Advertisement

Application of Microalgae and Fungal-Microalgal Associations for Wastewater Treatment

  • Ewere Job Egede
  • Huw Jones
  • Bryan Cook
  • Diane PurchaseEmail author
  • Aidyn Mouradov
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Microalgal applications represent potential green and smart solutions for the treatment of different types of wastewaters. Fungal–microalgal associations are gaining increasing attention as a low cost and an efficient strategy for the concentration of microalgal cells and the additive contribution of their components to the production of value-added chemicals and biofuels. In spite of the obvious attractiveness of microalgal-based bioremediation, there are still some challenges that can affect their economic viability. The costs associated with removing microalgal cells from treated wastewaters and harvesting them for the production of value-added products can account for up to 50 % of the total cost. With both biological components known to be involved in absorption of key nutrients and microelements from growing environments, fungal–microalgal consortiums show cumulative and synergistic effects on wastewater treatment efficiencies. This review covers the potential of microalgal representatives and their association with filamentous fungi for the treatment of different types of wastewaters and conversion of generated biomass into value-added chemicals and biofuels.

Keywords

Bio-flocculation Biofuel Filamentous fungi Microalgae Wastewater 

References

  1. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275PubMedPubMedCentralCrossRefGoogle Scholar
  2. Acuner E, Dilek FB (2004) Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem 39(5):623–631CrossRefGoogle Scholar
  3. Aguirre AM, Bassi A, Saxena P (2013) Engineering challenges in biodiesel production from microalgae. Crit Rev Biotechnol 33:293–308PubMedCrossRefGoogle Scholar
  4. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257PubMedCrossRefGoogle Scholar
  5. Akhtar N, Iqbal J, Iqbal M (2004a) Enhancement of lead (II) biosorption by microalgal biomass immobilized onto loofa (Luffa cylindrica) sponge. Eng Life Sci 4(2):171–178CrossRefGoogle Scholar
  6. Akhtar N, Iqbal J, Iqbal M (2004b) Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108(1):85–94PubMedCrossRefGoogle Scholar
  7. Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem 40(3):1347–1361CrossRefGoogle Scholar
  8. Anthony RJ, Ellis JT, Sathish A, Rahman A, Miller CD, Sims RC (2013) Effect of coagulant/flocculants on bioproducts from microalgae. Bioresour Technol 149:65–70PubMedCrossRefGoogle Scholar
  9. Argonne National Laboratory (2013). http://www.transportation.anl.gov/engines/multi_dim_model_biofuels.html. Accessed 12 April 2016
  10. Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70CrossRefGoogle Scholar
  11. Barange M, Srivstava A, Srivastava JK, Palsania J (2014) Biosorption of heavy metals from wastewater by using microalgae. Int J Chem Phys Sci 3(6):67–81Google Scholar
  12. Bayramoğlu G, Arıca MY (2009) Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu (II), Zn (II) and Ni (II): kinetics and equilibrium studies. Bioresour Technol 100(1):186–193PubMedCrossRefGoogle Scholar
  13. Bayramoğlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81:35–43CrossRefGoogle Scholar
  14. Berner F, Heimann K, Sheehan M (2015) Microalgal biofilms for biomass production. J Appl Phycol 27:1793–1804CrossRefGoogle Scholar
  15. Bilanovic D, Shelef G, Sukenik A (1988) Flocculation of microalgae with cationic polymers—effects of medium salinity. Biomass 17:65–76CrossRefGoogle Scholar
  16. Boduroğlu G, Kılıç NK, Dönmez G (2014) Bioremoval of Reactive Blue 220 by Gonium sp. biomass. Environ Technol 35(19):2410–2415PubMedCrossRefGoogle Scholar
  17. Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45:5925–5933PubMedCrossRefGoogle Scholar
  18. Borde X, Guieysse B, Delgado O, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C et al (2003) Synergistic relationships in algal–bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol 86(3):293–300PubMedCrossRefGoogle Scholar
