Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

Attitude estimation is the process of determining the spatial orientation of an object. A system formed by multiple Global Navigation Satellite System (GlossaryTerm

GNSS

) antennas placed at known relative positions acts as an attitude sensor. This chapter provides an overview of practical applications of GNSS-based attitude determination, gives the principles of attitude representation and estimation, and reviews a constrained ambiguity resolution method to reliably fix the carrier-phase integer ambiguities and obtain precise attitude estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DD:

double-difference

ECEF:

Earth-centered Earth-fixed

GNSS:

global navigation satellite system

GPS:

Global Positioning System

ILS:

integer least-squares

IMU:

inertial measurement unit

INS:

inertial navigation system

ISS:

International Space Station

LAMBDA:

least-squares ambiguity decorrelation adjustment

LEO:

low Earth orbit

MEMS:

micro-electromechanical system

NASA:

National Aeronautics and Space Administration

PMF:

probability mass function

RMS:

root mean square

SD:

single-difference

UAV:

unmanned aerial vehicle

References

  1. P. Axelrad, C.P. Behre: Satellite attitude determination based on GPS signal-to-noise ratio, Proc. IEEE 87(1), 133–144 (1999)

    Article  Google Scholar 

  2. V.W. Spinney: Application of the Global Positioning System as an attitude reference for near-Earth users, ION Natl. Aerosp. Meet. New Front. Aerosp. Navig., Warminster (ION, Virginia 1976)

    Google Scholar 

  3. R.L. Greenspan, A.Y. Ng, J.M. Przyjemski, J.D. Veale: Positioning by interferometry with reconstructed carrier GPS: Experimental results, Proc. 3rd Int. Geod. Symp. Satell. Doppler Position., Las Cruces (Physical Science Laboratory, Las Cruces 1982) pp. 1177–1198

    Google Scholar 

  4. A.K. Brown, T.P. Thorvaldsen, W.M. Bowles: Interferometric attitude determination using the Global Positioning System – A new gyrotheodolite, Proc. 3rd Int. Geod. Symp. Satell. Doppler Position., Las Cruces (Physical Science Laboratory, Las Cruces 1982) pp. 1289–1302

    Google Scholar 

  5. K.M. Joseph, P.S. Deem: Precision orientation: A New GPS application, Int. Telem. Conf., San Diego (1983)

    Google Scholar 

  6. W.S. Burgett, S.D. Roemerman, P.W. Ward: The development and applications of GPS-determined attitude, Natl. Telesyst. Conf. (NTC), San Francisco (IEEE, New York 1983)

    Google Scholar 

  7. L.R. Kruczynski, P.C. Li, A.G. Evans, B.R. Wermann: Using GPS to determine vehicle attitude: USS Yorktown test results, Proc. ION GPS, Colorado Springs (ION, Virginia 1989) pp. 163–171

    Google Scholar 

  8. G.H. Purcell Jr., J.M. Srinivasan, L.E. Young, S.J. Di Nardo, E.L. Hushbeck, T.K. Meehan Jr., T.N. Munson, T.P. Yunck: Measurement of aircraft position, velocity, and attitude using rogue GPS receivers, 5th Int. Geod. Symp. Satell. Position., Las Cruces (Physical Science Laboratory, Las Cruces 1989)

    Google Scholar 

  9. F. van Graas, M. Braasch: GPS interferometric attitude and heading determination: Initial flight test results, Navigation 38, 297–316 (1991)

    Article  Google Scholar 

  10. A. Karger, J. Novak: Space Kinematics and Lie Groups (Routledge, New York 1985)

    Google Scholar 

  11. L. Eulero: Formulae generales pro translatione quacunque corporum rigidorum (General formulas for the translation of arbitrary rigid bodies), Novi Commentarii Academiae Scientiarum Petropolitanae 20, 189–207 (1776), in Latin

    Google Scholar 

  12. W.R. Hamilton: Philos. Mag. J. Sci. (3rd Series), On quaternions; or on a new system of imaginaries in algebra, Lond. Edinb, Vol. 3 (Taylor Francis, Dublin 1844) pp. 489–495

