Potential of White-Rot Fungi to Treat Xenobiotic-Containing Wastewater

  • Susana Rodríguez-CoutoEmail author
Part of the Fungal Biology book series (FUNGBIO)


Xenobiotic compounds are resistant to degradation by the native micro-organisms present in the environment. This causes their accumulation and persistence in the environment with the subsequent detrimental effects not only for our ecosystem but also for human health. Therefore, the treatment of such compounds is an urgent need. The current existing methods for wastewater treatment are relatively ineffective against xenobiotic compounds; they are expensive and relatively environmentally unfriendly. This has compelled the search for new approaches. In this sense, the potential use of white-rot fungi to treat this type of compounds has been studied intensively in the past decades. These fungi are the only micro-organisms able to mineralise the recalcitrant biopolymer lignin. Their unique ability to degrade lignin is due to the secretion of an extracellular, non-specific and free-radical-based enzymatic system.


Ligninolytic enzymes Wastewater White-rot fungi Xenobiotics 


  1. Accinelli C, Saccà ML, Batisson I, Fick J, Mencarelli M, Grabic R (2010) Removal of oseltamivir (Tamiflu) and other selected pharmaceuticals from wastewaterusing a granular bioplastic formulation entrapping propagules of Phanerochaete chrysosporium. Chemosphere 81:436–443CrossRefPubMedGoogle Scholar
  2. Adasgavek JE, Gilbertson RL, Dunlap MR (1995) Effects of incubation time and temperature on in vitro selective delignification of Silver leaf oak by Ganoderma colossum. Appl Environ Microbiol 61:138–144Google Scholar
  3. Anastasi A, Spina F, Prigione V, Tigini V, Giansanti P, Varese GC (2010) Scaleup of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresour Technol 101:3067–3075CrossRefPubMedGoogle Scholar
  4. Anastasi A, Parato B, Spina F, Tigini V, Prigione V, Varese GC (2011) Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol 29:38–45CrossRefGoogle Scholar
  5. Anastasi A, Spina F, Romagnolo A, Tigini V, Prigione V, Varese GC (2012) Integrated fungal biomass and activated sludge treatment for textile wastewaters bioremediation. Bioresour Technol 123:106–111CrossRefPubMedGoogle Scholar
  6. Banci L, Ciofi-Baffoni S, Tien M (1999) Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry 38:3205–3210Google Scholar
  7. Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:S999–S1010CrossRefGoogle Scholar
  8. Bonnarme P, Jeffries TW (1990) Mn (II) regulation of lignin peroxidase and manganese-dependent peroxidase from lignin-degrading white rot fungi. Appl Environ Microb 56:210–217Google Scholar
  9. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102CrossRefPubMedGoogle Scholar
  10. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436CrossRefPubMedGoogle Scholar
  11. Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediatorsystems (Lignozym ®-process). J Biotechnol 53:163–202CrossRefGoogle Scholar
  12. Cerrone F, Barghini P, Pesciaroli C, Fenice M (2011) Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor. Chemosphere 84:254–259CrossRefPubMedGoogle Scholar
  13. Chang YS (2008) Recent developments in microbial biotransformation and biodegradation of dioxins. J Mol Microb Biotech 15:152–171CrossRefGoogle Scholar
  14. Choi YS, Seo JY, Lee H, Yoo J, Jung J, Kim JJ, Kim GH (2014) Decolorization and detoxification of wastewater containing industrial dyes by Bjerkandera adusta KUC9065. Water Air Soil Poll 225:1801–1810CrossRefGoogle Scholar
  15. Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BR (2005) Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: Enzymology and mechanisms involved. Indian J Exp Biol 43:301–312PubMedGoogle Scholar
  16. Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Marco-Urrea E, Vicent T, Sarrà M (2013) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47:5200–5210CrossRefPubMedGoogle Scholar
  17. Cruz-Morató C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E (2014) Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ 493:365–376CrossRefPubMedGoogle Scholar
  18. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50PubMedPubMedCentralGoogle Scholar
  19. de Miranda RCM, Gomes E, Pereira N, Marin-Morales MA, Machado KMG, de Gusmao NB (2013) Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181. Bioresour Technol 142:361–336CrossRefGoogle Scholar
  20. Dosoretz CG, Reddy CA (2007) Lignin and lignin-modifying enzymes. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LJ (eds) Methods for general and molecular microbiology. American Society for Microbiology, Washington, pp 611–620Google Scholar
  21. Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B-Enzym 68:117–128CrossRefGoogle Scholar
  22. Fackler K, Gradingerm C, Hinterstoisser B, Messner K, Schwanninger M (2006) Lignin degradation by white rot fungi on spruce wood shavings during shorttime solid-state fermentations monitored by near infrared spectroscopy. Enzym Microb Tech 39:1476–1483CrossRefGoogle Scholar
