Skip to main content

Application of Microalgae and Fungal-Microalgal Associations for Wastewater Treatment

  • Chapter
  • First Online:
Fungal Applications in Sustainable Environmental Biotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Microalgal applications represent potential green and smart solutions for the treatment of different types of wastewaters. Fungal–microalgal associations are gaining increasing attention as a low cost and an efficient strategy for the concentration of microalgal cells and the additive contribution of their components to the production of value-added chemicals and biofuels. In spite of the obvious attractiveness of microalgal-based bioremediation, there are still some challenges that can affect their economic viability. The costs associated with removing microalgal cells from treated wastewaters and harvesting them for the production of value-added products can account for up to 50 % of the total cost. With both biological components known to be involved in absorption of key nutrients and microelements from growing environments, fungal–microalgal consortiums show cumulative and synergistic effects on wastewater treatment efficiencies. This review covers the potential of microalgal representatives and their association with filamentous fungi for the treatment of different types of wastewaters and conversion of generated biomass into value-added chemicals and biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acuner E, Dilek FB (2004) Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem 39(5):623–631

    Article  CAS  Google Scholar 

  • Aguirre AM, Bassi A, Saxena P (2013) Engineering challenges in biodiesel production from microalgae. Crit Rev Biotechnol 33:293–308

    Article  CAS  PubMed  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Akhtar N, Iqbal J, Iqbal M (2004a) Enhancement of lead (II) biosorption by microalgal biomass immobilized onto loofa (Luffa cylindrica) sponge. Eng Life Sci 4(2):171–178

    Article  CAS  Google Scholar 

  • Akhtar N, Iqbal J, Iqbal M (2004b) Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108(1):85–94

    Article  CAS  PubMed  Google Scholar 

  • Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem 40(3):1347–1361

    Article  CAS  Google Scholar 

  • Anthony RJ, Ellis JT, Sathish A, Rahman A, Miller CD, Sims RC (2013) Effect of coagulant/flocculants on bioproducts from microalgae. Bioresour Technol 149:65–70

    Article  CAS  PubMed  Google Scholar 

  • Argonne National Laboratory (2013). http://www.transportation.anl.gov/engines/multi_dim_model_biofuels.html. Accessed 12 April 2016

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Barange M, Srivstava A, Srivastava JK, Palsania J (2014) Biosorption of heavy metals from wastewater by using microalgae. Int J Chem Phys Sci 3(6):67–81

    Google Scholar 

  • Bayramoğlu G, Arıca MY (2009) Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu (II), Zn (II) and Ni (II): kinetics and equilibrium studies. Bioresour Technol 100(1):186–193

    Article  PubMed  CAS  Google Scholar 

  • Bayramoğlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81:35–43

    Article  CAS  Google Scholar 

  • Berner F, Heimann K, Sheehan M (2015) Microalgal biofilms for biomass production. J Appl Phycol 27:1793–1804

    Article  CAS  Google Scholar 

  • Bilanovic D, Shelef G, Sukenik A (1988) Flocculation of microalgae with cationic polymers—effects of medium salinity. Biomass 17:65–76

    Article  CAS  Google Scholar 

  • Boduroğlu G, Kılıç NK, Dönmez G (2014) Bioremoval of Reactive Blue 220 by Gonium sp. biomass. Environ Technol 35(19):2410–2415

    Article  PubMed  CAS  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45:5925–5933

    Article  CAS  PubMed  Google Scholar 

  • Borde X, Guieysse B, Delgado O, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C et al (2003) Synergistic relationships in algal–bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol 86(3):293–300

    Article  PubMed  Google Scholar 

  • Borsos E, Makra L, Béczi B, Vitányi B, Szentpéteri V (2003) Anthropogenic air pollution in the ancient times. Acta Climatol Chrolog 36–37:5–15

    Google Scholar 

  • Brightman FH, Seaward MRD (1977) Lichens of man-made substrates. In: Seaward MRD (ed) Lichen Ecology. Academic Press, London, pp 253–293

    Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Chan SMN, Luan T, Wong MH, Tam NFY (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25(7):1772–1779

    Article  CAS  PubMed  Google Scholar 

  • Chavan A, Mukherji S (2008) Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: effect of N: P ratio. J Hazard Mater 154(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Chekroun KB, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1:19–32

    Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  PubMed  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Chong AMY, Wong YS, Tam NFY (2000) Performance of different microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere 41:251–257

    Article  CAS  PubMed  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  PubMed  Google Scholar 

  • Cox PW, Paul GC, Thomas CR (1998) Image analysis of the morphology of filamentous micro-organisms. Microbiology 144:817–827

    Article  CAS  PubMed  Google Scholar 

  • Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour Technol 98(6):1176–1182

    Article  CAS  PubMed  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Ind J Biotechnol 7(2):159–169

    CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38(19):4222–4246

    Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Google Scholar 

  • de-Bashan LE, Moreno M, Hernandez J-P, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948

    Google Scholar 

  • de-Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:4222–4246

    Google Scholar 

  • de Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698

    Article  CAS  Google Scholar 

  • de la Noüe J, Laliberté G, Proulx D (1992) Algae and waste water. J Appl Phycol 4:247–254

    Article  Google Scholar 

  • Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hygiene Environ Health 214:442–448

    Article  CAS  Google Scholar 

  • Dilek FB, Taplamacioglu HM, Tarlan E (1999) Colour and AOX removal from pulping effluents by algae. Appl Microbiol Biotechnol 52(4):585–591

    Article  CAS  Google Scholar 

  • Elkassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egyp J Aqua Res 40:301–308

    Article  Google Scholar 

  • El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeter Biodegrad 63(6):699–704

    Article  CAS  Google Scholar 

  • Ergene A, Ada K, Tan S, Katırcıoğlu H (2009) Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: equilibrium and kinetic modeling studies. Desalination 249(3):1308–1314

    Article  CAS  Google Scholar 

  • Feofilova EP (2010) The fungal cell wall: modern concepts of its composition and biological function. Microbiology 79:711–720

    Article  CAS  Google Scholar 

  • Fierro S, del Pilar Sanchez-Saavedra M, Copalcua C (2008) Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresour Technol 99(5):1274–1279

    Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–971

    Article  CAS  PubMed  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–441

    Article  CAS  PubMed  Google Scholar 

  • Garnham GW, Codd GA, Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Env Sci Tech 26(9):1764–1770

    Article  CAS  Google Scholar 

  • Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20:17–48

    Article  CAS  PubMed  Google Scholar 

  • Godos Id, Blanco S, García-Encina PA, Becares E, Muñoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100:4332–4349

    Google Scholar 

  • Grimm LH, Kelly S, Hengstler J, Göbel A, Krull R, Hempel DC (2004) Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 87:213–218

    Article  CAS  PubMed  Google Scholar 

  • Gultom SO, Hu B (2013) Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 6:5921–5939

    Article  Google Scholar 

  • Guolan H, Hongwen S, Li CL (2000) Study on the physiology and degradation of dye with immobilized algae. Art Cells Blood Substit Immobil Biotechnol 28(4):347–363

    Article  Google Scholar 

  • Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res 35(17):4079–4085

    Article  CAS  PubMed  Google Scholar 

  • Gutzeit G, Lorch D, Weber A, Engels M, Neis U (2005) Biofocculent algal-bacterial biomass improves low-cost waterwater treatment. Water Sci Technol 52(12):9–18

    CAS  PubMed  Google Scholar 

  • Han X, Wong YS, Tam NFY (2006) Surface complexation mechanism and modelling in Cr (III) biosorption by a microalgal isolate, Chlorella miniata. J Colloid Interf Sci 303:365–371

    Article  CAS  Google Scholar 

  • Han X, Wong YS, Wong MH, Tam NFY (2007) Biosorption and bioreduction of Cr (VI) by a microalgal isolate Chlorella miniata. J Hazard Mater 146(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Henderson RK, Parsons SA, Jefferson B (2008) Successful removal of algae through the control of zeta potential. Sep Sci Technol 43:1653–1666

    Article  CAS  Google Scholar 

  • Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK et al (2010) The European water framework directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–4019

    Article  CAS  PubMed  Google Scholar 

  • Hiruta O, Futamura T, Takebe H, Satoh A, Kamisaka Y, Yokochi T et al (1996) Optimization and scale-up of gamma-linolenic acid production by Mortierella ramanniana MM 15-1, a high gamma-linolenic acid producing mutant. J Ferment Bioeng 82:366–370

    Article  CAS  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34(5):757–763

    Article  CAS  Google Scholar 

  • Holder DJ, Kirkland BH, Lewis MW, Keyhani NO (2007) Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3448–3457

