Mycoremediation of Organic Pollutants: Principles, Opportunities, and Pitfalls

  • Stefano Covino
  • Tatiana Stella
  • Tomáš CajthamlEmail author
Part of the Fungal Biology book series (FUNGBIO)


The possibility of using fungi and fungal enzymes in the remediation of persistent organopullutants is a subject of keen interest to both microbiologists and scientists working in the auspices of the environmental sciences. This chapter reviews the proven ability of several saprotrophic fungi with distinct physiological and biochemical features to degrade and mineralize a wide range of organic and xenobiotic pollutants, including oil-derived products, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins and furans, pesticides, herbicides, nitroaromatic explosives and pharmaceuticals. Finally, insights into this complex subject are presented, based on current information from pilot- and field-scale trials, as to why fungi should be considered as suitable candidates to design effective bioremediation technologies for persistent organic pollutants and other emerging organic micropollutants.


Fungi Biodegradation pathways Cytochrome P450 monooxygenase Ligninolytic enzymes Mycoremediation Polycyclic aromatic hydrocarbon Chlorinated aromatic pollutants Micropollutants 



Ligninolytic enzymes


Lignin peroxidase


Manganese-dependent peroxidase


Versatile peroxidases


Dye-degrading peroxidases






Unspecific peroxigenases


Cytochrome P450


Cellobiose dehydrogenase


Soft rot fungi


Brown rot fungi


White rot fungi


Litter-decomposing fungi




Polychlorinated dioxins






Persistent organopollutants


Polycyclic aromatic hydrocarbons


Ligninolytic fungi


Non-ligninolytic fungi


Reactive oxygen species


Chlorobenzoic acids


Endocrine disruptors


Ectomycorrhizal fungal species


Reduced nicotinamide adenine dinucleotide phosphate


Polychlorinated dibenzofurans








Pharmaceuticals and personal care products




Bisphenol A


Diethylhexyl phthalate




Wastewater treatment plant




Non-steroidal anti-inflammatory drugs




Clofibric acid






Cross-linked enzyme aggregates




Total petroleum hydrocarbons


Quantitative PCR




Spent Mushroom Compost



This work was supported by the Grant No. 15-02328S of the Czech Science Foundation.