    Google Scholar 

  13. J.B. Kuipers: Quaternions and Rotations Sequences (Princeton Univ. Press, Princeton 1999)

    Google Scholar 

  14. M.D. Shuster: A survey of attitude representations, J. Astronaut. Sci. 41(4), 439–517 (1993)

    Google Scholar 

  15. P.J.G. Teunissen: A general multivariate formulation of the multi-antenna GNSS attitude determination problem, Artif. Satell. 42(2), 97–111 (2007)

    Article  Google Scholar 

  16. J.R. Wertz: Spacecraft Attitude Determination and Control, 1st edn. (Kluwer Academic, Dordrecht 1978)

    Book  Google Scholar 

  17. C.F. Van Loan: The ubiquitous Kronecker product, J. Comput. Appl. Math. 123(1/2), 85–100 (2000)

    Article  Google Scholar 

  18. G. Wahba: Problem 65-1: A least squares estimate of spacecraft attitude, SIAM Rev. 7(3), 384–386 (1965)

    Article  Google Scholar 

  19. P.H. Schönemann: A generalized solution of the orthogonal Procrustes problem, Psychometrika 31(1), 1–10 (1966)

    Article  Google Scholar 

  20. P.B. Davenport: A Vector Approach to the Algebra of Rotations with Applications, NASA Technical Note D-4696 (Goddard Space Flight Center, Greenbelt 1968)

    Google Scholar 

  21. D.W. Eggert, A. Lorusso, R.B. Fisher: Estimating 3-D rigid body transformations: A comparison of four major algorithms, SIAM J. Matrix Anal. Appl. 9(5/6), 272–290 (1997)

    Google Scholar 

  22. M.D. Shuster, S.D. Oh: Three-axis attitude determination from vector observations, AIAA J. Guid. Contr. 4(1), 70–77 (1981)

    Article  Google Scholar 

  23. M.D. Shuster: The quest for better attitudes, J. Astronaut. Sci. 54(3/4), 657–683 (2006)

    Article  Google Scholar 

  24. F.L. Markley, F. Landis: Attitude determination using vector observations: A fast optimal matrix algorithm, J. Astronaut. Sci. 41(2), 261–280 (1993)

    Google Scholar 

  25. D. Mortari: ESOQ: A closed-form solution to the Wahba problem, J. Astronaut. Sci. 45(2), 195–204 (1997)

    Google Scholar 

  26. D. Mortari: Second estimator of the optimal quaternion, AIAA J. Guid. Contr. Dyn. 23(5), 885–888 (2000)

    Article  Google Scholar 

  27. F.L. Markley, D. Mortari: How to estimate attitude from vector observations, AAS 99-427, AAS/AIAA Astrodyn. Spec. Conf., Girdwood, ed. by K.C. Howell, F.R. Hoots, B. Kaufman, K.T. Alfriend (Univelt, San Diego 1999) pp. 1979–1996

    Google Scholar 

  28. F.L. Markley, D. Mortari: Quaternion attitude estimation using vector observations, J. Astronaut. Sci. 48(2/3), 359–380 (2000)

    Google Scholar 

  29. Y. Cheng, M.D. Shuster: Robustness and accuracy of the QUEST algorithm, Adv. Astronaut. Sci. 127, 41–61 (2007)

    Google Scholar 

  30. M.T. Chu, N.T. Trendafilov: On a differential approach to the weighted orthogonal procrustes problem, Stat. Comput. 8, 125–133 (1998)

    Article  Google Scholar 

  31. T. Viklands: Algorithms for the Weighted Orthogonal Procrustes Problem and Other Least Squares Problems, Ph.D. Thesis (Umea Univ., Umea 2006)

    Google Scholar 

  32. P.J.G. Teunissen, A. Kleusberg: GPS for Geodesy, 2nd edn. (Springer, Berlin 1998)

    Book  Google Scholar 

  33. G. Giorgi: GNSS Carrier Phase-Based Attitude Determination. Estimation and Applications, Ph.D. Thesis (Delft Univ. Technology, Delft 2011)

    Google Scholar 

  34. P.J.G. Teunissen: Nonlinear least-squares, Manuscripta Geodaetica 15(3), 137–150 (1990)

    Google Scholar 

  35. P.J.G. Teunissen: The affine constrained GNSS attitude model and its multivariate integer least-squares solution, J. Geod. 86(7), 547–563 (2012)

