Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

The basic purpose of a global navigation satellite system (GlossaryTerm

GNSS

) user antenna is the reception of navigation signals from all visible GNSS satellites. Transmit antennas onboard the GNSS satellites, on the other hand, are quite different and employ large antenna arrays to create high-gain global beams illuminating the entire surface of the Earth.

This chapter presents different design options for GNSS antennas operating in the L-band of the radio frequency spectrum. It starts with a brief discussion of key requirements for the GNSS receiving antenna, where several design parameters are introduced and explained. Thereafter, antennas of different design technologies suitable to GNSS are explored and discussed in detail. Following the introduction of major antenna candidates, different variants for specialized requirements, such as the small form factor or multipath mitigation are presented. Complementary to receiving antennas, the design of antenna arrays for signal transmission on the GNSS satellites is presented next, along with a discussion on specific antennas employed on the Global Positioning System (GlossaryTerm

GPS

), Galileo, Global’naya Navigatsionnaya Sputnikova Sistema (GlossaryTerm

GLONASS

) and BeiDou satellites. Finally, a comprehensive discussion on antenna measurements and the performance evaluation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANTEX:

antenna exchange (format)

ARP:

antenna reference point

AUT:

antenna under test

BDS:

BeiDou Navigation Satellite System

CRPA:

controlled radiation pattern antenna

DAB:

digital audio broadcast

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DVB:

digital video broadcasting

ESA:

European Space Agency

FBR:

front-to-back ratio

FNBW:

first-null beam width

FOC:

full operational capability

FPGA:

field programmable gate array

FRPA:

fixed radiation pattern antenna

GBAS:

ground-based augmentation system

GIOVE:

Galileo In-Orbit Validation Element

GIS:

geographic information system

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GRAS:

GNSS receiver for atmospheric sounding

HPBW:

half-power beam width

IFA:

inverted-F antenna

IGS:

International GNSS Service

IGSO:

inclined geo-synchronous orbit

IOV:

in-orbit validation

IRNSS:

Indian Regional Navigation Satellite System

ITU:

International Telecommunication Union

JAXA:

Japan Aerospace Exploration Agency

LHCP:

left-hand circular polarized

LNA:

low-noise amplifier

LOS:

line-of-sight

MEO:

medium Earth orbit

MPR:

multipath rejection ratio

PCB:

printed circuit board

PCO:

phase center offset

PCV:

phase center variation

PNT:

positioning, navigation and timing

PPS:

precise positioning service

QHA:

quadrifilar helix antenna

QZSS:

Quasi-Zenith Satellite System

RF:

radio frequency

RHCP:

right-hand circular polarized

RNSS:

radio navigation satellite service

RTCA:

Radio Technical Commission for Aeronautics

SAR:

search and rescue

SBAS:

satellite-based augmentation system

SDR:

software defined radio

SPS:

standard positioning service

TEC:

total electron content

TT&C:

telemetry, tracking, and commanding

UHF:

ultra-high frequency

VNA:

vector network analyzer

VSWR:

voltage standing wave ratio

References

  1. J.D. Krauss, R.J. Marhefka: Antennas for all Applications, 3rd edn. (McGraw Hill Higher Education, Columbus 2003)

    Google Scholar 

  2. C.A. Balanis: Antenna Theory: Analysis and Design, 3rd edn. (Wiley, Chichester 2005)

    Google Scholar 

  3. B.R. Rao: Introduction to GNSS antenna performance parameters. In: GPS/GNSS Antennas, ed. by B.R. Rao, W. Kunysz, R. Fante, K. McDonald (Artech House, Boston 2013), Chap. 1–62

    Google Scholar 

  4. G.J.K. Moernaut, D. Orban: GNSS antennas – An introduction to bandwidth, gain pattern, polarization, and all that, GPS World 20(2), 42–48 (2009)

    Google Scholar 

  5. B.R. Rao: FRPAs and high-gain directional antennas. In: GPS/GNSS Antennas, ed. by B.R. Rao, W. Kunysz, R. Fante, K. McDonald (Artech House, Boston 2013) pp. 119–133, Chap. 2

    Google Scholar 

  6. X. Chen, C.G. Parini, B. Collins, Y. Yao, M.U. Rehman: Antennas for Global Navigation Satellite Systems (Wiley, Chichester 2012)