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Tommaso L, van Loosdrecht M, Kartal B (2013) Nitrogen removal with the anaerobic ammomium oxidation process. Biotechonol Lett 35(8):1145–1154

    Article  CAS  Google Scholar 

  • Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  PubMed  Google Scholar 

  • John J (2000) A self-sustainable remediation system for acidic mine voids. In: 4th International conference of diffuse pollution. International Association of Water Quality, Bangkok, pp 506–511

    Google Scholar 

  • Kaya V, Goule, de la Noüe J, Picard G (1996) Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis. Enzyme Microb Technol 18(8):550–554

    Google Scholar 

  • Keskin NOS, Celebioglu A, Uyar T, Tekinay T (2015) Microalgae immobilised by nanofibrous web for removal of reactive dyes from wastewater. Ind Eng Chem Res 54:5802–5809

    Article  CAS  Google Scholar 

  • Khan MA, Ghouri AM (2011) Environmental pollution: its effects on life and its remedies. Res World: J Arts Sci Commer 2:276–285

    Google Scholar 

  • Krull R, Cordes C, Horn H, Kampen I, Kwade A, Neu TR et al (2010) Morphology of Filamentous fungi: linking cellular biology to process engineering using Aspergillus niger. Adv Biochem Eng Biotechnol 121:1–21

    CAS  PubMed  Google Scholar 

  • Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC et al (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123

    Article  CAS  PubMed  Google Scholar 

  • Kumar KV, Ramamurthi V, Sivanesan S (2006) Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae. Dyes Pigments 69:102–107

    Google Scholar 

  • Kumar KV, Sivanesan S, Ramamurthi V (2005) Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling. Process Biochem 40:2865–2872

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  PubMed  Google Scholar 

  • Lau A, Wong YS, Tong Z (1998) Metal removal studied by a laboratory scale immobilized microalgal reactor. J Environ Sci. 10(3):474–478

    CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 8(9):945–951

    Article  Google Scholar 

  • Lee A, Lewis D, Ashman P (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    Article  CAS  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2013) Harvesting of marine microalgae by electroflocculation: the energetics, plant design, and economics. Appl Energ 108:45–53

    Article  Google Scholar 

  • Lei AP, Wong YS, Tam NF (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46(11–12):195–201

    CAS  PubMed  Google Scholar 

  • Leite GB, Abdelaziz AEM, Hallenbeck PC (2013) Algal biofuels. Challenges and opportunities. Bioresour Technol 145:134–141

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresour Technol 102:10861–10867

    Article  CAS  PubMed  Google Scholar 

  • Liao W, Liu Y, Chen SL (2007a) Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production. Appl Biochem Biotechnol 137:689–701

    PubMed  Google Scholar 

  • Liao W, Liu Y, Frear C, Chen SL (2007b) A new approach of pellet formation of a filamentous fungus—Rhizopus oryzae. Bioresour Technol 98:3415–3423

    Article  CAS  PubMed  Google Scholar 

  • Linder MB (2009) Hydrophobins: proteins that self-assemble at interfaces. Curr Opin Colloid In. 14:356–363

    Article  CAS  Google Scholar 

  • Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y et al (2013) Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels 6(1):149. doi:10.1186/1754-6834-6-149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liao W, Chen S (2008) Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. J Appl Microbiol 105:1521–1528

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhou W, Fu Z, Cheng Y, Min M, Liu Y et al (2014) Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour Technol 67:8–13

    Article  CAS  Google Scholar 

  • Mahan CA, Majidi V, Holcombe JA (1989) Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing inductively coupled plasma emission spectrometry. Anal Chem 6(1):624–627

    Article  Google Scholar 

  • Manheim D, Nelson Y (2013) Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass production. Environ Prog Sustain Energy 32:946–954

    Article  CAS  Google Scholar 

  • Maza-Márquez P, Martinez-Toledo MV, Fenice M, Andrade L, Lasserrot A, Gonzalez-Lopez J (2014) Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int Biodeter Biodegrad 88:69–76

    Article  CAS  Google Scholar 

  • McGinn PJ, Dickinson KE, Park KC, Whitney CG, MacQuarrie SP, Black FJ et al (2012) Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res 1:155–165

    Google Scholar 

  • McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL et al (2012) International nomenclature code for Algae, Fungi and Plants, (Melbourne code). In: Adopted by the 18th International Botanical Congress. Koeltz Scientific Books, Melbourne, Australia