  19. Borsos E, Makra L, Béczi B, Vitányi B, Szentpéteri V (2003) Anthropogenic air pollution in the ancient times. Acta Climatol Chrolog 36–37:5–15Google Scholar
  20. Brightman FH, Seaward MRD (1977) Lichens of man-made substrates. In: Seaward MRD (ed) Lichen Ecology. Academic Press, London, pp 253–293Google Scholar
  21. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  22. Chan SMN, Luan T, Wong MH, Tam NFY (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25(7):1772–1779PubMedCrossRefGoogle Scholar
  23. Chavan A, Mukherji S (2008) Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: effect of N: P ratio. J Hazard Mater 154(1):63–72PubMedCrossRefGoogle Scholar
  24. Chekroun KB, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1:19–32Google Scholar
  25. Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81PubMedCrossRefGoogle Scholar
  26. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105PubMedCrossRefGoogle Scholar
  27. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306PubMedCrossRefGoogle Scholar
  28. Chong AMY, Wong YS, Tam NFY (2000) Performance of different microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere 41:251–257PubMedCrossRefGoogle Scholar
  29. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702PubMedCrossRefGoogle Scholar
  30. Cox PW, Paul GC, Thomas CR (1998) Image analysis of the morphology of filamentous micro-organisms. Microbiology 144:817–827PubMedCrossRefGoogle Scholar
  31. Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour Technol 98(6):1176–1182PubMedCrossRefGoogle Scholar
  32. Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Ind J Biotechnol 7(2):159–169Google Scholar
  33. de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38(19):4222–4246Google Scholar
  34. de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627Google Scholar
  35. de-Bashan LE, Moreno M, Hernandez J-P, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948Google Scholar
  36. de-Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:4222–4246Google Scholar
  37. de Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698CrossRefGoogle Scholar
  38. de la Noüe J, Laliberté G, Proulx D (1992) Algae and waste water. J Appl Phycol 4:247–254CrossRefGoogle Scholar
  39. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hygiene Environ Health 214:442–448CrossRefGoogle Scholar
  40. Dilek FB, Taplamacioglu HM, Tarlan E (1999) Colour and AOX removal from pulping effluents by algae. Appl Microbiol Biotechnol 52(4):585–591CrossRefGoogle Scholar
  41. Elkassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egyp J Aqua Res 40:301–308CrossRefGoogle Scholar
  42. El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeter Biodegrad 63(6):699–704CrossRefGoogle Scholar
  43. Ergene A, Ada K, Tan S, Katırcıoğlu H (2009) Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: equilibrium and kinetic modeling studies. Desalination 249(3):1308–1314CrossRefGoogle Scholar
  44. Feofilova EP (2010) The fungal cell wall: modern concepts of its composition and biological function. Microbiology 79:711–720CrossRefGoogle Scholar
  45. Fierro S, del Pilar Sanchez-Saavedra M, Copalcua C (2008) Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresour Technol 99(5):1274–1279Google Scholar
  46. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–971PubMedCrossRefGoogle Scholar
  47. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–441PubMedCrossRefGoogle Scholar
  48. Garnham GW, Codd GA, Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Env Sci Tech 26(9):1764–1770CrossRefGoogle Scholar
  49. Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20:17–48PubMedCrossRefGoogle Scholar
  50. Godos Id, Blanco S, García-Encina PA, Becares E, Muñoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100:4332–4349Google Scholar
  51. Grimm LH, Kelly S, Hengstler J, Göbel A, Krull R, Hempel DC (2004) Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 87:213–218PubMedCrossRefGoogle Scholar