  1. Accinelli C, Saccà ML, Batisson I, Fick J, Mencarelli M, Grabic R (2010) Removal of oseltamivir (Tamiflu) and other selected pharmaceuticals from wastewater using a granular bioplastic formulation entrapping propagules of Phanerochaete chrysosporium. Chemosphere 81:436–443PubMedCrossRefGoogle Scholar
  2. Adebusoye SA, Picardal FW, Ilori MO, Amund OO (2008) Influence of chlorobenzoic acids on the growth and degradation potentials of PCB-degrading microorganisms. World J Microb Biot 24:1203–1208CrossRefGoogle Scholar
  3. Anasonye F, Winquist E, Räsänen M, Kontro J, Björklöf K, Vasilyeva G, Jørgensen K, Steffen K, Tuomela M (2015) Bioremediation of TNT contaminated soil with fungi under laboratory and pilot-scale conditions. Int Biodeter Biodegr 105:7–12CrossRefGoogle Scholar
  4. Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi. In: Goltapeh EM et al (eds) Fungi as Bioremediators, Soil Biology 32, Springer, Berlin Heidelberg. pp 29–49Google Scholar
  5. Arcaro KF, O’Keefe PW, Yang Y, Clayton W, Gierthy JF (1999) Antiestrogenicity of environmental polycyclic aromatic hydrocarbons in human breast cancer cells. Toxicology 133:115–127PubMedCrossRefGoogle Scholar
  6. Arsenault A, Cabana H, Jones JP (2011) Laccase-Based CLEAs: Chitosan as a Novel Cross-Linking Agent. Enzyme Res Artcle ID: 376015Google Scholar
  7. Ashger M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in bio-degradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783CrossRefGoogle Scholar
  8. Auriol M, Filali-Meknassia Y, Tyagi RD, Adams CD (2007) Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater. Water Res 41:3281–3288PubMedCrossRefGoogle Scholar
  9. Axtell C, Johnston CG, Bumpus JA (2000) Bioremediation of soil contaminated with explosives at the naval weapons station yorktown. J Soil Contam 9:537–548CrossRefGoogle Scholar
  10. Ba S, Arsenault A, Hassani T, Jones JP, Cabana H (2013) Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Crit Rev Biotechnol 33:404–418PubMedCrossRefGoogle Scholar
  11. Ba S, Haroune L, Cruz-Morato C, Jacquet C, Touahar IE, Bellenger J-P, Legault CY, Jones JP, Cabana H (2014) Synthesis and characterization of combined cross-linked laccase and tyrosinase aggregates transforming acetaminophen as a model phenolic compound in wastewaters. Sci Total Environ 487:748–755PubMedCrossRefGoogle Scholar
  12. Baborová P, Moder M, Baldrian P, Cajthamlová K, Cajthaml T (2006) Purification of new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157:248–253PubMedCrossRefGoogle Scholar
  13. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91CrossRefGoogle Scholar
  14. Baldrian P (2006) Fungal laccases- occurrence and properties. FEMS Microbiol Rev 30:215–242PubMedCrossRefGoogle Scholar
  15. Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12CrossRefGoogle Scholar
  16. Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66:2471–2478Google Scholar
  17. Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521PubMedCrossRefGoogle Scholar
  18. Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA (1998) Comparison of gas chromatography and mineralization experiment for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Environ Microbiol 64:2020–2025PubMedPubMedCentralGoogle Scholar
  19. Bernhardt R (2006) Cytochromes as versatile biocatalists. J Biotechnol 124:128–145PubMedCrossRefGoogle Scholar
  20. Bezalel L, Hadar Y, Cerniglia CE (1996a) Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:292–295PubMedPubMedCentralGoogle Scholar
  21. Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996b) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2547–2553PubMedPubMedCentralGoogle Scholar
  22. Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501PubMedPubMedCentralGoogle Scholar
  23. Blánquez P, Guieysse B (2008) Continuous biodegradation of 17β-estradiol and 17α-ethynylestradiol by Trametes versicolor. J Hazard Mater 50:459–462CrossRefGoogle Scholar
  24. Boas M, Feldt-Rasmussen U, Main KM (2012) Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 355:240–248PubMedCrossRefGoogle Scholar
  25. Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26:1876–1881CrossRefGoogle Scholar
  26. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annual Rev Microbiol 63:363–383CrossRefGoogle Scholar
  27. Borazjani H, Wiltcher D, Diehl S (2005) Bioremediation of polychlorinated biphenyl and petroleum contaminated soil. In: Lyon WG, Hong JJ, Reddy RK (eds) Proceedings of the international conference on environmental science and technology. American Science Press, New Orleans, USA, pp 502–507Google Scholar
  28. Bornyasz MA, Graham RC, Allen MF (2005) Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126:141–160CrossRefGoogle Scholar
  29. Bourceret A, Cébron A, Tisserant E, Poupin P, Bauda P, Bequiristain T, Leyval C (2015) The bacterial and fungal diversity of an aged PAH- and heavy metal-contaminated soil is affected by plant cover and edaphic parameters. Soil Microbiol Microb Ecol Springer, US, pp 1–14Google Scholar
  30. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436PubMedCrossRefGoogle Scholar
  31. Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007a) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67:770–778PubMedCrossRefGoogle Scholar
  32. Cabana H, Jones JP, Agathos SN (2007b) Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: a review. Eng Life Sci 7:429–456CrossRefGoogle Scholar
  33. Cabana H, Alexandre C, Agathos SN, Jones JP (2009a) Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresour Technol 100:3447–3458PubMedCrossRefGoogle Scholar
  34. Cabana H, Jones JP, Agathos SN (2009b) Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals. Biotechnol Bioeng 102:1582–1592PubMedCrossRefGoogle Scholar
  35. Cabana H, Ahamed A, Leduc R (2011) Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan. Bioresour Technol 102:1656–1662PubMedCrossRefGoogle Scholar
  36. Cajthaml T (2014) Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environ Microbiol. doi: 10.1111/1462-2920.12460 PubMedGoogle Scholar
  37. Cajthaml T, Möder M, Kačer P, Šašek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222PubMedCrossRefGoogle Scholar
  38. Cajthaml T, Erbanová P, Šašek V, Moeder M (2006) Breakdown products on metabolic pathway of degradation of benzo(a)anthracene by a ligninolytic fungus. Chemosphere 64:560–564PubMedCrossRefGoogle Scholar
  39. Cajthaml T, Křesinová Z, Svobodová K, Möder M (2009a) Biodegradation of endocrine disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 6:745–750CrossRefGoogle Scholar