    Google Scholar 

  • Medina M, Neis U (2007) Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance. Water Sci Technol 55(11):165–171

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Cri Rev Biotechnol 25(3):113–152

    Article  CAS  Google Scholar 

  • Metz B, Kossen NWF (1977) The growth of molds in the form of pellets–a literature review. Biotechnol Bioeng 19:781–799

    Article  CAS  Google Scholar 

  • Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  CAS  PubMed  Google Scholar 

  • Miranda AF, Taha M, Wrede D, Morrison P, Ball AS, Stevenson T et al (2015) Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells. Biotechnol Biofuels 8:179–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra PK, Mukherji S (2012) Biosorption of diesel and lubricating oil on algal biomass. 3 Biotechnol 2(4):301–310

    Google Scholar 

  • Mohan SV, Bhaskar YV, Karthikeyan J (2004) Biological decolourisation of simulated azo dye in aqueous phase by algae Spirogyra species. Int J Environ Pollut 21(3):211–222

    Article  CAS  Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Google Scholar 

  • Moreno-Garrido I, Codd GA, GaddGM, Lubián LM (2002) Cu and Zn accumulation by calcium alginate immobilized marine microalgal cells of Nannochloropsis gaditana (Eustigmatophyceae). Cienc Mar 28(1):107–119

    Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  PubMed  CAS  Google Scholar 

  • Muradov N, Taha M, Miranda AF, Wrede D, Kadali K, Gujar A et al (2015) Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol Biofuels 8:24. doi:10.1186/s13068-015-0210-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakajima A, Horikoshi T, Sakaguchi T (1982) Recovery of uranium by immobilized microorganisms. Eur J Appl Microbiol Biotechnol 16(2–3):88–91

    Article  CAS  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  • Omar HH (2008) Algal decolorization and degradation of monoazo and diazo dyes. Pak J Biol Sci 1(10):1310–1316

    Article  Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105

    Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291

    Article  CAS  PubMed  Google Scholar 

  • Park JB, Craggs RJ (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61(3):633–639. doi:10.2166/wst.2010.951

    Article  CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Google Scholar 

  • Pinheiro HM, Touraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewater. Dyes Pigments 61:121–139. doi:10.1016/j.dyepig.2003.10.009

    Article  CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24(24):2047–2051

    Article  CAS  Google Scholar 

  • Powell RJ, Hill RT (2013) Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp strain RP1137. Appl Environ Microbiol 79:6093–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171

    Article  CAS  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3:299–304

    CAS  Google Scholar 

  • Rajab AH (2007) Micro-algae removal in domestic wastewater using Aspergillus flavus soft pellets as a bio-coagulant. Universiti Putra Malaysia, Faculty of Engineering

    Google Scholar 

  • Rajkumar R, Yaakob Z, Takriff MS (2014) Potential of the micro and macro algae for biofuel production: a brief review. Bioresources 9:1606–1633

    Google Scholar 

  • Ratha SK, Babu S, Renuka N, Prasanna R, Prasad RBN, Saxena AK (2013) Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. J Basic Microbiol 53:440–450

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  CAS  Google Scholar 

  • Reed TB (1981) Biomass gasification: principles and technology. NJ Noyes Data Corporation, Park Ridge

    Google Scholar 

  • Riaño B, Hernández D, García-González MC (2012) Microalgal-based systems for wastewater treatment: Effect of applied organic and nutrient loading rate on biomass composition. Ecol Eng 49:112–117

    Article  Google Scholar 

  • Ritter L, Solomon KR, Forget J, Stemeroff M, O’Leary C (1995) Persistent organic pollutants. An assessment report on DDT, aldrin, dieldrin, endrin, chlordane, heptachlor, hexachlorobenzene, mirex, toxaphene, polychlorinated biphenyls, dioxins and furans. International Programme on Chemical Safety (IPCS). In: Persistent organic pollutants. An assessment report on DDT, aldrin, dieldrin, endrin, chlordane, heptachlor, hexachlorobenzene, mirex, toxaphene, polychlorinated biphenyls, dioxins and furans. International Programme on Chemical Safety (IPCS). PCS 95, City, vol 38, p 43

    Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  CAS  PubMed  Google Scholar 