  52. Gultom SO, Hu B (2013) Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 6:5921–5939CrossRefGoogle Scholar
  53. Guolan H, Hongwen S, Li CL (2000) Study on the physiology and degradation of dye with immobilized algae. Art Cells Blood Substit Immobil Biotechnol 28(4):347–363CrossRefGoogle Scholar
  54. Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res 35(17):4079–4085PubMedCrossRefGoogle Scholar
  55. Gutzeit G, Lorch D, Weber A, Engels M, Neis U (2005) Biofocculent algal-bacterial biomass improves low-cost waterwater treatment. Water Sci Technol 52(12):9–18PubMedGoogle Scholar
  56. Han X, Wong YS, Tam NFY (2006) Surface complexation mechanism and modelling in Cr (III) biosorption by a microalgal isolate, Chlorella miniata. J Colloid Interf Sci 303:365–371CrossRefGoogle Scholar
  57. Han X, Wong YS, Wong MH, Tam NFY (2007) Biosorption and bioreduction of Cr (VI) by a microalgal isolate Chlorella miniata. J Hazard Mater 146(1):65–72PubMedCrossRefGoogle Scholar
  58. Henderson RK, Parsons SA, Jefferson B (2008) Successful removal of algae through the control of zeta potential. Sep Sci Technol 43:1653–1666CrossRefGoogle Scholar
  59. Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK et al (2010) The European water framework directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–4019PubMedCrossRefGoogle Scholar
  60. Hiruta O, Futamura T, Takebe H, Satoh A, Kamisaka Y, Yokochi T et al (1996) Optimization and scale-up of gamma-linolenic acid production by Mortierella ramanniana MM 15-1, a high gamma-linolenic acid producing mutant. J Ferment Bioeng 82:366–370CrossRefGoogle Scholar
  61. Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34(5):757–763CrossRefGoogle Scholar
  62. Holder DJ, Kirkland BH, Lewis MW, Keyhani NO (2007) Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3448–3457PubMedCrossRefGoogle Scholar
  63. Hu Z, Tommaso L, van Loosdrecht M, Kartal B (2013) Nitrogen removal with the anaerobic ammomium oxidation process. Biotechonol Lett 35(8):1145–1154CrossRefGoogle Scholar
  64. Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278PubMedCrossRefGoogle Scholar
  65. John J (2000) A self-sustainable remediation system for acidic mine voids. In: 4th International conference of diffuse pollution. International Association of Water Quality, Bangkok, pp 506–511Google Scholar
  66. Kaya V, Goule, de la Noüe J, Picard G (1996) Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis. Enzyme Microb Technol 18(8):550–554Google Scholar
  67. Keskin NOS, Celebioglu A, Uyar T, Tekinay T (2015) Microalgae immobilised by nanofibrous web for removal of reactive dyes from wastewater. Ind Eng Chem Res 54:5802–5809CrossRefGoogle Scholar
  68. Khan MA, Ghouri AM (2011) Environmental pollution: its effects on life and its remedies. Res World: J Arts Sci Commer 2:276–285Google Scholar
  69. Krull R, Cordes C, Horn H, Kampen I, Kwade A, Neu TR et al (2010) Morphology of Filamentous fungi: linking cellular biology to process engineering using Aspergillus niger. Adv Biochem Eng Biotechnol 121:1–21PubMedGoogle Scholar
  70. Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC et al (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123PubMedCrossRefGoogle Scholar
  71. Kumar KV, Ramamurthi V, Sivanesan S (2006) Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae. Dyes Pigments 69:102–107Google Scholar
  72. Kumar KV, Sivanesan S, Ramamurthi V (2005) Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling. Process Biochem 40:2865–2872CrossRefGoogle Scholar
  73. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391PubMedCrossRefGoogle Scholar
  74. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690PubMedCrossRefGoogle Scholar
  75. Lau A, Wong YS, Tong Z (1998) Metal removal studied by a laboratory scale immobilized microalgal reactor. J Environ Sci. 10(3):474–478Google Scholar
  76. Lau PS, Tam NFY, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 8(9):945–951CrossRefGoogle Scholar
  77. Lee A, Lewis D, Ashman P (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567CrossRefGoogle Scholar