  40. Cajthaml T, Křesinová Z, Svobodová K, Sigler K, Řezanka T (2009b) Microbial transformation of synthetic estrogen 17α-ethinylestradiol. Environ Pollut 157:3325–3335PubMedCrossRefGoogle Scholar
  41. Cajthaml T, Svobodová K (2012) Biodegradation of aromatic pollutants by ligninolytic fungal strains. In: Singh SN (ed) Microbial degradation of xenobiotics. Springer-Verlag, pp 291–316Google Scholar
  42. Camarero S, Cañas AI, Nousiainen P, Record E, Lomascolo A, Martínez MJ, Martínez ÁT (2008) p-hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ Sci Technol 42:6703–6709PubMedCrossRefGoogle Scholar
  43. Canadian Environmental Protection Act (1999). Priority substances list assessment report, “nonylphenol and its ethoxylates”Google Scholar
  44. Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705PubMedCrossRefGoogle Scholar
  45. Cázares-García SV, Vázquez-Garcidueñas MS, Vázquez-Marrufo G (2013) Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLoS ONE 8:e55295PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cébron A, Beguiristain T, Bongoua-Devisme J, Denonfoux J, Faure P, Lorgeoux C, Ouvrard S, Parisot N, Peyret P, Leyval C (2015) Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environ Sci Pollut Res 22:13724–13738CrossRefGoogle Scholar
  47. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333PubMedCrossRefGoogle Scholar
  48. Cerniglia CE, Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol 34:363–370PubMedPubMedCentralGoogle Scholar
  49. Cerniglia CE, Sutherland JB (2006) Relative roles of bacteria and fungi in polycyclic aromatic hydrocarbon biodegradation and bioremediation of contaminated soils. In: Geoffrey Michael Gadd (ed) Fungi in biogeochemical cycles. Cambridge University Press, pp 182–211Google Scholar
  50. Choudhary MI, Musharraf SG, Ali RA, Atif M, Atta-ur-Rahman (2004) Microbial transformation of antifertility agents, norethisterone and 17α-ethinylestradiol. Z. Naturforschung 59b:319–323Google Scholar
  51. Clarke BO, Smith SR (2011) Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37:226–247PubMedCrossRefGoogle Scholar
  52. Cloete TE, Celliers L (1999) Removal of Aroclor 1254 by the white rot fungus Coriolus versicolor in the presence of different concentration of Mn (IV) oxide. Int Biodeterior Biodegrad 44:243–253CrossRefGoogle Scholar
  53. Clouzot L, Marrot B, Doumenq P, Roche N (2008) 17α-Ethinylestradiol: an endocrine disrupter of great concern. Analytical methods and removal processes applied to water purification. A review Environ Prog 27:383–396CrossRefGoogle Scholar
  54. Corvini PFX, Schaffer A, Schlosser D (2006) Microbial degradation of nonylphenol and other alkylphenols—our evolving view. Appl Microbiol Biotechnol 72:223–243PubMedCrossRefGoogle Scholar
  55. Covino S, Čvančarová M, Muzikar M, Svobodová K, DˈAnnibale A, Petruccioli M, Federici F, Křesinová Z, Cajthaml T (2010a) An efficient PAH-degrading Lentinus (Panus) tirinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices. J Hazard Mater 183:669–676Google Scholar
  56. Covino S, Svobodová K, Čvančarová M, D’Annibale A, Petruccioli M, Federici F, Křesinová Z, Galli E, Cajthaml T (2010b) Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant. Chemosphere 79:855–864PubMedCrossRefGoogle Scholar
  57. Covino S, Svobodová K, Křesinová Z, Petruccioli M, Federici F, DˈAnnibale A, Čvančarová M, Cajthaml T (2010c) In vivo and in vitro polycyclic aromatic hydrocarbon degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour Technol 101:3004–3012Google Scholar
  58. Covino S, D’Annibale A, Stazi SR, Cajthaml T, Čvančarová M, Stella T, Petruccioli M (2015) Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil. Sci Total Environ 505:545–554PubMedCrossRefGoogle Scholar
  59. Črešnar B, Petrič Š (2011) Cytochrome P450 enzymes in the fungal kingdom. Review Biochim Biophys Acta 1814:29–35PubMedCrossRefGoogle Scholar
  60. Crinnion WJ (2011) Polychlorinated biphenyls: persistent pollutants with immunological, neurological and endocrinological consequences. Altern Med Rev 16(1)Google Scholar
  61. Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Marco-Urrea E, Vicent T, Sarrà M (2013) Duran Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47:5200–5210PubMedCrossRefGoogle Scholar
  62. Čvančarová M, Křesinová Z, Filipová A, Covino S, Cajthaml T (2012) Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 88:1317–1323PubMedCrossRefGoogle Scholar
  63. D’Annibale A, Stazi SR, Vinciguerra V, Di Mattia E, Sermanni GG (1999) Characterization of immobilized laccase from Lentinula edodes and its use in olive mill wastewater treatment. Process Biochem 34:697–706CrossRefGoogle Scholar
  64. D’Annibale A, Stazi SR, Vinciguerra V, Di Mattia E, Sermanni GG (2000) Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. J Biotechnol 77:265–273PubMedCrossRefGoogle Scholar
  65. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50PubMedPubMedCentralGoogle Scholar
  66. de Boer W, van der Wal A (2008) Chapter 8 interactions between saprotrophic basidiomycetes and bacteria. British Mycological Society Symposia Series. Ecol Saprotrophic Basidiomycetes 28:143–153 Google Scholar
  67. Dec J, Haider K, Bollag J (2003) Release of substituents from phenolic compounds during oxidative coupling reactions. Chemosphere 52:549–556PubMedCrossRefGoogle Scholar
  68. Della Greca M, Pinto G, Pistillo P, Pollio A, Previtera L, Temussi F (2008) Biotransformation of ethinylestradiol by microalgae. Chemosphere 70:2047–2053CrossRefGoogle Scholar
  69. Demarche P, Junghanns C, Mazy N, Agathos SN (2012a) Design-of-experiment strategy for the formulation of laccase biocatalysts and their application to degrade bisphenol A. New Biotechnol 30:96–103CrossRefGoogle Scholar
  70. Demarche P, Junghanns CH, Nair RR, Agathos SN (2012b) Harnessing the power of enzymes for environmental stewardship. Biotechnol Adv 30:933–953PubMedCrossRefGoogle Scholar
  71. Dietrich D, Hickey WJ, Lamar R (1995) Degradation of 4,4´-dichlorobiphenyl, 3,3´,4,4´-tetrachlorobiphenyl, and 2,2´,4,4´,5,5´-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:3904–3909PubMedPubMedCentralGoogle Scholar
  72. Dittmann J, Heyser W, Bücking H (2002) Biodegradation of aromatic compounds by white rot and ectomycorrhizal fungal species and the accumulation of chlorinated benzoic acid in ectomycorrhizal pine seedlings. Chemosphere 49:297–306PubMedCrossRefGoogle Scholar