  • Ryu BG, Kim J, Faroog W, Han JI, Yang JW, Kim W (2014) Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. Bioresour Technol 162:70–79. doi:10.1016/j.biortech.2014.03.084

    Article  CAS  PubMed  Google Scholar 

  • Safonova E, Kvitko KV, Iankevitch MI, Surgko LF, Afti IA, Reisser W (2004) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci 4(4):347–353

    Article  CAS  Google Scholar 

  • Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23:849–855

    Article  PubMed  Google Scholar 

  • Schweitzer B, Huber I, Amann R, Ludwig W, Simon M (2001) Alpha- and betaproteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 67:632–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, Stingele F, Petruccioli M (2003) Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina. Anton Van Leeuwenhoek 84:135–145

    Article  CAS  Google Scholar 

  • Semple KT, Cain R, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170(2):291–300. doi:10.1111/j.1574-6968.1999.tb13386.x

    Article  CAS  Google Scholar 

  • Seviour RJ, Stasinopoulos SJ, Auer DPF, Gibbs PA (1992) Production of pullulan and other exopolysaccharides by filamentous fungi. Crit Rev Biotechnol 12:279–298

    Article  CAS  Google Scholar 

  • Sheng Y, Chen F, Sheng G, Fu J (2012) Water quality remediation in a heavily polluted tidal river in Guangzhou, South China. Aquat Ecosyst Health 15:219–226

    CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19(5):417–423

    Article  CAS  Google Scholar 

  • Simas-Rodrigues C, Villela HDM, Martins AP, Marques LG, Colepicolo P, Tonon AP (2015) Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot 66(14):4097–4108. doi:10.1093/jxb/erv130

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41(9):807–878

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Baskar R, Balakrishnan V (2009) Biosorption of an azo dye from aqueous solutions onto Spirogyra. J Uni Chem Technol Metal 44(2):157–164

    CAS  Google Scholar 

  • Sournia A (1978) Phytoplankton manual. UNESCO, Paris

    Google Scholar 

  • Souza PO, Ferreira LR, Pires NR, Duarte FA, Pereira CM, Mesko MF (2012) Algae of economic importance that accumulate cadmium and lead: a review. Revista Brasil Farmacog 22(4):825–837

    Article  CAS  Google Scholar 

  • Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a water-born and settleable algal-bacterial culture. Water Res 45(11):3351–3358. doi:10.1016/j.watres.2011.03.046

    Article  CAS  PubMed  Google Scholar 

  • Swami D, Buddhi D (2006) Removal of contaminants from industrial wastewater through various non-conventional technologies: a review. Int J Environ Pollut 27:324–346

    Article  CAS  Google Scholar 

  • Takáčová A, Smolinská M, Ryba J, Mackuľak T, Jokrllová Hronec P et al (2014) Biodegradation of benzo[a]pyrene through the use of algae. Cent Eur J Chem 12(11):1133–1143

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107:145–151

    Article  CAS  PubMed  Google Scholar 

  • Tam NFY, Lau PS, Wong YS (1994) Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Water Sci Technol 30:369–374

    CAS  Google Scholar 

  • Tam NFY, Wong JPK, Wong YS (2001) Repeated use of two Chlorella species, C. vulgaris and WW1 for cyclic nickel biosorption. Environ Pollut 114:85–92

    Article  CAS  PubMed  Google Scholar 

  • Tam NFY, Wong YS, Wong MH (2009) Novel technology in pollutant removal at source and bioremediation. Ocean Coast Manage 52:368–373

    Article  Google Scholar 

  • Tam NFY, Chan MN, Wong YS, Popov V, Itoh H, Mander U et al (2010) Removal and biodegradation of polycyclic aromatic hydrocarbons by immobilized microalgal beads. WIT Trans Ecol Environ 140:391–402. doi:10.2495/WM100351

  • Taylor TN, Hass H, Remy W, Kerp H (1995) The oldest fossil lichen. Nature 378:244

    Article  CAS  Google Scholar 

  • Thakur A, Kumar HD (1999) Nitrate, ammonium, and phosphate uptake by the immobilized cells of Dunaliella salina. B Environ Contam Tox 62(1):70–78

    Article  CAS  Google Scholar 

  • Todd SJ, Cain RB, Schmidt S (2002) Biotransformation of naphthalene and diaryl ethers by green microalgae. Biodegradation 13(4):229–238