  78. Lee AK, Lewis DM, Ashman PJ (2013) Harvesting of marine microalgae by electroflocculation: the energetics, plant design, and economics. Appl Energ 108:45–53CrossRefGoogle Scholar
  79. Lei AP, Wong YS, Tam NF (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46(11–12):195–201PubMedGoogle Scholar
  80. Leite GB, Abdelaziz AEM, Hallenbeck PC (2013) Algal biofuels. Challenges and opportunities. Bioresour Technol 145:134–141PubMedCrossRefGoogle Scholar
  81. Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresour Technol 102:10861–10867PubMedCrossRefGoogle Scholar
  82. Liao W, Liu Y, Chen SL (2007a) Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production. Appl Biochem Biotechnol 137:689–701PubMedGoogle Scholar
  83. Liao W, Liu Y, Frear C, Chen SL (2007b) A new approach of pellet formation of a filamentous fungus—Rhizopus oryzae. Bioresour Technol 98:3415–3423PubMedCrossRefGoogle Scholar
  84. Linder MB (2009) Hydrophobins: proteins that self-assemble at interfaces. Curr Opin Colloid In. 14:356–363CrossRefGoogle Scholar
  85. Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y et al (2013) Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels 6(1):149. doi: 10.1186/1754-6834-6-149 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Liu Y, Liao W, Chen S (2008) Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. J Appl Microbiol 105:1521–1528PubMedCrossRefGoogle Scholar
  87. Ma X, Zhou W, Fu Z, Cheng Y, Min M, Liu Y et al (2014) Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour Technol 67:8–13CrossRefGoogle Scholar
  88. Mahan CA, Majidi V, Holcombe JA (1989) Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing inductively coupled plasma emission spectrometry. Anal Chem 6(1):624–627CrossRefGoogle Scholar
  89. Manheim D, Nelson Y (2013) Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass production. Environ Prog Sustain Energy 32:946–954CrossRefGoogle Scholar
  90. Maza-Márquez P, Martinez-Toledo MV, Fenice M, Andrade L, Lasserrot A, Gonzalez-Lopez J (2014) Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int Biodeter Biodegrad 88:69–76CrossRefGoogle Scholar
  91. McGinn PJ, Dickinson KE, Park KC, Whitney CG, MacQuarrie SP, Black FJ et al (2012) Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res 1:155–165Google Scholar
  92. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL et al (2012) International nomenclature code for Algae, Fungi and Plants, (Melbourne code). In: Adopted by the 18th International Botanical Congress. Koeltz Scientific Books, Melbourne, AustraliaGoogle Scholar
  93. Medina M, Neis U (2007) Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance. Water Sci Technol 55(11):165–171PubMedCrossRefGoogle Scholar
  94. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Cri Rev Biotechnol 25(3):113–152CrossRefGoogle Scholar
  95. Metz B, Kossen NWF (1977) The growth of molds in the form of pellets–a literature review. Biotechnol Bioeng 19:781–799CrossRefGoogle Scholar
  96. Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93PubMedCrossRefGoogle Scholar
  97. Miranda AF, Taha M, Wrede D, Morrison P, Ball AS, Stevenson T et al (2015) Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells. Biotechnol Biofuels 8:179–197PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mishra PK, Mukherji S (2012) Biosorption of diesel and lubricating oil on algal biomass. 3 Biotechnol 2(4):301–310Google Scholar
  99. Mohan SV, Bhaskar YV, Karthikeyan J (2004) Biological decolourisation of simulated azo dye in aqueous phase by algae Spirogyra species. Int J Environ Pollut 21(3):211–222CrossRefGoogle Scholar
  100. Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515Google Scholar
  101. Moreno-Garrido I, Codd GA, GaddGM, Lubián LM (2002) Cu and Zn accumulation by calcium alginate immobilized marine microalgal cells of Nannochloropsis gaditana (Eustigmatophyceae). Cienc Mar 28(1):107–119Google Scholar
  102. Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815PubMedCrossRefGoogle Scholar