  23. Field JA, de Jong E, Feijoo Costa G, de Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44–49CrossRefGoogle Scholar
  24. Galli C, Gentili P (2004) Chemical messengers: mediated oxidations with the enzyme laccase. J Phys Org Chem 17:973–977CrossRefGoogle Scholar
  25. Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microb 45:1741–1747Google Scholar
  26. Gomathi Cibichakravarthy V, Ramanjaneya B, Nallapeta AS, Mula R, Jayasimha Rayalu D (2012) Decolourization of paper mill effluent by immobilized cells of Phanerochaete chrysosporium. Int J Pl An Environ Sci 2:141–146Google Scholar
  27. Gros M, Cruz-Morato C, Marco-Urrea E, Longrée P, Singer H, Sarrà M, Hollender J, Vicent T, Rodriguez-Mozaz S, Barceló D (2014) Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Res 60:228–241CrossRefPubMedGoogle Scholar
  28. Hammel KE, Jensen K, Mozuch M, Landucci L, Tien M, Pease E (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268:12274–12281PubMedGoogle Scholar
  29. Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzym Microb Tech 30:445–453CrossRefGoogle Scholar
  30. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192CrossRefPubMedGoogle Scholar
  31. Harvey PJ, Schoemaker HE, Palmer JM (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation byPhanerochaete chrysosporium. FEBS Lett 195:242–246CrossRefGoogle Scholar
  32. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135CrossRefGoogle Scholar
  33. Hatakka A (2001a) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Lignin, humic substances and coal, vol 1, Wiley-VCH, Weinheim (Germany), pp 129–180Google Scholar
  34. Hatakka A (2001b) Biodegradation of lignin. In: Steinbüchel A, Hofrichter M (eds) Biopolymers, vol 1., Lignin, humic substances and coalWiley-VCH, Weinheim, pp 129–180Google Scholar
  35. Heinfling A, Martinez MJ, Martıinez AT, Bergbauer M, Szewzyk U (1998) Purification and characterization of peroxidases from the dye decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43–50CrossRefPubMedGoogle Scholar
  36. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Tech 30:454–466CrossRefGoogle Scholar
  37. Hofrichter M, Scheibner K, Schneegaß I, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase of Nematoloma frowardii. Appl Environ Microb 64:399–404Google Scholar
  38. Hofrichter M, Ulrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classical families of secreted fungal heme peroxidases. Appl Microbiol Biot 87:871–897CrossRefGoogle Scholar
  39. Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microb 65:1029–1035Google Scholar
  40. Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–307Google Scholar
  41. Kurniawati S, Nicell JA (2007) Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol. Enzyme Microb. Tech. 41:353–361CrossRefGoogle Scholar
  42. Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biot 85:1869–1879CrossRefGoogle Scholar
  43. Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102CrossRefPubMedGoogle Scholar
  44. Liers C, Aranda E, Strittmatter E, Piontek K, Plattner DA, Zorn H, Ullrich R, Hofrichter M (2014) Phenol oxidation by DyP-type peroxidases in comparison to fungal and plant peroxidases. J Mol Catal B Enzym 103:41–46CrossRefGoogle Scholar
  45. Lisov AV, Leontievsky AA, Golovleva LA (2003) Hybrid Mn-peroxidase from the ligninolytic fungus Panus tigrinus 8/18. Isolation, substrate specificity, and catalytic cycle. Biochemistry (Moscow) 68:1027–1035CrossRefGoogle Scholar
  46. Lundell T, Mäkelä M (2013) Puunlahottajat (Wood-degrading fungi). In: Timonen S, Valkonen J (eds) Sienten biologia (Biology of fungi). Gaudeamus Oy, Tallinn (Estonian), pp 259–279Google Scholar
  47. Ma L, Zhuo R, Liu H, Yu D, Jiang M, Zhang X, Yang Y (2014) Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem Eng J 82:1–9CrossRefGoogle Scholar
  48. Majeau JA, Brar SK, Tyagu RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresource Technol. 101:2331–2350CrossRefGoogle Scholar
  49. Martinez AT (2002) Molecular biology and structure–function of lignin-degrading heme peroxidases. Enzyme Microb Tech 30:425–444CrossRefGoogle Scholar
  50. Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Guttirez A, del Rio JC (2005) Biodegradation of lignocellulosics: Microbial, chemical and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204PubMedGoogle Scholar
  51. Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417CrossRefPubMedGoogle Scholar
  52. Mester T, Varela E, Tien M (2004) Wood degradation by brown-rot and white-rot fungi. The Mycota II: genetics and biotechnology. Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  53. Nerud F, Misurcova Z (1996) Distribution of lignilolytic enzymes in selected white-rot-fungi. Folia Microbiol 41:264–266CrossRefGoogle Scholar
  54. Nishida T, Kashino Y, Mimura A, Takahara Y (1988) Lignin biodegradation by wood-rotting fungi I. Screening of lignin-degrading fungi. Mokuzai gakkaishi 34:530–536Google Scholar