  73. Dmochewitz S, Ballschmiter K (1988) Microbial transformation of technical mixtures of polychlorinated biphenyls (PCB) by the fungus Aspergillus niger. Chemosphere 17:111–121CrossRefGoogle Scholar
  74. Domaradzka D, Guzik U, Wojcieszyńska D (2015) Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs. Rev Environ Sci Biotechnol 14:229–239CrossRefGoogle Scholar
  75. Dubroca J, Brault A, Kollmann A, Touton I, Jolivalt G, Kerhoas L, Mougin C (2005) Biotransformation of nonylphenol surfactants in soils amended with contaminated sewage sludges. In: Lichtfouse E, Dudd S, Robert D (eds) Environmental chemistry: green chemistry and pollutants in ecosystems. Springer, Berlin, Germany, pp 305–315CrossRefGoogle Scholar
  76. Duncan CG, Deverall FJ (1964) Degradation of wood preservatives by fungi. Appl Microbiol 12:57–62PubMedPubMedCentralGoogle Scholar
  77. Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Tech 31:907–931CrossRefGoogle Scholar
  78. Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microb Tech 7:194–196CrossRefGoogle Scholar
  79. Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C (2014) Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 8:7683–7689CrossRefGoogle Scholar
  80. Eggen T, Sveum P (1999) Decontamination of aged creosote polluted soil: The influence of temperature, white rot fungus Pleurotus ostreatus, and pretreatment. Int Biodeterior Biodegrad 43:125–133CrossRefGoogle Scholar
  81. Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64:408–414PubMedCrossRefGoogle Scholar
  82. El Majidi N, Bouchard M, Carrier G (2013) Systematic analysis of the relationship between standardized prenatal exposure to polychlorinated biphenyls and mental and motor development during follow-up of nine children cohorts. Regul Toxicol Pharmacol 66:130–146PubMedCrossRefGoogle Scholar
  83. European Parliament and The Council (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Off J Eur Union L348:84–97Google Scholar
  84. Farnet AM, Gil G, Ruaudel F, Chevremont AC, Ferre E (2009) Polycyclic aromatic hydrocarbon transformation with laccases of a white-rot fungus isolated from a mediterranean schlerophyllous litter. Geoderma 149:267–271CrossRefGoogle Scholar
  85. Federici E, Giubilei M, Santi G, Zanaroli G, Negroni A, Fava F, Petruccioli M, D’Annibale A (2012) Bioaugmentation of a historically contaminated soil by polychlorinated biphenyls with Lentinus tigrinus. Microb Cell Fact 11:35PubMedPubMedCentralCrossRefGoogle Scholar
  86. Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L (2011) Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: a review. Environ Sci Pollut Res 18:12–30CrossRefGoogle Scholar
  87. Field JA, Sierra-Alvarez Reyes (2008) Microbial transformation and degradation of polychlorinated biphenyls. Rev Environ Pollut 155:1–12CrossRefGoogle Scholar
  88. Fukuda T, Uchida H, Suzuki M, Miyamoto H, Morinaga H, Nawata H, Uwajima T (2004) Transformation products of bisphenol A by a recombinant Trametes villosa laccase and their estrogenic activity. J Chem Technol Biotechnol 79:1212–1218CrossRefGoogle Scholar
  89. Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M (2001) Degradation of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 284:704–706PubMedCrossRefGoogle Scholar
  90. Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosc Bioeng 105:433–449CrossRefGoogle Scholar
  91. Gadd GM (2001) Fungi in bioremediation (No 23). Published for the British Mycological Society. Cambridge University Press. ISBN 0521781191Google Scholar
  92. García-Delgado C., D’Annibale A., Pesciaroli L., Yunta F., Crognale S., Petruccioli M., Eymar E. (2015). Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. Sci. Total Environ. 508: 20–28Google Scholar
  93. Gasser CA, Yu L, Svojitka J, Wintgens T, Ammann EM, Shahgaldian P, Corvini PF-X, Hommes G (2014) Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scaleGoogle Scholar
  94. Gesell M, Hammer E, Mikolasch A, Schauer F (2004) Oxidation and ring cleavage of dibenzofuran by the filamentous fungus Paecilomyces lilacinus. Arch Microbiol 182:51–9PubMedCrossRefGoogle Scholar
  95. Gichner T, Lovecká P, Vrchotová B (2008) Genomic damage induced in tobacco plants by chlorobenzoic acids metabolic products of polychlorinated biphenyls. Mutat Res 657:140–145PubMedCrossRefGoogle Scholar
  96. Giubilei MA, Leonardi V, Federici E, Covino S, Šašek V, Novotný C, Federici F, DˈAnnibale A, Petruccioli M (2009) Effect of mobilizing agents on mycoremediation and impact on the indigenous microbiota. J Chem Technol Biotechnol 84:836–844Google Scholar
  97. Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez AT, Guillén F (2009) Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl Environ Microbiol 75:3944–3953PubMedPubMedCentralCrossRefGoogle Scholar
  98. Gramss G, Kirsche B, Voigt KD, Gunther T, Fritsche W (1999) Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycol Res 103:1009–1018CrossRefGoogle Scholar
  99. Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 103:41–43PubMedPubMedCentralCrossRefGoogle Scholar
  100. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952PubMedGoogle Scholar
  101. Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci USA 88:10605–10608PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hammer E, Krowas D, Schafer A, Specht M, Francke W, Schauer F (1998) Isolation and characterization of a dibenzofuran-degrading yeast: identification of oxidation and ring cleavage products. Appl Environ Microbiol 64:2215–2219PubMedPubMedCentralGoogle Scholar
  103. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15PubMedCrossRefGoogle Scholar
  104. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192PubMedCrossRefGoogle Scholar
  105. Helmfrid I, Berglund M, Löfman O, Wingren G (2012) Health effects and exposure to polychlorinated biphenyls (PCBs) and metals in a contaminated community. Environ Intern 44:53–58CrossRefGoogle Scholar
  106. Hendey NI (1964) Some observations on Cladosporium resinae as a fuel contaminant and its possible role in the corrosion of aluminium alloy fuel tanks. T Brit Mycol Soc 47:467–475CrossRefGoogle Scholar
  107. Hestbjerg H, Brinch UC, Nielsen T (2001) Potential of Pleurotus ostreatus for bioremediation: Temperature requirements and competitiveness. Abstracts, SETAC Organic Soil Contaminants, Copenhagen, Denmark, September 2–5, p 24Google Scholar
  108. Hestbjerg H, Willumsen PA, Christensen M, Andersen O, Jacobsen CS (2003) Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 22:692–698PubMedCrossRefGoogle Scholar