  103. Muradov N, Taha M, Miranda AF, Wrede D, Kadali K, Gujar A et al (2015) Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol Biofuels 8:24. doi: 10.1186/s13068-015-0210-6 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nakajima A, Horikoshi T, Sakaguchi T (1982) Recovery of uranium by immobilized microorganisms. Eur J Appl Microbiol Biotechnol 16(2–3):88–91CrossRefGoogle Scholar
  105. Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284CrossRefGoogle Scholar
  106. Omar HH (2008) Algal decolorization and degradation of monoazo and diazo dyes. Pak J Biol Sci 1(10):1310–1316CrossRefGoogle Scholar
  107. Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105Google Scholar
  108. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259PubMedCrossRefGoogle Scholar
  109. Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291PubMedCrossRefGoogle Scholar
  110. Park JB, Craggs RJ (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61(3):633–639. doi: 10.2166/wst.2010.951 PubMedCrossRefGoogle Scholar
  111. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42PubMedCrossRefGoogle Scholar
  112. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36Google Scholar
  113. Pinheiro HM, Touraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewater. Dyes Pigments 61:121–139. doi: 10.1016/j.dyepig.2003.10.009 CrossRefGoogle Scholar
  114. Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24(24):2047–2051CrossRefGoogle Scholar
  115. Powell RJ, Hill RT (2013) Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp strain RP1137. Appl Environ Microbiol 79:6093–6101PubMedPubMedCentralCrossRefGoogle Scholar
  116. Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171CrossRefGoogle Scholar
  117. Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3:299–304Google Scholar
  118. Rajab AH (2007) Micro-algae removal in domestic wastewater using Aspergillus flavus soft pellets as a bio-coagulant. Universiti Putra Malaysia, Faculty of EngineeringGoogle Scholar
  119. Rajkumar R, Yaakob Z, Takriff MS (2014) Potential of the micro and macro algae for biofuel production: a brief review. Bioresources 9:1606–1633Google Scholar
  120. Ratha SK, Babu S, Renuka N, Prasanna R, Prasad RBN, Saxena AK (2013) Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. J Basic Microbiol 53:440–450PubMedCrossRefGoogle Scholar
  121. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424CrossRefGoogle Scholar
  122. Reed TB (1981) Biomass gasification: principles and technology. NJ Noyes Data Corporation, Park RidgeGoogle Scholar
  123. Riaño B, Hernández D, García-González MC (2012) Microalgal-based systems for wastewater treatment: Effect of applied organic and nutrient loading rate on biomass composition. Ecol Eng 49:112–117CrossRefGoogle Scholar
  124. Ritter L, Solomon KR, Forget J, Stemeroff M, O’Leary C (1995) Persistent organic pollutants. An assessment report on DDT, aldrin, dieldrin, endrin, chlordane, heptachlor, hexachlorobenzene, mirex, toxaphene, polychlorinated biphenyls, dioxins and furans. International Programme on Chemical Safety (IPCS). In: Persistent organic pollutants. An assessment report on DDT, aldrin, dieldrin, endrin, chlordane, heptachlor, hexachlorobenzene, mirex, toxaphene, polychlorinated biphenyls, dioxins and furans. International Programme on Chemical Safety (IPCS). PCS 95, City, vol 38, p 43Google Scholar
  125. Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64PubMedCrossRefGoogle Scholar
  126. Ryu BG, Kim J, Faroog W, Han JI, Yang JW, Kim W (2014) Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. Bioresour Technol 162:70–79. doi: 10.1016/j.biortech.2014.03.084 PubMedCrossRefGoogle Scholar
  127. Safonova E, Kvitko KV, Iankevitch MI, Surgko LF, Afti IA, Reisser W (2004) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci 4(4):347–353CrossRefGoogle Scholar
  128. Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23:849–855PubMedCrossRefGoogle Scholar
  129. Schweitzer B, Huber I, Amann R, Ludwig W, Simon M (2001) Alpha- and betaproteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 67:632–645PubMedPubMedCentralCrossRefGoogle Scholar