    Book  Google Scholar 

  7. D. Orban, G.J.K. Moernaut: The Basics of Patch Antennas (Orban Microwave, Orlando 2009)

    Google Scholar 

  8. E.O. Hammerstad: Equations for microstrip circuit design, Proc. 5th Eur. Microw. Conf., Hamburg (IEEE) (1975) pp. 268–272

    Google Scholar 

  9. C.C. Chen, S. Gao, M. Maqsood: Antennas for global navigation satellite system receivers. In: Space Antenna Handbook, ed. by W.A. Imbriale, S. Gao, L. Boccia (Wiley, Chichester 2012) pp. 548–595, Chap. 14

    Chapter  Google Scholar 

  10. H. Chen, K. Wong: On the circular polarization operation of annular-ring microstrip antennas, IEEE Trans. Antennas Propag. 47(8), 1289–1292 (1999)

    Article  Google Scholar 

  11. J.M. Tranquilla, S.R. Best: A study of the quadrifilar helix antenna for global positioning system (GPS) applications, IEEE Trans. Antennas Propag. 38(10), 1545–1550 (1990)

    Article  Google Scholar 

  12. P.K. Shumaker, C.H. Ho, K.B. Smith: Printed half-wavelength quadrifilar helix antenna for GPS marine applications, Electron. Lett. 32(3), 153–153 (1996)

    Article  Google Scholar 

  13. C.C. Kilgus: Resonant quadrifilar helix design, The Microw. J. 13(12), 49–54 (1970)

    Google Scholar 

  14. D. Lamensdorf, M. Smolinski: Dual band quadrifilar helix antenna, Proc. IEEE Antennas Propag. Soc. Int. Symp., San Antonio (2002) pp. 488–491

    Google Scholar 

  15. P.G. Elliot, E.N. Rosario, R.J. Davis: Novel quadrifilar helix antenna combining GNSS, iridium, and a UHF communications monopole, Proc. Mil. Commun. Conf., Orlando (2012) pp. 1–6

    Google Scholar 

  16. S. Liu, Q.-X. Chu: A novel dielectrically-loaded antenna for tri-band GPS applications, Proc. 38th European Microw. Conf., Amsterdam (2008) pp. 1759–1762

    Google Scholar 

  17. F. Scire-Scappuzzo, S.N. Makarov: A low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane, IEEE Trans. Antennas Propag. 57(1), 33–46 (2009)

    Article  Google Scholar 

  18. NovAtel Inc.: GPS-704X Antenna Design and Performance (Calgary 2013) www.novatel.com/assets/Documents/Papers/GPS-704xWhitePaper.pdf

  19. W. Kunysz: High Performance GPS Pinwheel Antenna, Proc. ION GPS 2000, Salt Lake City, UT 19–22 Sep. 2000 (ION, Virginia 2000) 2506–2511

    Google Scholar 

  20. J.J.H. Wang: Antennas for global navigation satellite system (GNSS), Proc. IEEE 100(7), 2349–2355 (2012)

    Article  Google Scholar 

  21. GPS world antenna survey 2014, GPS World 25(2), 37–57 (2014)

    Google Scholar 

  22. E. Levine: A review of GPS antennas, Consum. Electron. Times 3(3), 233–241 (2014)

    Google Scholar 

  23. R. Schmid: igs08.atx antenna model, https://igscb.jpl.nasa.gov/igscb/station/general/igs08.atx

  24. Environmental Conditions and Test Procedures for Airborne Equipment, RTCA DO-160G Change 1 (RTCA, Washington DC 2014)

    Google Scholar 

  25. Minimum Operational Performance Standards for Airborne Supplemental Navigation Equipment Using Global Positioning System (GPS), RTCA DO-208, 07/12/1991 (RTCA, Washington DC 1991)

    Google Scholar 

  26. O. Montenbruck, M. Garcia-Fernandez, Y. Yoon, S. Schön, A. Jäggi: Antenna phase center calibration for precise positioning of LEO satellites, GPS Solutions 13(1), 23–34 (2009)

    Article  Google Scholar 

  27. J. Wettergren, M. Bonnedal, P. Ingvarson, B. Wästberg: Antenna for precise orbit determination, Acta Astronaut. 65(11), 1765–1771 (2009)

    Article  Google Scholar 

  28. M. Ohgren, M. Bonnedal, P. Ingvarson: GNSS antenna for precise orbit determination including S/C interference predictions, Proc. 5th EUCAP, Rome (2011) pp. 1990–1994