  109. Hirano T, Honda Y, Watanabe T, Kuwahara M (2000) Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white rot basidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem 64:1958–1962PubMedCrossRefGoogle Scholar
  110. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466CrossRefGoogle Scholar
  111. Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125PubMedCrossRefGoogle Scholar
  112. Huang Q, Walter J, Weber JR (2005) Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: efficacy, products, and pathways. Environ Sci Technol 39:6029–6036PubMedCrossRefGoogle Scholar
  113. Huff JE, Moore JA, Saracci R, Tomatis L (1980) Long-term hazards of polychlorinated dibenzodioxins and polychlorinated dibenzofurans. Environ Health Persp 36:221–240CrossRefGoogle Scholar
  114. in der Wiesche C, Martens R, Zadrazil F (1996) Two-step degradation of pyrene by white-rot fungi and soil microorganisms. Appl Microbiol Biotechnol 46:653–659Google Scholar
  115. Ishii K, Furuichi T (2007) Development of bioreactor system for treatment of dioxin-contaminated soil using Pseudallescheria boydii. J Hazard Mater 148:693–700PubMedCrossRefGoogle Scholar
  116. Ishii K, Furuichi T, Tanikawa N, Kuboshima M (2009) Estimation of the biodegradation rate of 2,3,7,8-tetrachlorodibenzo-p-dioxin by using dioxin-degrading fungus, Pseudallescheria boydii. J Hazard Mater 162:328–332PubMedCrossRefGoogle Scholar
  117. Jelić A, Gros M, Petrović M, Ginebreda A, Barceló D (2012) Occurrence and elimination of pharmaceuticals during conventional wastewater treatment. Emerging and Priority Pollutants in Rivers. The Handbook of Environmental Chemistry, Springer US, vol 19, pp 1–23Google Scholar
  118. Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528PubMedPubMedCentralCrossRefGoogle Scholar
  119. Johannes C, Majcherczyk A, Hüttermann A (1998) Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J Biotechnol 61:151–156CrossRefGoogle Scholar
  120. Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57PubMedCrossRefGoogle Scholar
  121. Kamei I, Kondo R (2005) Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p- dioxin by the white rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 68:560–566PubMedCrossRefGoogle Scholar
  122. Kamei I, Suhara H, Kondo R (2005) Phylogenetical approach to isolation of white rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol 69:358–366PubMedCrossRefGoogle Scholar
  123. Kamei I, Kogura R, Kondo R (2006a) Metabolism of 4,4′-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142 Appl. Microbiol Biotechnol 72:566–575CrossRefGoogle Scholar
  124. Kamei I, Sonoki S, Haraguchi K, Kondo R (2006b) Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940PubMedCrossRefGoogle Scholar
  125. Keum YS, Li QX (2004) Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls. Chemosphere 56:23–30PubMedCrossRefGoogle Scholar
  126. Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505PubMedCrossRefGoogle Scholar
  127. Kohlmeier S, Smits TMH, Ford RM, Keel C, Harms H, Lukas YW (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646PubMedCrossRefGoogle Scholar
  128. Kordon K, Mikolasch A, Schauer F (2010) Oxidative dehalogenation of chlorinated hydroxybiphenyls by laccases of white-rot fungi. Intern Biodet Biodegrad 64:203–209CrossRefGoogle Scholar
  129. Kramer S, Moller Hikel S, Adams K, Hinds D, Moon K (2012) Current status of the epidemiologic evidence linking polychlorinated biphenyls and non-Hodgkin lymphoma and the role of immune dysregulation. Environ Health Perspect 120(8)Google Scholar
  130. Krčmar P, Kubátová A, Votruba J, Erbanová P, Novotný C, Sašek V (1999) Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World J Microbiol Biotechnol 15:269–276CrossRefGoogle Scholar
  131. Křesinová Z, Moeder M, Ezechiáš M, Svobodová K, Cajthaml T (2012) Mechanistic study of 17α- ethinylestradiol biodegradation by Pleurotus ostreatus: tracking of extracelullar and intracelullar degradation mechanisms. Environ Sci Technol 46:13377–13385PubMedCrossRefGoogle Scholar
  132. Kubátová A, Erbanová P, Eichlerová I, Homolka L, Nerud F, Šašek V (2001) PCB congener selective biodegradation by the white-rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43:207–215PubMedCrossRefGoogle Scholar
  133. Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278PubMedCrossRefGoogle Scholar
  134. Lamar RT, White RB, Ashley KC (2002) Evaluation of white-rot fungi for the remediation of creosote-contaminated soil. Remediation J 12:97–106CrossRefGoogle Scholar
  135. Lang E, Eller G, Zadrail F (1997) Lignocellulose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms. Microb Ecol 34:1–10PubMedCrossRefGoogle Scholar
  136. Lang E, Nerud F, Zadrazil F (1998) Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influenced by soil microorganisms. FEMS Microb Lett 167:239–244CrossRefGoogle Scholar
  137. Lang E, Gonser A, Zadrazil F (2000) Influence of incubation temperature on activity of ligninolytic enzymes in sterile soil by Pleurotus sp. and Dichomitus squalens. Basic Microbiol 40:33–39CrossRefGoogle Scholar
  138. Latawiec AE, Swindell AL, Simmons P, Reid BJ (2011) Bringing bioavailability into contaminated land decision making: the way forward? Crit Rev Env Sci Tec 41:52–77CrossRefGoogle Scholar
  139. Lee PY, Chen CY (2009) Toxicity and quantitative structure–activity relationships of benzoic acids to Pseudokirchneriella subcapitata. J Hazard Mater 165:156–161PubMedCrossRefGoogle Scholar
  140. Li P, Sun T, Stagnitti F, Zhang C, Zhang H, Xiong X, Allinson G, Ma X, Allinson M (2002) Field-scale bioremediation of soil contaminated with crude oil. Environ Eng Sci 19:277–289CrossRefGoogle Scholar
  141. Liu ZH, Kanjo Y, Mizutani S (2009) Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—physical means, biodegradation, and chemical advanced oxidation: a review. Sci Total Environ 407:731–748PubMedCrossRefGoogle Scholar
  142. Lloret L, Eibes G, Feijo G, Moreira MT, Lema JM (2012a) Continuous operation of a fluidized bed reactor for the removal of estrogens by immobilized laccase on Eupergit supports. J Biotechnol 182:404–406CrossRefGoogle Scholar
  143. Lloret L, Hollmann F, Eibes G, Feijoo G, Moreira MT, Lema JM (2012b) Immobilisation of laccase on Eupergit supports and itsapplication for the removal of endocrine disrupting chemicals in a packed-bed reactor. Biodegradation 23:373–386PubMedCrossRefGoogle Scholar