  130. Selbmann L, Stingele F, Petruccioli M (2003) Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina. Anton Van Leeuwenhoek 84:135–145CrossRefGoogle Scholar
  131. Semple KT, Cain R, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170(2):291–300. doi: 10.1111/j.1574-6968.1999.tb13386.x CrossRefGoogle Scholar
  132. Seviour RJ, Stasinopoulos SJ, Auer DPF, Gibbs PA (1992) Production of pullulan and other exopolysaccharides by filamentous fungi. Crit Rev Biotechnol 12:279–298CrossRefGoogle Scholar
  133. Sheng Y, Chen F, Sheng G, Fu J (2012) Water quality remediation in a heavily polluted tidal river in Guangzhou, South China. Aquat Ecosyst Health 15:219–226Google Scholar
  134. Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19(5):417–423CrossRefGoogle Scholar
  135. Simas-Rodrigues C, Villela HDM, Martins AP, Marques LG, Colepicolo P, Tonon AP (2015) Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot 66(14):4097–4108. doi: 10.1093/jxb/erv130 PubMedCrossRefGoogle Scholar
  136. Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41(9):807–878CrossRefGoogle Scholar
  137. Sivarajasekar N, Baskar R, Balakrishnan V (2009) Biosorption of an azo dye from aqueous solutions onto Spirogyra. J Uni Chem Technol Metal 44(2):157–164Google Scholar
  138. Sournia A (1978) Phytoplankton manual. UNESCO, ParisGoogle Scholar
  139. Souza PO, Ferreira LR, Pires NR, Duarte FA, Pereira CM, Mesko MF (2012) Algae of economic importance that accumulate cadmium and lead: a review. Revista Brasil Farmacog 22(4):825–837CrossRefGoogle Scholar
  140. Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a water-born and settleable algal-bacterial culture. Water Res 45(11):3351–3358. doi: 10.1016/j.watres.2011.03.046 PubMedCrossRefGoogle Scholar
  141. Swami D, Buddhi D (2006) Removal of contaminants from industrial wastewater through various non-conventional technologies: a review. Int J Environ Pollut 27:324–346CrossRefGoogle Scholar
  142. Takáčová A, Smolinská M, Ryba J, Mackuľak T, Jokrllová Hronec P et al (2014) Biodegradation of benzo[a]pyrene through the use of algae. Cent Eur J Chem 12(11):1133–1143CrossRefGoogle Scholar
  143. Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107:145–151PubMedCrossRefGoogle Scholar
  144. Tam NFY, Lau PS, Wong YS (1994) Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Water Sci Technol 30:369–374Google Scholar
  145. Tam NFY, Wong JPK, Wong YS (2001) Repeated use of two Chlorella species, C. vulgaris and WW1 for cyclic nickel biosorption. Environ Pollut 114:85–92PubMedCrossRefGoogle Scholar
  146. Tam NFY, Wong YS, Wong MH (2009) Novel technology in pollutant removal at source and bioremediation. Ocean Coast Manage 52:368–373CrossRefGoogle Scholar
  147. Tam NFY, Chan MN, Wong YS, Popov V, Itoh H, Mander U et al (2010) Removal and biodegradation of polycyclic aromatic hydrocarbons by immobilized microalgal beads. WIT Trans Ecol Environ 140:391–402. doi: 10.2495/WM100351
  148. Taylor TN, Hass H, Remy W, Kerp H (1995) The oldest fossil lichen. Nature 378:244CrossRefGoogle Scholar
  149. Thakur A, Kumar HD (1999) Nitrate, ammonium, and phosphate uptake by the immobilized cells of Dunaliella salina. B Environ Contam Tox 62(1):70–78CrossRefGoogle Scholar
  150. Todd SJ, Cain RB, Schmidt S (2002) Biotransformation of naphthalene and diaryl ethers by green microalgae. Biodegradation 13(4):229–238PubMedCrossRefGoogle Scholar
  151. Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyron R, Dominguez AR (1996) Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour Technol 55(3):181–186CrossRefGoogle Scholar
  152. Uduman N, Qi Y, Danquah MK, Hoadley AFA (2010) Marine microalgae flocculation and focused beam reflectance measurement. Chem Eng J 162:935–940CrossRefGoogle Scholar
  153. Ueno R, Wada S, Urano N (2006) Synergetic effects of cell immobilization in polyurethane foam and use of thermotolerant strain on degradation of mixed hydrocarbon substrate by Prototheca zopfii. Fish Sci 72:1027–1033CrossRefGoogle Scholar