    Article  Google Scholar 

  36. A.J.V. Dierendonck, P. Fenton, T. Ford: Theory and performance of narrow correlator spacing in a GPS receiver, Navigation 39(3), 265–283 (1992)

    Article  Google Scholar 

  37. A. Simsky, J.M. Sleewaegen, M. Hollreiser, M. Crisci: Performance assessment of Galileo ranging signals transmitted by GSTB-V2 satellites, Proc. ION GNSS, Fort Worth (ION, Virginia 2006) pp. 1547–1559

    Google Scholar 

  38. L.R. Weill: Multipath mitigation using modernized GPS signals: How good can it get?, Proc. ION GPS, Portland (ION, Virginia 2002) pp. 493–505

    Google Scholar 

  39. C.E. Cohen: Attitude Determination Using GPS, Ph.D. Thesis (Stanford Univ., Palo Alto 1992)

    Google Scholar 

  40. C.E. Cohen: Attitude determination. In: Global Positioning System: Theory and Applications, Vol. 2, ed. by B.W. Parkinson, J.J. Spilker (AIAA, Reston 1996)

    Google Scholar 

  41. J.L. Crassidis, F.L. Markley, E.G. Lightsey: Global positioning system integer ambiguity resolution without attitude knowledge, J. Guid. Contr. Dyn. 22(2), 212–218 (1999)

    Article  Google Scholar 

  42. A. Conway, P. Montgomery, S. Rock, R. Cannon, B. Parkinson: A new motion-based algorithm for GPS attitude integer resolution, Navigation 43(2), 179–190 (1996)

    Article  Google Scholar 

  43. E.G. Lightsey, J.L. Crassidis, F.L. Markley: Fast integer ambiguity resolution for GPS attitude determination, AIAA Guid. Navig. Contr. Conf., Portland (AIAA, Reston 1999) pp. 403–412

    Google Scholar 

  44. Y. Wang, X. Zhan, Y. Zhang: Improved ambiguity function method based on analytical resolution of GPS attitude determination, Meas. Sci. Technol. 18(9), 2985–2990 (2007)

    Article  Google Scholar 

  45. M.L. Psiaki: Batch algorithm for global-positioning-system attitude determination and integer ambiguity resolution, J. Guid. Contr. Dyn. 29(1), 1070–1079 (2006)

    Article  Google Scholar 

  46. C.C. Counselman, S.A. Gourevitch: Miniature interferometer terminals for Earth surveying: Ambiguity and multipath with the Global Positioning System, IEEE Trans. Geosci. Remote Sens. GE-19(4), 244–252 (1981)

    Article  Google Scholar 

  47. A. Caporali: Basic direction sensing with GPS, GPS World 12(3), 44–50 (2001)

    Google Scholar 

  48. H.J. Euler, C. Hill: Attitude determination: Exploiting all information for optimal ambiguity resolution, Proc. ION GPS, Palm Springs (ION, Virginia 1995) pp. 1751–1757

    Google Scholar 

  49. J.C. Juang, G.S. Huang: Development of GPS-based attitude determination algorithms, IEEE Trans. Aerosp. Electron. Syst. 33(3), 968–976 (1997)

    Article  Google Scholar 

  50. Y. Li, K. Zhang, C. Roberts, M. Murata: On-the-fly GPS-based attitude determination using single- and double-differenced carrier phase measurements, GPS Solutions 8(2), 93–102 (2004)

    Article  Google Scholar 

  51. L.V. Kuylen, P. Nemry, F. Boon, A. Simsky, J.F.M. Lorga: Comparison of attitude performance for multi-antenna receivers, Eur. J. Navig. 4(2), 1–9 (2006)

    Google Scholar 

  52. R. Monikes, J. Wendel, G.F. Trommer: A modified LAMBDA method for ambiguity resolution in the presence of position domain constraints, Proc. ION GNSS, Long Beach (ION, Virginia 2005) pp. 81–87