    Google Scholar 

  29. J. Santiago-Prowald: L. Drioli Salghetti: Space environment and materials. In: Space Antenna Handbook, Chap, Vol. 4, ed. by W.A. Imbriale, S. Gao, L. Boccia (Wiley, Chichester 2012) pp. 106–132

    Chapter  Google Scholar 

  30. R.L. Fante, K.F. McDonald: Adaptive GPS antennas. In: GPS/GNSS Antennas, ed. by B.R. Rao, W. Kunysz, R. Fante, K. McDonald (Artech House, Boston 2013), Chap. 1–62

    Google Scholar 

  31. D. Reynolds, A. Brown, A. Reynolds: Miniaturized GPS Antenna Array Technology and Predicted Anti-Jam Performance, Proc. ION GPS 1999, Nashville, TN 14–17 Sep. 1999 (ION, Virginia 1999) 777–786

    Google Scholar 

  32. M.M. Casabona, M.W. Rosen: Discussion of GPS anti-jam technology, GPS Solutions 2(3), 18–23 (1999)

    Article  Google Scholar 

  33. M.V.T. Heckler, M. Cuntz, A. Konovaltsev, L. Greda, A. Dreher, M. Meurer: Development of robust safety-of-life navigation receivers, microwave theory and techniques, IEEE Trans. 59(4), 998–1005 (2011)

    Article  Google Scholar 

  34. A. Hornbostel, N. Basta, M. Sgammini, L. Kurz, S.I. Butt, A. Dreher: Experimental results of interferer suppression with a compact antenna array, Proc. ENC-GNSS 2014, Rotterdam (ENC, 2014) pp. 1–14

    Google Scholar 

  35. W. Kunysz: Advanced Pinwheel Compact Controlled Reception Pattern Antenna (AP-CRPA) designed for Interference and Multipath Mitigation, Proc. ION GPS 2001, Salt Lake City, UT 11–14 Sep. 2001 (ION, Virginia 2001) 2030–2036

    Google Scholar 

  36. W.C. Cheuk, D.A. Trinkle, M. Gray: Null-steering LMS dual-polarised adaptive antenna arrays for GPS, J. Global Position. Syst. 4(1/2), 258–267 (2005)

    Article  Google Scholar 

  37. K. Wu, L. Zhang, Z. Shen, B. Zheng: An anti-jamming 5-element GPS antenna array using phase-only nulling, Proc. 6th Int. Conf. ITS Telecommun., Chengdu 2006, ed. by G. Wen, S. Komaki, P. Fan, G. Landrac (2006) pp. 370–373

    Google Scholar 

  38. S. Jin, E. Cardellach, F. Xie: GNSS Remote Sensing (Springer, Dordrecht 2014)

    Book  Google Scholar 

  39. M. Unwin, S. Gleason, M. Brennan: The Space GPS Reflectometry Experiment on the UK Disaster Monitoring Constellation Satellite, Proc. ION GPS 2003, Portland, OR 9–12 Sep. 2003 (ION, Virginia 2003) 2656–2663

    Google Scholar 

  40. M. Unwin, S. Gao, R. De Vos Van Steenwijk, P. Jales, M. Maqsood, C. Gommenginger, J. Rose, C. Mitchell, K. Partington: Development of low-cost spaceborne multi-frequency GNSS receiver for navigation and GNSS remote sensing, Int. J. Space Sci. Eng. 1(1), 20–50 (2013)

    Article  Google Scholar 

  41. G. Foti, C. Gommenginger, P. Jales, M. Unwin, A. Shaw, C. Robertson, J. Roselló: Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission, Geophys. Res. Lett. 42(13), 5435–5441 (2015)

    Article  Google Scholar 

  42. C. Rocken, R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R. Ware, M. Gorbunov, W. Schreiner, D. Feng, B. Herman, Y.-H. Kuo, X. Zou: Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res. 102, 29849–29866 (1997)

    Article  Google Scholar 

  43. P. Silvestrin, R. Bagge, M. Bonnedal, A. Carlstrom, J. Christensen, M. Hagg, T. Lindgren, F. Zangerl: Spaceborne GNSS Radio Occultation Instrumentation for Operational Applications, ION GPS 2000, Salt Lake City, UT 19–22 Sep. 2000 (ION, Virginia 2000) 872–880

    Google Scholar 

  44. P. Ingvarson: GPS receive antennas on satellites for precision orbit determination and meteorology, Proc. 17th Int. Conf. Microw., Radar Wirel. Commun., MIKON 2008, Wroclaw (2008) pp. 1–6