  144. Lloret L, Eibes G, Moreira MT, Feijoo G, Lema JM (2013) Removal of estrogenic compounds from filtered secondary wastewater effluent in a continuous enzymatic membrane reactor. Identification of biotransformation products. Environ Sci Technol 47:4536–4543PubMedCrossRefGoogle Scholar
  145. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641Google Scholar
  146. Lyr H (1963) Enzymatische detoxification chlorieter phenole. Phytopathol Z 47:73–83CrossRefGoogle Scholar
  147. Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341CrossRefGoogle Scholar
  148. Manji S, Ishihara A (2004) Screening of tetrachlorodibenzo-p-dioxin-degrading fungi capable of producing extracellular peroxidases under various conditions. Appl Microbiol Biotechnol 63:438–444PubMedCrossRefGoogle Scholar
  149. Marco-Urrea E, Pérez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772PubMedCrossRefGoogle Scholar
  150. Marco-Urrea E, Pérez-Trujillo M, Blánquez P, Vicent T, Caminal G (2010a) Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR. Bioresour Technol 101:2159–2166PubMedCrossRefGoogle Scholar
  151. Marco-Urrea E, Pérez-Trujillo M, Cruz-Morató C, Caminal G, Vicent T (2010b) Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. J Hazard Mater 176:836–842PubMedCrossRefGoogle Scholar
  152. Marco-Urrea E, Pérez-Trujillo M, Cruz-Morató C, Caminal G, Vicent T (2010c) White-rot fungus-mediated degradation of the analgesic ketoprofen and identification of intermediates by HPLC-DAD-MS and NMR. Chemosphere 78:474–481PubMedCrossRefGoogle Scholar
  153. Marco-Urrea E, Radjenović J, Caminal G, Petrović M, Vicent T, Barceló D (2010d) Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor. Water Res 44:521–532PubMedCrossRefGoogle Scholar
  154. Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32:620–628CrossRefGoogle Scholar
  155. Martens R, Zadrazil F (1998) Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol 43:97–103CrossRefGoogle Scholar
  156. Mayolo-Deloisa K, Machín-Ramírez C, Rito-Palomares M, Trejo-Hernández MR (2011) Oxidation of polycyclic aromatic hydrocarbons using partially purified laccase from residual compost of Agaricus bisporus. Chem Eng Technol 34:1368–1372CrossRefGoogle Scholar
  157. Michels J (1998) Processes for the bioremediation of soil. Editor: Federal Environmental Agency BMBF Project Management Agency for Waste Management and Remediation of Hazardous Abandoned Sites (PT AWAS). Section III 3.6Google Scholar
  158. Michizoe J, Ichinose H, Kamila N, Maruyama T, Goto M (2005) Biodegradation of phenolic environmental pollutants by a surfactant-laccase complex in organicmedia. J Biosci Bioeng 99:642–647PubMedCrossRefGoogle Scholar
  159. Moen MA, Hammel KE (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961PubMedPubMedCentralGoogle Scholar
  160. Mori T, Kondo R (2002a) Degradation of 2, 7-dichlorodibenzo-p-dioxin by wood-rotting fungi, screened by dioxin degrading ability. FEMS Microbiol Lett 213:127–131PubMedCrossRefGoogle Scholar
  161. Mori T, Kondo R (2002b) Oxidation of dibenzo-p-dioxin, dibenzofuran, biphenyl, and diphenyl ether by the white rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 60:200–205PubMedCrossRefGoogle Scholar
  162. Mougin C (2002) Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycyclic Aromat Compd 22:1–33CrossRefGoogle Scholar
  163. Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117:268–274PubMedCrossRefGoogle Scholar
  164. Muzikář M, Křesinová Z, Svobodová K, Filipová A, Čvančarová M, Cajthamlová K, Cajthaml T (2011) Biodegradation of chlorobenzoic acids by ligninolytic fungi. J Hazard Mater 196:386–394PubMedCrossRefGoogle Scholar
  165. Naidu R, Channey R, McConnell S, Johnston N, Semple KT, McGrath S, Dries V, Nathanail P, Harmsen J, Pruszinski A, MacMillan J, Palanisami T (2013) Towards bioavailability-based soil criteria: past, present and future perspectives. Environ Sci Pollut Res Int 22:8779–8785PubMedCrossRefGoogle Scholar
  166. Nair RR, Demarche P, Agathos SN (2013) Formulation and characterization of an immobilized laccase biocatalyst and its application to eliminate organic micropollutants in wastewater. New Biotech 30:814–823CrossRefGoogle Scholar
  167. Nakamiya K, Furuichi T, Ishii K (2002) Isolation of a fungus from denitrifying activated sludge that degrades highly chlorinated dioxins. J Mater Cycles Waste Manage 4:127–134Google Scholar
  168. Nakamiya K, Hashimoto S, Ito H, Edmonds JS, Yasuhara A, Morita M (2005) Degradation of dioxins by cyclic ether degrading fungus. Cordyceps sinensis FEMS Microbiol Lett 248:17–22PubMedCrossRefGoogle Scholar
  169. Nam I, Kim Y, Murugesan K, Jeon J, Chang Y (2008) Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst. J HazardGoogle Scholar
  170. Nicotra S, Intra A, Ottolina G, Riva S, Danieli B (2004) Laccase-mediated oxidation of the steroid hormone 17b-estradiol in organic solvents. Tetrahedron Asymmetry 15:2927–2931CrossRefGoogle Scholar
  171. Novotný C, Cajthaml T, Svobodová K, Susla M, Šašek V (2009) Irpex lacteus, a white rot fungus with biotechnological potential—review. Folia Microbiol 54:375–390CrossRefGoogle Scholar
  172. Novotný C, Vyas BRM, Erbanová P, Kubátová A, Šašek V (1997) Removal of PCBs by various white-rot fungi in liquid cultures. Folia Microbiol 42:136–140CrossRefGoogle Scholar
  173. Pan F, Yang Q, Zhang Y, Zhang S, Yang M (2004) Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala. Biotechnol Lett 26:803–806PubMedCrossRefGoogle Scholar
  174. Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202PubMedCrossRefGoogle Scholar
  175. Phan CW, Sabaratnam V (2012) Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl Environ Microbiol 96:863–873Google Scholar
  176. Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809PubMedPubMedCentralGoogle Scholar
  177. Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191PubMedCrossRefGoogle Scholar
  178. Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214CrossRefGoogle Scholar
  179. Pointing S (2001) Faesibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedCrossRefGoogle Scholar
  180. Rabinovich ML, Bolobova AV, Vasilchenko LG (2004) Decomposition of natural aromatic structures and xenobiotics by fungi. Appl Biochem Microbiol 40:5–23CrossRefGoogle Scholar
  181. Rafin C, Potin O, Veignie E (2000) Degradation of benzo[a]pyrene as sole carbon source by a non white-rot fungus, Fusarium solani. Polycycl Aromat Compd 21:311–329CrossRefGoogle Scholar