    Google Scholar 

  53. A. Hauschild, G. Grillmayer, O. Montenbruck, M. Markgraf, P. Vörsmann: GPS attitude determination for the flying laptop satellite. In: Small Satellites for Earth Observation, ed. by R. Sandau, H.P. Röser, A. Valenzuela (Springer, Netherlands 2008)

    Google Scholar 

  54. B. Wang, L. Miao, S. Wang, J. Shen: A constrained LAMBDA method for GPS attitude determination, GPS Solutions 13(2), 97–107 (2009)

    Article  Google Scholar 

  55. R. Hatch: Instantaneous ambiguity resolution, Proc. Int. Symp. Kinemat. Syst. Geod. Surv. Remote Sens. (KIS), Banff, ed. by K.-P. Schwarz, G. Lachapelle (Springer, New York 1991) pp. 299–308

    Google Scholar 

  56. R.A. Brown: Instantaneous GPS attitude determination, Proc. IEEE PLANS, Monterey (IEEE, Cleveland 1992) pp. 113–120

    Google Scholar 

  57. C. Park, I. Kim, J.G. Lee, G.I. Jee: Efficient ambiguity resolution using constraint equation, Proc. IEEE PLANS, Atlanta (IEEE, Cleveland 1996) pp. 227–284

    Google Scholar 

  58. M.S. Hodgart, S. Purivigraipong: New approach to resolving instantaneous integer ambiguity resolution for spacecraft attitude determination using GPS signals, Proc. IEEE PLANS, San Diego (IEEE, Cleveland 2000) pp. 132–139

    Google Scholar 

  59. P.J.G. Teunissen: Least-squares estimation of the integer GPS ambiguities, Invited Lecture, Section IV Theory and Methodology, IAG Gen. Meet., Beijing (IAG, 1993)

    Google Scholar 

  60. P.J.G. Teunissen: The Least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation, J. Geod. 70(1/2), 65–82 (1995)

    Article  Google Scholar 

  61. P. De Jonge, C.C.J.M. Tiberius: The LAMBDA method for integer ambiguity estimation: Implementation aspects, Publ. Delft Comput. Cent. LGR-Series 12, 1–47 (1996)

    Google Scholar 

  62. P.J.G. Teunissen, P.J. de Jonge, C.C.J.M. Tiberius: Performance of the LAMBDA method for fast GPS ambiguity resolution, J. Navig. 44(3), 373–383 (1997)

    Article  Google Scholar 

  63. P.J.G. Teunissen: An optimality property of the integer least-squares estimator, J. Geod. 73(11), 587–593 (1999)

    Article  Google Scholar 

  64. S. Verhagen, P.J.G. Teunissen: New global navigation satellite system ambiguity resolution method compared to existing approaches, J. Guid. Contr. Dyn. 29(4), 981–991 (2006)

    Article  Google Scholar 

  65. A. Hauschild, O. Montenbruck: GPS-based attitude determination for microsatellites, Proc. ION GNSS, Forth Worth (ION, Virginia 2007) pp. 2424–2434

    Google Scholar 

  66. L. Dai, K.V. Ling, N. Nagarajan: Real-time attitude determination for microsatellite by LAMBDA method combined with Kalman filtering, 22nd AIAA Int. Commun. Satell. Syst. Conf. Exhib. (ICSSC), Monterey (AIAA, Reston 2004) pp. 1–8

    Google Scholar 

  67. P.J.G. Teunissen, G. Giorgi, P.J. Buist: Testing of a new single-frequency GNSS carrier-phase compass method: Land, ship and aircraft experiments, GPS Solutions 15(1), 15–28 (2010)

    Article  Google Scholar 

  68. P.J.G. Teunissen: Integer least-squares theory for the GNSS compass, J. Geod. 84(7), 433–447 (2010)

    Article  Google Scholar 

  69. G. Giorgi, P.J.G. Teunissen, S. Verhagen, P.J. Buist: Instantaneous ambiguity resolution in global-navigation-satellite-system-based attitude determination applications: A multivariate constrained approach, J. Guid. Contr. Dyn. 35(1), 51–67 (2012)