    Google Scholar 

  45. C.C. Counselman: Multipath-rejecting GPS antennas, Proc. IEEE 87(1), 86–91 (1999)

    Article  Google Scholar 

  46. V. Filippov, D. Tatarnicov, J. Ashjaee, A. Astakhov, I. Sutiagin: The First Dual-Depth Dual-Frequency Choke Ring, Proc. ION GPS 1998, Nashville, TN 15–18 Sep. 1998 (ION, Virginia 1998) 1035–1040

    Google Scholar 

  47. M. Maqsood, S. Gao, T. Brown, M. Unwin, R.D. Steenwijk, J.D. Xu: A compact multipath mitigating ground plane for multiband GNSS antennas, IEEE Trans. Antennas Propag. 61(5), 2775–2782 (2013)

    Article  Google Scholar 

  48. L. Boccia, G. Amendola, G. Di Massa, L. Giulicchi: Shorted annular patch antennas for multipath rejection in GPS-based attitude determination systems, Microw. Opt. Technol. Lett. 28(1), 47–51 (2001)

    Article  Google Scholar 

  49. L.I. Basilio, R.L. Chen, J.T. Williams, D.R. Jackson: A new planar dual-band GPS antenna designed for reduced susceptibility to low-angle multipath, IEEE Trans. Antennas Propag. 55(8), 2358–2366 (2007)

    Article  Google Scholar 

  50. S.F. Mahmoud, A.R. Al-Ajmi: A novel microstrip patch antenna with reduced surface wave excitation, Prog. Electromag. Res. 86, 71–86 (2008)

    Article  Google Scholar 

  51. L. Boccia, G. Amendola, S. Gao, C. Chen: Quantitative evaluation of multipath rejection capabilities of GNSS antennas, GPS Solutions 18(2), 199–208 (2014)

    Article  Google Scholar 

  52. D. Tatarnikov, A. Astakhov, A. Stepanenko: Convex GNSS reference station antenna, Proc. Int. Conf. Multimedia Technol., Hangzhou 2011 (ICMT 2011) pp. 6288–6291

    Google Scholar 

  53. D. Tatarnikov, A. Astakhov, A. Stepanenko: Broadband convex impedance ground planes for multi-system GNSS reference station antennas, GPS Solutions 15(2), 101–108 (2011)

    Article  Google Scholar 

  54. W. Kunysz: A three dimensional choke ring ground plane antenna, Proc. ION GPS 2003, Portland, OR 9–12 Sep. 2003 (ION, Virginia 2003) 1883–1888

    Google Scholar 

  55. L. Bedford, N. Brown, J. Walford: New 3D Four Constellation High Performance Wideband Choke Ring Antenna, ION ITM 2009, Anaheim, CA 26–28 Jan. 2009 (ION, Virginia 2009) 829–835

    Google Scholar 

  56. J. Walford: State of The Art, Leading Edge Geodetic Antennas from Leica Geosystems – Leica Reference Antennas White Paper (Leica Geosystems, Heerbrugg 2009)

    Google Scholar 

  57. M. Maqsood, S. Gao, T. Brown, J.D. Xu, J.Z. Li: Novel multipath mitigating ground planes for multiband global navigation satellite system antennas, Proc. 6th EUCAP 2012, Prague (2012) pp. 1920–1924

    Google Scholar 

  58. Y. Rahmat-Samii, F. Yang: Electromagnetic Band Gap Structures in Antenna Engineering (Cambridge Univ. Press, Cambridge 2009)

    Google Scholar 

  59. R. Baggen, M. Martinez-Vazquez, J. Leiss, S. Holzwarth, L.S. Drioli, P. de Maagt: Low Profile Galileo antenna using EBG technology, IEEE Trans. Antennas Propag. 56(3), 667–674 (2008)

    Article  Google Scholar 

  60. J.S. Ajioka, H.E. Harry Jr: Shaped beam antenna for earth coverage from a stabilized satellite, IEEE Trans. Antennas Propag. 18(3), 323–327 (1970)

    Article  Google Scholar 

  61. F.M. Czopek, S. Shollenberger: Description and performance of the GPS Block I and II L-Band antenna and link budget, Proc. ION GPS 1993, Salt Lake City, UT 22–24 Sep. 1993 (ION, Virginia 1993) 37–43

    Google Scholar 

  62. C. Brumbaugh, A.W. Love, G. Randall, D. Waineo, S.H. Wong: Shaped beam antenna for the global positioning satellite system, Proc. Antennas Propag. Soc. Int. Symp., Amherst (1976) pp. 117–120