    Article  CAS  PubMed  Google Scholar 

  • Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyron R, Dominguez AR (1996) Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour Technol 55(3):181–186

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Hoadley AFA (2010) Marine microalgae flocculation and focused beam reflectance measurement. Chem Eng J 162:935–940

    Article  CAS  Google Scholar 

  • Ueno R, Wada S, Urano N (2006) Synergetic effects of cell immobilization in polyurethane foam and use of thermotolerant strain on degradation of mixed hydrocarbon substrate by Prototheca zopfii. Fish Sci 72:1027–1033

    Article  CAS  Google Scholar 

  • Ueno R, Wada S, Urano N (2008) Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can J Microbiol 54(1):66–70

    Article  CAS  PubMed  Google Scholar 

  • Unnithan VV, Unc A, Smith GB (2014) Mini-review: a priori considerations for bacteria-algae interactions in algal biofuel sustems receiving municipal wastewaters. Algal Res 4:35–40. doi:10.1016/j.algal.2013.11.009

    Article  Google Scholar 

  • Van den Hende S, Vervaeren H, Desmet S, Boon N (2011) Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol 29:23–31

    Article  CAS  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239

    Article  CAS  PubMed  Google Scholar 

  • Vechtlifshitz SE, Magdassi S, Braun S (1990) Pellet formation and cellular aggregation in Streptomyces tendae. Biotechnol Bioeng 35:890–896

    Article  CAS  Google Scholar 

  • Vieira RH, Volesky B (2010) Biosorption: a solution to pollution? Int Microbiol 3(1):17–24

    Google Scholar 

  • Volesky B, Naja G (2005) Biosorption: application strategies. In: 16th International Biotechnology Symposium. Compress Co., Cape Town, South Africa

    Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Zhang C, Wu F, Deng N (2007) Photodegradation of aniline in aqueous suspensions of microalgae. J Photochem Photobio B: Bio 87:49–57

    Article  CAS  Google Scholar 

  • Wang LA, Min M, Li YC, Chen P, Chen YF, Liu YH et al (2010) Cultivation of green algae Chlorella sp in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    Article  CAS  PubMed  Google Scholar 

  • Worku A, Sahu O (2014) Reduction of heavy metal and hardness from ground water by algae. J Appl Environ Microbiol 2:86–89

    Google Scholar 

  • WWAP (United Nations World Water Assessment Programme) (2015) World water development report 2015: water for a sustainable world. UNESCO, Paris. http://unesdoc.unesco.org/images/0023/002318/231823E.pdf. Accessed 14 Apr 2016

  • Wrede D, Taha M, Miranda AF, Kadali K, Stevenson T, Ball AS et al (2014) Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS ONE 9:e113497. doi:10.1371/journal.pone.0113497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu YH, Hu HY, Yu Y, Zhang TY, Zhu SF, Zhuang LL et al (2014) Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renew Sustain Energ Rev 33:675–688

    Article  CAS  Google Scholar 

  • Xia C, Zhang J, Zhang W, Hu B (2011) A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels 4:15. doi:10.1186/1754-6834-4-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie SX, Sun S, Dai SY, Yuan JS (2013) Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res 2:28–33

    Article  Google Scholar 

  • Yamaguchi T, Ishida M, Suzuki T (1999) An immobilized cell system in polyurethane foam for the lipophilic micro-alga Prototheca zopfii. Process Biochem 34(2):167–171

    Article  CAS  Google Scholar 

  • Zhang E, Wang B, Wang Q, Zhang S, Zhao B (2008) Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99(9):3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Cheng YL, Li Y, Wan YQ, Liu YH, Lin XY et al (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167:214–228

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Li YC, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol 102:6909–6919

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Ruan R, Wang J (2015) Bio-flocculation of microalgae: status and prospects. Curr Biotechnol 4(4):448–456

    Article  CAS  Google Scholar 

  • Znidarsic P, Pavko A (2001) The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technol Biotechnol 39:237–252

    Google Scholar 

  • Zoller S, Lutzoni F (2003) Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol Phylogenet Evol 29:629–640

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Purchase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Egede, E.J., Jones, H., Cook, B., Purchase, D., Mouradov, A. (2016). Application of Microalgae and Fungal-Microalgal Associations for Wastewater Treatment. In: Purchase, D. (eds) Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42852-9_7

Download citation

Publish with us

Policies and ethics