  182. Rafin C, de Foucault B, Veignie E (2012) Exploring micromycetes biodiversity for screening benzo[a]pyrene degrading potential. Environ Sci Pollut Res Int 20:3280–3289PubMedCrossRefGoogle Scholar
  183. Rodarte-Morales AI, Feijoo G, Moreira MT, Lema MJ (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbiol Biotechnol 27:1839–1846CrossRefGoogle Scholar
  184. Rodarte-Morales AI, Feijoo G, Moreira MT, Lema MJ (2012) Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen supply. Biodegradation 23:145–156PubMedCrossRefGoogle Scholar
  185. Rodríguez-Rodríguez CE, Barón E, Gago-Ferrero P, Jelić A, Llorca M, Farré M, Díaz-Cruz MS, Eljarrat E, Petrović M, Caminal G, Barceló D, Vicent T (2012) Removal of pharmaceuticals, polybrominated flame retardants and UV-filters from sludge by the fungus Trametes versicolor in bioslurry reactor. J Hazard Mater 233–234:235–243PubMedCrossRefGoogle Scholar
  186. Romero MC, Cazau MC, Giorgieri S, Arambarri AM (1998) Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ Pollut 101:355–359CrossRefGoogle Scholar
  187. Romero MC, Salvioli ML, Cazau MC, Arambarri AM (2002) Pyrene degradation by yeasts and filamentous fungi. Environ Pollut 117:159–163PubMedCrossRefGoogle Scholar
  188. Rozalska S, Szewczyk R, Dlugonski J (2010) Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: a proposal of a metabolic pathway. J Hazard Mater 180:323–331PubMedCrossRefGoogle Scholar
  189. Ruiz-Aguilar GML, Fernandez-Sanchez JM, Rodrıguez-Vazquez R, Poggi-Varaldo H (2002) Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv Environ Res 6:559–568CrossRefGoogle Scholar
  190. Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritche W (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63:3919–3925PubMedPubMedCentralGoogle Scholar
  191. Sage L, Périgon S, Faure M, Gaignaire C, Abdelghafour M, Mehu J, Geremia RA, Mouhamadou B (2014) Autochthonous ascomycetes in depollution of polychlorinated biphenyls contaminated soil and sediment. Chemosphere 110:62–69PubMedCrossRefGoogle Scholar
  192. Santos LH, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MC (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95PubMedCrossRefGoogle Scholar
  193. Šašek V (2003) Why mycoremediations have not yet come into practice. The utilization of bioremediation to reduce soil contamination: problems and solutions. NATO Science Series. 19:247–266Google Scholar
  194. Sato A, Watanabe T, Watanabe Y, Harazono K, Fukatsu T (2002) Screening for basidiomycetous fungi capable of degrading 2, 7-dichlorodibenzo-p-dioxin. FEMS Microbiol Lett 213:213–217PubMedCrossRefGoogle Scholar
  195. Schützendübel A, Majcherczyk A, Johannes C, Hüttermann A (1999) Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. Int Biodeterior Biodegrad 43:93–100CrossRefGoogle Scholar
  196. Seto M, Nishibori K, Masai E, Fukuda M, Ohdaira Y (1999) Degradation of polychlorinated biphenyls by a ‘Maitake’ mushroom, Grifola frondosa. Biotechnol Lett 21:27–31CrossRefGoogle Scholar
  197. Sietmann R, Gesell M, Hammer E, Schauer F (2006) Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere 64:672–685PubMedCrossRefGoogle Scholar
  198. Silva IS, Grossman M, Durrant LR (2009) Degradation of polycyclic aromatic hydrocarbons (2-7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. Int. Biodeterior. Biodegrad. 63:224–229CrossRefGoogle Scholar
  199. Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-InterscienceGoogle Scholar
  200. Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217PubMedCrossRefGoogle Scholar
  201. Steffen KT, Schubert S, Tuomela M, Hatakka A, Hofrichter M (2007) Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation 18:359–369PubMedCrossRefGoogle Scholar
  202. Stella T, Covino S, Křesinová Z, D’Annibale A, Petruccioli M, Cvančarová M, Cajthaml T (2013) Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: In vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation. J Hazard Mater 260:975–983PubMedCrossRefGoogle Scholar
  203. Stella T, Covino S, Burianová E, Filipová A, Křesinová Z, Voříšková J, Větrovský T, Baldrian P, Cajthaml T (2015) Chemical and microbiological characterization of an aged PCB-contaminated soil. Sci Total Environ 533:177–186PubMedCrossRefGoogle Scholar
  204. Suzuki K, Hirai H, Murata H, Nishida T (2003) Removal of estrogenic activities of 17α-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Res 37:19721975CrossRefGoogle Scholar
  205. Svobodová K, Placková M, Novotná V, Cajthaml T (2009) Estrogenic, androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays. Sci Total Environ 407:5921–5925PubMedCrossRefGoogle Scholar
  206. Syed K, Porollo A, Ying WL, Yadav JS (2011) A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp129 and Leu324. PLoS ONE 6:1–14Google Scholar
  207. Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–702PubMedPubMedCentralCrossRefGoogle Scholar
  208. Taboada-Puig R, Junghanns C, Demarche P, Moreira MT, Feijoo G, Lema JM, Agathos SN (2011) Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: production, partial characterization and application for the elimination of endocrine disruptors. Bioresour Technol 102:6593–6599PubMedCrossRefGoogle Scholar
  209. Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl Environ Microbiol 62:4323–4328PubMedPubMedCentralGoogle Scholar
  210. Takagi S, Shirota C, Sakaguchi K, Suzuki J, Sue T, Nagasaka H, Hisamatsu S, Sonoki S (2007) Exoenzymes of Trametes versicolor can metabolize coplanar PCB congeners and hydroxy PCB. Chemosphere 67:54–57CrossRefGoogle Scholar
  211. Tanaka T, Tonosaki T, Nose M, Tomidokoro N, Kadomura N, Fujii T, Taniguchi M (2001) Treatment of model soils contaminated with phenolic endocrine disrupting chemicals with laccase from Trametes sp. in a rotating reactor. J Biosci Bioeng 92:312–316PubMedCrossRefGoogle Scholar
  212. Thomas DR, Carswell KS, Georgiou G (1992) Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol Bioeng 40:1395–1402PubMedCrossRefGoogle Scholar
  213. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H202-requiring oxygenase. Proc Natl Acad Sci 81:2280–2284PubMedPubMedCentralCrossRefGoogle Scholar
  214. Tigini V, Prigione V, Di Toro S, Fava F, Varese GC (2009) Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Fact 8:5PubMedPubMedCentralCrossRefGoogle Scholar
  215. Torres-Duarte C, Teresa VM, Vazquez-Duhalt R (2012) Laccase-mediated transformations of endocrine disrupting chemicals abolish binding affinities to estrogen receptors and their estrogenic activity in zebrafish. Appl Biochem Biotechnol 168:864–876PubMedCrossRefGoogle Scholar