    Google Scholar 

  63. F.H. Bauer: GNSS space service volume and space user data update, Proc. 10th Meet. Int. Commun. GNSS (ICG), Working Group A, Boulder (UNOOSA, Vienna 2015) pp. 1–34

    Google Scholar 

  64. W. Marquis: The GPS Block IIR/IIR-M antenna panel pattern. Lockheed Martin Corp. (2014) www.lockheedmartin.com/us/products/gps/gps-publications.html

  65. A. Montesano, C. Montesano, R. Caballero, M. Naranjo, F. Monjas, L.E. Cuesta, P. Zorrilla, L. Martinez: Galileo system navigation antenna for global positioning, Proc. 2nd EuCAP 2007, Edinburgh (IET, Stevenage 2007) pp. 1–6

    Google Scholar 

  66. F. Monjas, A. Montesano, C. Montesano, J.J. Llorente, L.E. Cuesta, M. Naranjo, S. Arenas, I. Madrazo, L. Martínez: Test campaign of the IOV (in orbit validation) Galileo system navigation antenna for global positioning, Proc. 4th EUCAP 2010, Barcelona (2010) pp. 1–5

    Google Scholar 

  67. F. Monjas, A. Montesano, S. Arenas: Group delay performances of Galileo system navigation antenna for global positioning, Proc. 32nd ESA Antenna Workshop on Antennas for Space Applications, Noordwijk (2010) pp. 1–8

    Google Scholar 

  68. P. Valle, A. Netti, M. Zolesi, R. Mizzoni, M. Bandinelli, R. Guidi: Efficient dual-band planar array suitable to Galileo, Proc. 1st EUCAP 2006, Nice (2006) pp. 1–7

    Google Scholar 

  69. Y.U. Kim: An M-shaped beam producing dual stacked reflector antenna for GPS satellite applications, Proc. IEEE Int. Symp. Antennas Propag., San Diego (2008) pp. 1–4

    Google Scholar 

  70. B. Görres, J. Campbell, M. Becker, M. Siemes: Absolute calibration of GPS antennas: Laboratory results and comparison with field and robot techniques, GPS Solutions 10(2), 136–145 (2006)

    Article  Google Scholar 

  71. Understanding the Fundamental Principles of Vector Network Analysis, Application Note 1287-1 (Agilent, Santa Clara 2012)

    Google Scholar 

  72. R. Schmid, R. Dach, X. Collilieux, A. Jäggi, M. Schmitz, F. Dilssner: Absolute IGS antenna phase center model igs08.atx: Status and potential improvements, J. Geodesy 90(4), 343–364 (2016)

    Article  Google Scholar 

  73. O. Montenbruck, R. Schmid, F. Mercier, P. Steigenberger, C. Noll, R. Fatkulin, S. Kogure, S. Ganeshan: GNSS satellite geometry and attitude models, Adv. Space Res. 56(6), 1015–1029 (2015)

    Article  Google Scholar 

  74. M. Rothacher, R. Schmid: ANTEX: The Antenna Exchange Format, Version 1.4, 15 Sep. 2010 ftp://igs.org/pub/station/general/antex14.txt

  75. M. Rothacher: Comparison of absolute and relative antenna phase center variations, GPS Solutions 4(4), 55–60 (2001)

    Article  Google Scholar 

  76. B.R. Schupler: The response of GPS antennas – How design, environment and frequency affect what you see, Phys. Chem. Earth, Part A 26(6–8), 605–611 (2001)

    Google Scholar 

  77. M. Becker, P. Zeimetz, E. Schönemann: Anechoic chamber calibrations of phase center variations for new and existing GNSS signals and potential impacts in IGS processing, Proc. IGS Workshop 2010, Newcastle upon Tyne (IGS, Pasadena 2010), pp. 1–44, 28 June–2 July 2010

    Google Scholar 

  78. G.L. Mader: GPS antenna calibration at the National Geodetic Survey, GPS Solutions 3(1), 50–58 (1999)

    Article  Google Scholar 

  79. R. Schmid, P. Steigenberger, G. Gendt, M. Ge, M. Rothacher: Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas, J. Geodesy 81(12), 781–798 (2007)

    Article  Google Scholar 

  80. G. Wübbena, M. Schmitz, F. Menge, V. Böder, G. Seeber: Automated Absolute Field Calibration of GPS Antennas in Real-Time, Proc. ION GPS 2000, Salt Lake City, UT 19–22 Sep. 2000 (ION, Virginia 2000) 2512–2522