    Article  Google Scholar 

  70. G. Giorgi, P.J.G. Teunissen, P.J. Buist: A Search and shrink approach for the baseline constrained LAMBDA: Experimental results, Int. Symp. GPS/GNSS, Tokyo, ed. by A. Yasuda (Tokyo Univ. of Marine Science and Technology, Tokyo 2008) pp. 797–806

    Google Scholar 

  71. N. Nadarajah, P.J.G. Teunissen, G. Giorgi: GNSS attitude determination for remote sensing: On the bounding of the multivariate ambiguity objective function. In: Earth on the Edge: Science for a Sustainable Planet, ed. by C. Rizos, C. Willis (Springer, Berlin 2014) pp. 503–509

    Chapter  Google Scholar 

  72. M. Ueno: GPS Attitude for a Berthing Guidance System, Ph.D. Thesis (Universite Laval, Quebec 1999)

    Google Scholar 

  73. G. Giorgi, P.J.G. Teunissen: Low-complexity instantaneous ambiguity resolution with the affine-constrained GNSS attitude model, IEEE Trans. Aerosp. Electron. Syst. 49(3), 1745–1759 (2013)

    Article  Google Scholar 

  74. P.J.G. Teunissen: The probability distribution of the GPS baseline for a class of integer ambiguity estimators, J. Geod. 73(5), 275–284 (1999)

    Article  Google Scholar 

  75. K. Ferguson, J. Kosmalska, M. Kuhl, J.M. Eichner, K. Kepski, R. Abtahi: Three-dimensional attitude determination with the ashtech 3DF 24-channel GPS measurement system, Proc. ION NTM, Phoenix (ION, Virginia 1991) pp. 35–41

    Google Scholar 

  76. C.E. Cohen, E.G. Lightsey, B.W. Parkinson: Space flight tests of attitude determination using GPS, Int. J. Satell. Commun. 12(5), 427–433 (1994)

    Article  Google Scholar 

  77. H.J. Kramer: Observation of the Earth and Its Environment: Survey of Missions and Sensors, 4th edn. (Springer, Berlin, Heidelberg 2001) pp. 145–156

    Google Scholar 

  78. F.L. Knight: The space test program APEX mission – Flight results, AIAA/USU Conf. Small Satell., Logan (Utah State Univ., Logan 1996) pp. 1–15

    Google Scholar 

  79. D. Freesland, K. Reiss, D. Young, J. Cooper, C.A. Adams: GPS based attitude determination: The REX II flight experience, AIAA/USU Conf. Small Satell., Logan (Utah State Univ., Logan 1996) pp. 1–9

    Google Scholar 

  80. M. Unwin, S. Purivigraipong, A. da Silva Curiel, M. Sweeting: Stand-alone spacecraft attitude determination using real flight GPS data from UOSAT-12, Acta Astronaut. 51(1), 261–268 (2002)

    Article  Google Scholar 

  81. J.C. Adams: Robust GPS Attitude Determination for Spacecraft, Ph.D. Thesis (Stanford Univ., Palo Alto 1999)

    Google Scholar 

  82. H. Uematsu, L. Ward, B.W. Parkinson: Use of global positioning system for gravity probe B relativity experiment and co-experiments, Adv. Space Res. 26(6), 1199–1203 (2000)

    Article  Google Scholar 

  83. S. Gomez: Three years of global positioning system experience on international space station, NASA/TP-2006-213168 (NASA Johnson Space Center, Houston 2006)

    Google Scholar 

  84. M.D. DiPrinzio, R.H. Tolson: Evaluation of GPS Position and Attitude Determination for Automated Rendezvous and Docking Missions (NASA, Langley Research Center, Hampton 1994)

    Google Scholar 

  85. J.L. Goodman: GPS Lessons Learned from the International Space Station, Space Shuttle and X-38, NASA-CR-2005-213693 (NASA Johnson Space Center, Houston 2005)

    Google Scholar 

  86. C.E. Cohen: Flight tests of attitude determination using GPS compared against an inertial navigation unit, Proc. ION NTM, San Francisco (ION, Virginia 1993) pp. 579–587

    Google Scholar 

  87. K.P. Schwarz: Aircraft position and attitude determination by GPS and INS generalized solution of the orthogonal procrustes problem, Int. Arch. Photogramm. Remote Sens. 31(B6), 67–73 (1996)