  154. Ueno R, Wada S, Urano N (2008) Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can J Microbiol 54(1):66–70PubMedCrossRefGoogle Scholar
  155. Unnithan VV, Unc A, Smith GB (2014) Mini-review: a priori considerations for bacteria-algae interactions in algal biofuel sustems receiving municipal wastewaters. Algal Res 4:35–40. doi: 10.1016/j.algal.2013.11.009 CrossRefGoogle Scholar
  156. Van den Hende S, Vervaeren H, Desmet S, Boon N (2011) Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol 29:23–31CrossRefGoogle Scholar
  157. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239PubMedCrossRefGoogle Scholar
  158. Vechtlifshitz SE, Magdassi S, Braun S (1990) Pellet formation and cellular aggregation in Streptomyces tendae. Biotechnol Bioeng 35:890–896CrossRefGoogle Scholar
  159. Vieira RH, Volesky B (2010) Biosorption: a solution to pollution? Int Microbiol 3(1):17–24Google Scholar
  160. Volesky B, Naja G (2005) Biosorption: application strategies. In: 16th International Biotechnology Symposium. Compress Co., Cape Town, South AfricaGoogle Scholar
  161. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226PubMedCrossRefGoogle Scholar
  162. Wang L, Zhang C, Wu F, Deng N (2007) Photodegradation of aniline in aqueous suspensions of microalgae. J Photochem Photobio B: Bio 87:49–57CrossRefGoogle Scholar
  163. Wang LA, Min M, Li YC, Chen P, Chen YF, Liu YH et al (2010) Cultivation of green algae Chlorella sp in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186PubMedCrossRefGoogle Scholar
  164. Worku A, Sahu O (2014) Reduction of heavy metal and hardness from ground water by algae. J Appl Environ Microbiol 2:86–89Google Scholar
  165. WWAP (United Nations World Water Assessment Programme) (2015) World water development report 2015: water for a sustainable world. UNESCO, Paris. http://unesdoc.unesco.org/images/0023/002318/231823E.pdf. Accessed 14 Apr 2016
  166. Wrede D, Taha M, Miranda AF, Kadali K, Stevenson T, Ball AS et al (2014) Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS ONE 9:e113497. doi: 10.1371/journal.pone.0113497 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wu YH, Hu HY, Yu Y, Zhang TY, Zhu SF, Zhuang LL et al (2014) Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renew Sustain Energ Rev 33:675–688CrossRefGoogle Scholar
  168. Xia C, Zhang J, Zhang W, Hu B (2011) A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels 4:15. doi: 10.1186/1754-6834-4-15 PubMedPubMedCentralCrossRefGoogle Scholar
  169. Xie SX, Sun S, Dai SY, Yuan JS (2013) Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res 2:28–33CrossRefGoogle Scholar
  170. Yamaguchi T, Ishida M, Suzuki T (1999) An immobilized cell system in polyurethane foam for the lipophilic micro-alga Prototheca zopfii. Process Biochem 34(2):167–171CrossRefGoogle Scholar
  171. Zhang E, Wang B, Wang Q, Zhang S, Zhao B (2008) Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99(9):3787–3793PubMedCrossRefGoogle Scholar
  172. Zhou W, Cheng YL, Li Y, Wan YQ, Liu YH, Lin XY et al (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167:214–228PubMedCrossRefGoogle Scholar
  173. Zhou W, Li YC, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol 102:6909–6919PubMedCrossRefGoogle Scholar
  174. Zhou W, Ruan R, Wang J (2015) Bio-flocculation of microalgae: status and prospects. Curr Biotechnol 4(4):448–456CrossRefGoogle Scholar
  175. Znidarsic P, Pavko A (2001) The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technol Biotechnol 39:237–252Google Scholar
  176. Zoller S, Lutzoni F (2003) Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol Phylogenet Evol 29:629–640PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ewere Job Egede
    • 1
  • Huw Jones
    • 1
  • Bryan Cook
    • 2
  • Diane Purchase
    • 1
    Email author
  • Aidyn Mouradov
    • 2
  1. 1.Department of Natural Sciences, Faculty of Science and Technology,Middlesex UniversityLondonUnited Kingdom
  2. 2.School of SciencesRoyal Melbourne Institute of Technology, UniversityBundooraAustralia

Personalised recommendations