    Google Scholar 

  81. M. Schmitz, G. Wübbena, G. Boettcher: Tests of phase center variations of various GPS antennas, and some results, GPS Solutions 6(1/2), 18–27 (2002)

    Google Scholar 

  82. P. Steigenberger, M. Rothacher, R. Schmid, A. Rülke, M. Fritsche, R. Dietrich, V. Tesmer: Effects of different antenna phase center models on GPS-derived reference frames. In: Geodetic Reference Frames, IAG Symposia 134, ed. by H. Drewes (Springer, Heidelberg 2009) pp. 83–88

    Chapter  Google Scholar 

  83. G.L. Mader, F. Czopek: Calibrating the L1 and L2 phase centers of a Block IIA antenna, Proc. ION GPS 2001, Salt Lake City, UT 11–14 Sep. 2001 (ION, Virginia 2001) 1979–1984

    Google Scholar 

  84. G. Wübbena, M. Schmitz, G. Mader, F. Czopek: GPS Block II/IIA Satellite Antenna Testing using the Automated Absolute Field Calibration with Robot, Proc. ION GNSS 2007, Fort Worth, TX 25–28 Sep. 2007 (ION, Virginia 2007) 1236–1243

    Google Scholar 

  85. W.A. Marquis, D.L. Reigh: The GPS block IIR and IIR-M broadcast L-band antenna panel: Its pattern and performance, Navigation 62(4), 329–347 (2015)

    Article  Google Scholar 

  86. R. Zandbergen, D. Navarro: Specification of Galileo and GIOVE Space Segment Properties Relevant for Satellite Laser Ranging ESA-EUING-TN/10206 (ESA/ESTEC, Noordwijk 2008) iss. 3.2

    Google Scholar 

  87. R. Schmid, M. Rothacher: Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites, J. Geodesy 77(7/8), 440–446 (2003)

    Article  Google Scholar 

  88. R. Schmid, M. Rothacher, D. Thaller, P. Steigenberger: Absolute phase center corrections of satellite and receiver antennas, GPS Solutions 9(4), 283–293 (2005)

    Article  Google Scholar 

  89. F. Dilssner, T. Springer, C. Flohrer, J. Dow: Estimation of phase center corrections for GLONASS-M satellite antennas, J. Geodesy 84(8), 467–480 (2010)

    Article  Google Scholar 

  90. R. Dach, R. Schmid, M. Schmitz, D. Thaller, S. Schaer, S. Lutz, P. Steigenberger, G. Wübbena, G. Beutler: Improved antenna phase center models for GLONASS, GPS Solutions 15(1), 49–65 (2011)

    Article  Google Scholar 

  91. F. Dilssner, T. Springer, E. Schönemann, W. Enderle: Estimation of satellite antenna phase center corrections for BeiDou, Proc. IGS Workshop 2014, Pasadena (IGS, Pasadena 2014) p. 1

    Google Scholar 

  92. J. Guo, X. Xu, Q. Zhao, J. Liu: Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison, J. Geodesy 90(2), 143–159 (2016)

    Article  Google Scholar 

  93. P. Steigenberger, M. Fritsche, R. Dach, R. Schmid, O. Montenbruck, M. Uhlemann, L. Prange: Estimation of satellite antenna phase center offsets for Galileo, J. Geodesy 90(8), 773–785 (2016)

    Article  Google Scholar 

  94. B.J. Haines, Y.E. Bar-Sever, W. Bertiger, S. Desai, N. Harvey, J. Weiss: Improved models of the GPS satellite antenna phase and group-delay variations using data from low-earth orbiters, Proc. AGU Fall Meet. 2010, San Francisco (AGU, Washington DC 2010) pp. 1–12

    Google Scholar 

  95. F. Dilssner: GPS IIF-1 satellite – Antenna phase center and attitude modeling, Inside GNSS 5(6), 59–64 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors of this chapter would like to thank the Editors of the book for their guidance during the development of this chapter. The authors would also like to thank Prof. Steffen Schön, Lori Winkler, and Prof. Dmitry Tatarnikov, who took time from their busy schedules and helped in getting the clearance for some of the key images required for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moazam Maqsood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maqsood, M., Gao, S., Montenbruck, O. (2017). Antennas. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_17

Download citation

Publish with us

Policies and ethics