  216. Touahar IE, Haroune L, Ba S, Bellenger JP, Cabana H (2014) Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci Total Environ 481:90–99PubMedCrossRefGoogle Scholar
  217. Tran NH, Urase T, Ngo HH, Hu JY, Ong SL (2013) Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol 146:721–731PubMedCrossRefGoogle Scholar
  218. Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading Basidiomycetes. Chemosphere 42:271–276PubMedCrossRefGoogle Scholar
  219. Tuomela M, Steffen KT, Kerko E, Hartikainen H, Hofrichter M, Hatakka A (2005) Influence of Pb contamination in boreal forest soil on the growth and ligninolytic activity of litter-decomposing fungi. FEMS Microbiol Ecol 53:179–186PubMedCrossRefGoogle Scholar
  220. Tuomela M, Jørgensen K, Winquist E, Björklöf K, Schultz E, Anasonye F, Häkkinen L, Räsänen M, Sorvari J, Hartikainen ES, Steffen K, Valentin L (2012) Mycoremediation of contaminated soil in field scale. Conference abstract. Environ Eng Manag J 11:S38Google Scholar
  221. Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581PubMedPubMedCentralCrossRefGoogle Scholar
  222. UNEP, United Nations Environment Programme (2012) Annual reportGoogle Scholar
  223. US Environmental Protection Agency (2000) Exposure and human health.reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Part I: Estimating exposure to dioxin-like compounds. Vol. 3EPA/600/P-00/001Google Scholar
  224. US EPA Handbook (1993) Approaches for the remediation of federal facility sites contaminated with explosive and radioactive wastes. EPA/625/R-93/013Google Scholar
  225. Valentin L, Feijoo G, Moreira MT, Lema JM (2006) Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Int Biodeterior Biodegrad 58:15–21CrossRefGoogle Scholar
  226. Valli K, Wariishi H, Gold MH (1992) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174:2131–2137PubMedPubMedCentralGoogle Scholar
  227. Vallini G, Frassinetti S, D’Andrea F, Catelani G, Agnolucci M (2001) Biodegradation of 4-(1-nonyl)phenol by axenic cultures of the yeast Candida aquaetextoris: identification of microbial breakdown products and proposal of a possible metabolic pathway. Int Biodeterior Biodegrad 47:133–140CrossRefGoogle Scholar
  228. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241PubMedPubMedCentralCrossRefGoogle Scholar
  229. van den Brink HM, van Gorcom RF, van den Hondel CA, Punt PJ (1998) Cytochrome P450 enzyme systems in fungi. Fungal Genet Biol 23:1–17PubMedCrossRefGoogle Scholar
  230. Verdin A, Sahraoui ALH DR (2004) Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeterior Biodegrad 53:65–70Google Scholar
  231. Verdin A, Sahraoui ALH, Newsam R, Robinson G, Durand R (2005) Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environ Pollut 133:283–291PubMedCrossRefGoogle Scholar
  232. Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389:416–428CrossRefGoogle Scholar
  233. Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res. doi: 10.1155/2014/163242
  234. Vyas BRM, Šašek V, Matucha M, Bubner M (1994) Degradation of 3,3’,4,4’- tetrachlorobiphenyl by selected white rot fungi. Chemosphere 28:1127–1134CrossRefGoogle Scholar
  235. Walter M, Boyd-Wilson K, Boul L, Ford C, McFadden D, Chong B, Pinfold J (2005) Field-scale bioremediation of pentachlorophenol by Trametes versicolor Int. Biodeter Biodegr 56:51–57CrossRefGoogle Scholar
  236. Wang J, Majima N, Hirai H, Kawagishi H (2012) Effective removal of endocrine-disrupting compounds by lignin peroxidase from the white-rot fungus Phanerochaete sordida YK-624. Curr Microbiol 64:300–303PubMedCrossRefGoogle Scholar
  237. Wang J, Yamamoto Y, Hirai H, Kawagishi H (2013a) Dimerization of bisphenol by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under ligninolytic condition. Curr Microbiol 66:544–547PubMedCrossRefGoogle Scholar
  238. Wang J, Yamamoto R, Yamamoto Y, Tokumoto T, Dong J, Thomas P, Hirai H, Kawagishi H (2013b) Hydroxylation of bisphenol A by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic condition. Chemosphere 93:1419–1423PubMedCrossRefGoogle Scholar
  239. Winquist E, Björklöf K, Schultz E, Räsänen M, Salonen K, Anasonye F, Cajthaml T, Steffen K, Jørgensen K, Tuomela M (2014) Bioremediation of PAH-contaminated soil with fungi- From laboratory to field scale. Int Biodeter Biodegr 86:238–247CrossRefGoogle Scholar
  240. Wolter M, Zadrazil F, Martens R, Bahadir M (1997) Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. florida in solid wheat straw substrate. Appl Microbiol Biotechnol 48:398–404CrossRefGoogle Scholar
  241. Wu YR, Luo ZH, Chow KKR, Vrijmoed LLP (2010) Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresource Technol 101:9772–9777CrossRefGoogle Scholar
  242. Wunch KG, Alworth WL, Bennett JW (1999) Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site. Microbiol Res 154:75–79PubMedCrossRefGoogle Scholar
  243. Yadav JS, Quensen JF III, Tiedje JM, Reddy CA (1995) Degradation of polychlorinated biphenyl mixtures (aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol 61:2560–2565PubMedPubMedCentralGoogle Scholar
  244. Yamaguchi M, Kamei I, Nakamura M, Takano M, Sekiya A (2007) Selection of Pleurotus pulmonarius from domestic basidiomycetous fungi for biodegradation of chlorinated dioxins as environmentally persistent organopollutants. Shinrin Sogo Kenkyusho Kenkyu Hokoku 6:231–237Google Scholar
  245. Yang Q, Yang M, Pritsch K, Yediler A, Hagn A, Schloter M, Kettrup A (2003) Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol Lett 25:709–713PubMedCrossRefGoogle Scholar
  246. Yang Q, Zhang H, Li X, Wang Z, Xu Y, Ren S, Chen X, Xu Y, Hao H, Wang H (2013) Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresour Technol 129:264–273PubMedCrossRefGoogle Scholar
  247. Zeddel A, Majcherczyk A, Hüttermann A (1993) Degradation of polychlorinated biphenyls by white-rot fungi Pleurotus ostreatus and Trametes versicolor in a solid state systém. Toxicol Environ Chem 40:255–266CrossRefGoogle Scholar
  248. Zhang J, Xu Z, Chen H, Zong Y (2009) Removal of 2,4-dichlorophenol by chitosan-immobilized laccase from Coriolus versicolor. Biochem Eng J 45:54–59CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefano Covino
    • 1
    • 2
  • Tatiana Stella
    • 1
    • 2
  • Tomáš Cajthaml
    • 1
    • 2
    Email author
  1. 1.Institute for Environmental Studies, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of Microbiology, Academy of Sciences of the Czech Republic V.V.I.Prague 4Czech Republic

Personalised recommendations