    Google Scholar 

  88. D. Gebre-Egziabher, R.C. Hayward, J.D. Powell: A low-cost GPS/inertial attitude heading reference system (AHRS) for general aviation applications, Proc. IEEE PLANS, Palm Springs (IEEE, Cleveland 1998) pp. 518–525

    Google Scholar 

  89. F. Boon, B.A.C. Ambrosius: Results of real-time applications of the LAMBDA method in GPS based aircraft landings, Proc. Int. Symp. Kinemat. Syst. Geod. Geomat. Navig. (KIS), Banff (Univ. Calgary, Calgary 1997) pp. 339–345

    Google Scholar 

  90. M.J. Moore, C. Rizos, J. Wang, G. Boyd, K. Matthew: A GPS based attitude determination system for an UAV aided by low grade angular rate gyros, Proc. ION GNSS, Portland (ION, Virginia 2003) pp. 2417–2424

    Google Scholar 

  91. S. Corbett: GPS for attitude determination and positioning in airborne remote sensing, Proc. ION GPS, Salt Lake City (ION, Virginia 1993) pp. 789–796

    Google Scholar 

  92. B.A. Alberts, B.C. Gunter, A. Muis, Q.P. Chu, G. Giorgi, P.J. Buist, C.C.J.M. Tiberius, H. Lindenburg: Correcting strapdown GPS/INS gravimetry estimates with GPS attitude data, Int. Assoc. Geod. Symp. Grav. Geoid Earth Obs. 135, 93–100 (2010)

    Article  Google Scholar 

  93. J.A. Mercer, R.R. Ryan, H.A. Kolve: United States Navy applications of a GPS attitude and position measurement system, Proc. ION NTM, Albuquerque (ION, Virginia 1992) pp. 783–791

    Google Scholar 

  94. G. Lachapelle, M.E. Cannon, B. Loncarevic: Shipborne GPS attitude determination during MMST-93, IEEE J. Ocean. Eng. 21(1), 100–105 (1996)

    Article  Google Scholar 

  95. J.A. Kawahara, M. Meakin: Using a GPS antenna array to provide ship heading for a precise integrated navigation system, Can. Hydrogr. Conf., Halifax (Canadian Hydrographic Service, Halifax 1996) pp. 63–69

    Google Scholar 

  96. G. Lu: Development of a GPS Multi-Antenna System for Attitude Determination, Ph.D. Thesis (Univ. Calgary, Calgary 1995)

    Google Scholar 

  97. G. Schleppe: Development of a Real-Time Attitude System Using a Quaternion Parameterization and Non-Dedicated GPS Receivers, Ph.D. Thesis (Univ. Calgary, Calgary 1996)

    Google Scholar 

  98. G. Giorgi, P.J.G. Teunissen, T. Gourlay: Instantaneous global navigation satellite system (GNSS)-based attitude determination for maritime applications, IEEE J. Ocean. Eng. 37(3), 348–362 (2012)

    Article  Google Scholar 

  99. T.P. Gourlay, K. Klaka: Full-scale measurements of containership sinkage, trim and roll, Aust. Nav. Archit. 11(2), 30–36 (2007)

    Google Scholar 

  100. M. Ueno, R. Santerre: GPS attitude for a berthing guidance system, Canad. Aeronaut. Space J. 45(3), 264–269 (1999)

    Google Scholar 

  101. Y. Yang, J.A. Farrell: Two antennas GPS-aided INS for attitude determination, IEEE Trans. Contr. Syst. Technol. 11(6), 905–918 (2003)

    Article  Google Scholar 

  102. D.S. De Lorenzo, S. Alban, J. Gautier, P. Enge, D. Akos: GPS attitude determination for a JPALS testbed: Integer initialization and testing, Proc. IEEE PLANS, Monterey (IEEE, Cleveland 2004) pp. 762–770

    Google Scholar 

  103. M. O’Connor, T. Bell, G. Elkaim, B.W. Parkinson: Automatic steering of farm vehicles using GPS, 3rd Int. Conf. Precis. Agric., Minneapolis, ed. by P.C. Robert, R.H. Rust, W.E. Larson (American Society of Agronomy, Madison 1996) pp. 767–778

