, 2nd edn. (Springer, New York 2001)

    Google Scholar 

  25. D.H. Titterton, J.L. Weston: Strapdown Inertial Navigation Technology, 2nd edn. (IEE, Stevenage 2004)

    Book  Google Scholar 

  26. J. Wendel, G.F. Trommer: An efficient method for considering time correlated noise in GPS/INS integration, Proc. ION NTM 2004, San Diego (ION, Virginia 2004) pp. 903–911

    Google Scholar 

  27. W.A. Poor: A geometric description of wander azimuth frames, Navigation 36(3), 303–318 (1989)

    Article  Google Scholar 

  28. J.E. Bortz: A new mathematical formulation for strapdown inertial navigation, IEEE Trans. Aerosp. Electron. Syst. 7(1), 61–66 (1971)

    Article  Google Scholar 

  29. J.B. Kuipers: Quaternions and Rotations Sequences (Princeton Univ. Press, Princeton 1999)

    Google Scholar 

  30. B. Palais, R. Palais, S. Rodi: A disorienting look at Euler’s theorem on the axis of a rotation, Am. Math. Mon. 116(10), 892–209 (2009)

    Article  Google Scholar 

  31. C. Broxmeyer: Inertial Navigation Systems (McGraw Hill, New York 1964)

    Google Scholar 

  32. W.R. Hamilton: On quaternions; or on a new system of imaginaries in algebra, The London, Edinburgh and Dublin Philos. Mag. J. Sci. xxv(3), 489–495 (1844)

    Google Scholar 

  33. W.A. Heiskanen, H. Moritz: Physical geodesy, Bull. Géod. 86(1), 491–492 (1967), in French

    Article  Google Scholar 

  34. W.H. Press, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes: The Art of Scientific Computing (Cambridge Univ. Press, Cambridge 2007)

    Google Scholar 

  35. M. Schuler: Die Störung von Pendel und Kreiselapparaten durch die Beschleunigung des Fahrzeuges, Phys. Z. 24(16), 344–350 (1923), in German

    Google Scholar 

  36. M. Grewal, A.P. Andrews: Kalman Filtering: Theory and Practice Using Matlab (Wiley, New York 2008)

    Book  Google Scholar 

  37. S.M. Kay: Fundamentals of Statistical Signal Processing, Estimation Theory (Prentice Hall PTR, Upper Saddle River 1993)

    Google Scholar 

  38. D. Simon: Optimal State Estimation: Kalman, \(H_{\infty}\) , and Nonlinear Approaches (Wiley, Hoboken 2006)

    Book  Google Scholar 

  39. R.E. Kalman: A new approach to linear filtering and prediction problems, J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  40. E. Ohlmeyer: Analysis of an ultra-tightly coupled GPS/INS system in jamming, Proc. IEEE/ION PLANS 2006, San Diego (ION, Virginia 2006) pp. 44–53

    Google Scholar 

  41. D. Gustafson, J. Dowdle, K. Flueckiger: A high anti-jam GPS-based navigator, Proc. ION NTM 2000, Anaheim (ION, Anaheim 2000) pp. 495–503

    Google Scholar 

  42. A. van Dierendonck, J. McGraw, R. Brown: Relationship between allan variances and Kalman filter parameters, Proc. 16th Precise Time Time Interval (PTTI) Appl. Plan. Meet. (1984) pp. 273–293

    Google Scholar 

  43. R.R. Hatch: The synergism of GPS code and carrier measurements, Proc. 3rd Int. Geod. Symp. Satell. Doppler Position., Las Cruces (1982) pp. 1213–1232

    Google Scholar 

  44. R. Hatch: Instantaneous ambiguity resolution, Proc. Int. Symp. Kinemat. Syst. Geod. Surv. Remote Sens., Banff, ed. by K.-P. Schwarz, G. Lachapelle (Springer, New York 1991) pp. 299–308

    Google Scholar 

  45. P.J.G. Teunissen: The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation, J. Geod. 70, 65–82 (1995)

    Article  Google Scholar 

  46. P.J.G. Teunissen: GPS carrier phase ambiguity fixing concepts. In: GPS for Geodesy, ed. by A. Kleusberg, P. Teunissen (Springer, Berlin 1996) pp. 263–335

    Chapter  Google Scholar 

  47. F. Dellaert, M. Kaess: Square root SAM: Simultaneous localization and mapping via square root information smoothing, Int. J. Robot. Res. 25(12), 1181–1203 (2006)

    Article  Google Scholar 

  48. M. Kaess, A. Ranganathan, F. Dellaert: iSAM: Incremental smoothing and mapping, IEEE Trans. Robot. 24(6), 1365–1378 (2008)

    Article  Google Scholar 

  49. Y.F. Jiang, Y.P. Lin: On the rotation vector differential equation, IEEE Trans. Aerosp. Electron. Syst. 27(1), 181–183 (1991)

    Article  Google Scholar 

  50. J.C. Fang, D.J. Wan: A fast initial alignment method for strapdown inertial navigation system on stationary base, IEEE Trans. Aerosp. Electron. Syst. 32(4), 1501–1505 (1996)

    Article  Google Scholar 

  51. S. Thrun: Probabilistic Robotics (MIT Press, Cambridge 2005)

    Google Scholar 

  52. B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon: Bundle adjustment – A modern synthesis, vision algorithms: Theory and practice 1883, 298–372 (2000)

    Article  Google Scholar 

  53. A. Vu, J.A. Farrell, M. Barth: Centimeter-accuracy smoothed vehicle trajectory estimation, IEEE Intell. Transp. Syst. Mag. 5(4), 121–135 (2013)

    Article  Google Scholar 

  54. J.C. Wilcox: Competitive evaluation of failure detection algorithms for strapdown redundant inertial instruments, J. Spacecr. 11(7), 525–530 (1974)

    Article  Google Scholar 

  55. Y. Chen, D. Zheng, P. Miller, J.A. Farrell: Underwater vehicle near real time state estimation, Proc. IEEE Int. Conf. Contr. Appl., Hyderabad (2013) pp. 545–550

    Google Scholar 

  56. A. Ramanandan, J.A. Farrell, A. Chen: A near-real time nonlinear state estimation approach with application to initialization of navigation systems, Proc. 50th IEEE Conf. Decis. Contr. Eur. Contr. Conf., Orlando (2011) pp. 3184–3191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay A. Farrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farrell, J.A., Wendel, J. (2017). GNSS/INS Integration. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_28

Download citation

Publish with us

Policies and ethics