    Google Scholar 

  104. S. Panzieri, F. Pascucci, G. Ulivi: An outdoor navigation system using GPS and inertial platform, IEEE/ASME Trans. Mechatron. 7(2), 134–142 (2002)

    Article  Google Scholar 

  105. J. Borenstein, H.R. Everett, L. Feng: Where am I? Sensors and Methods for Mobile Robot Positioning (Univ. Michigan, Ann Arbor 1996)

    Google Scholar 

  106. K.T. Mueller, R. Bortins: GPS locomotive location system for high speed rail applications, Proc. Int. Symp. Kinemat. Syst. Geod. Geomat. Navig. (KIS), Banff (Univ. Calgary, Calgary 2001) pp. 42–51

    Google Scholar 

  107. K.P. Schwarz, M.A. Chapman, M.W. Cannon, P. Gong: An integrated INS/GPS approach to the georeferencing of remotely sensed data, Photogramm. Eng. Remote Sens. 59(11), 1667–1674 (1993)

    Google Scholar 

  108. S. Kocaman: GPS and INS Integration with Kalman Filtering for Direct Georeferencing of Airborne Imagery, Geodetic Seminar Report (Institute of Geodesy and Photogrammetry, ETH Henggerberg, Zürich 2003)

    Google Scholar 

  109. S. Knedlik, E. Edwan, J. Zhou, Z. Dai, P. Ubolkosold, O. Loffeld: GPS/INS integration for footprint chasing in bistatic SAR experiments, IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Boston (IEEE, Boston 2008) pp. 459–462

    Google Scholar 

  110. G. Giorgi, P.J.G. Teunissen, S. Verhagen, P.J. Buist: Testing a new multivariate GNSS carrier phase attitude determination method for remote sensing platforms, Adv. Space Res. 46(2), 118–129 (2010)

    Article  Google Scholar 

  111. R. Anderson, H.R. Bilger, G.E. Stedman: Sagnac effect: A century of Earth-rotated interferometers, Am. J. Phys. 62(11), 975–985 (1994)

    Article  Google Scholar 

  112. J.D. Fairbank, P.F. Michelson, C.W. Everitt: Near Zero: New Frontiers of Physics (W.H. Freeman and Company, New York 1988)

    Google Scholar 

  113. J. Farrell, B. Matthew: The Global Positioning System and Inertial Navigation (McGraw-Hill, New York 1999)

    Google Scholar 

  114. S. Alban: Design and Performance of a Robust GPS/INS Attitude System for Automobile Applications, Ph.D. Thesis (Stanford Univ., Palo Alto 2004)

    Google Scholar 

  115. M. Brenner: Integrated GPS/inertial fault detection availability, Navigation 43(2), 339–358 (1996)

    Article  Google Scholar 

  116. C. Kreye, B. Eissfeller, D. Sanroma, T. Lück: Performance analysis and development of a tightly coupled GNSS/INS system, Proc. 9th St. Petersburg Int. Conf. Integr. Navig. Syst., St. Petersburg (Elektropribor, St. Petersburg 2002)

    Google Scholar 

  117. A.B. Chatfield: Fundamentals of High Accuracy Inertial Navigation, Progress in Astronautics and Aeronautics, Vol. 174 (AIAA, Reston 1996)

    Google Scholar 

  118. D.T. Knight: Achieving modularity with tightly-coupled GPS/INS, Proc. IEEE PLANS, Monterey (IEEE, Cleveland 1992) pp. 426–432

    Google Scholar 

  119. P.D. Groves, C.J. Mather: Receiver interface requirements for deep INS/GNSS integration and vector tracking, J. Navig. 63(3), 471–489 (2010)

    Article  Google Scholar 

  120. P.C. Hughes: Spacecraft Attitude Dynamics, 1st edn. (Dover Publications, Mineola 1997)

    Google Scholar 

  121. M.J. Sidi: Spacecraft Dynamics and Control, 1st edn. (Cambridge Univ. Press, Cambridge 1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Giorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giorgi, G. (2017). Attitude Determination. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_27

Download citation

Publish with us

Policies and ethics