  55. Ntougias S, Baldrian P, Ehaliotis C, Nerud F, Antoniou T, Merhautová V, Zervakis GI (2012) Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus. Chemosphere 88:620–626CrossRefPubMedGoogle Scholar
  56. Olivieri G, Russo ME, Giardina P, Marzocchella A, Sannia G, Salatino P (2012) Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus. J Ind Microbiol Biot 39:719–729CrossRefGoogle Scholar
  57. Osorio-Echavarría J, Vidal Benavides AI, Quintero Díaz JC (2012) Decolorization of textile wastewater using the white rot fungi anamorph R1 of Bjerkandera sp. Revista de la Facultad de Ingeniería de la Universidad de Antioquia 57:85–93Google Scholar
  58. Otjen R, Blanchette RA, Effland M, Leatham G (1987) Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung 41:343–349CrossRefGoogle Scholar
  59. Pakshirajan K, Kheria S (2012) Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor. J Environ Manage 101:118–123CrossRefPubMedGoogle Scholar
  60. Palli L, Gulloto A, Tilli S, Gori R, Lubello C, Scozzafava A (2014) Effect of carbon source on the degradation of 2-naphthalenesulfonic acid polymers mixture by Pleurotus ostreatus in petrochemical wastewater. Process Biochem 49:2272–2278CrossRefGoogle Scholar
  61. Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265CrossRefPubMedGoogle Scholar
  62. Pérez-Boada M, Ruiz-Dueñas J, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402CrossRefPubMedGoogle Scholar
  63. Petrides PE, Nauseef WM (2000) The peroxidase multigene family of enzymes, biochemical basis and clinical applications. Springer Verlag, Berlin-HeidelbergCrossRefGoogle Scholar
  64. Pinedo-Rivlla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214CrossRefGoogle Scholar
  65. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biot 57:20–33CrossRefGoogle Scholar
  66. Raghukumar C, D’Souza -Ticlo D, Verma AK (2008) Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Crit Rev Microbiol 34:189–206Google Scholar
  67. Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotech 6:320–328CrossRefGoogle Scholar
  68. Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, London, pp 52–78CrossRefGoogle Scholar
  69. Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–236CrossRefPubMedGoogle Scholar
  70. Sangeeta P, Kheria S, Pakshirajan K (2011) Biodecolourization of real textile industry wastewater using white-rot fungus, Phanerochaete chrysosporium. J Sci Ind Res India 70:982–986Google Scholar
  71. Sathian S, Radha G, Shanmugapriya V, Rajasimman M, Karthikeyan C (2013) Optimization and kinetic studies on treatment of textile dye wastewater using Pleurotus floridanus. Appl Water Sci 3:41–48CrossRefGoogle Scholar
  72. Sathian S, Rajasimman M, Radha G, Shanmugapriya V, Karthikeyan C (2014) Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies. Alexandria Eng J 53:417–426CrossRefGoogle Scholar
  73. Sigoillot JC, Berrin JG, Bey M, Lesage-Meessen L, Levasseur A, Lomascolo A, Record E, Uzan-Boukhris E (2012) Fungal strategies for lignin degradation. In: Jouanin L, Lapierre C (eds) Lignins: biosynthesis, biodegradation and bioengineering, advances in research. Elsevier, Amsterdam, pp 262–308Google Scholar
  74. Strong PJ (2010) Fungal remediation of Amarula distillery wastewater. World J Microb Biot 26:133–144CrossRefGoogle Scholar
  75. Subramanian V, Yadav JS (2009) Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microb 75:5570–5580CrossRefGoogle Scholar
  76. Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403CrossRefPubMedGoogle Scholar
  77. Taboada-Puig R, Lù-Chau T, Eibes G, Moreira MT, Feijoo G, Lema JM (2011) Biocatalytic generation of Mn(III)-chelate as a chemical oxidant of different environmental contaminants. Biotechnol Progr 27:668–676CrossRefGoogle Scholar
  78. ten Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413CrossRefPubMedGoogle Scholar
  79. Tuomela M, Hatakka A (2011a) Oxidative fungal enzymes for bioremediation. In: Moo-Young M, Agathos S (eds) Comprehensive biotechnology, 2nd edn. Elsevier, Spain, pp 183–196CrossRefGoogle Scholar
  80. Tuomela M, Hatakka A (2011b) Oxidative fungal enzymes for bioremediation. In: Moo-Young M, Agathos S (eds) Comprehensive biotechnology. Elsevier, Spain, pp 183–196CrossRefGoogle Scholar
  81. Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:1–17CrossRefGoogle Scholar
  82. van Bloois E, Torres Pazmino DE, Winter RT, Fraaije MW (2009) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biot 86:1419–1430CrossRefGoogle Scholar
  83. Wariishi H, Gold MH (1989) Lignin peroxidase compound III: formation, inactivation and conversion to the native enzyme. FEBS Lett 243:165–168CrossRefGoogle Scholar
  84. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187CrossRefPubMedGoogle Scholar
  85. Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzym Microb Tech 42:293–307CrossRefGoogle Scholar
  86. Xu F (1999) Recent progress in laccase study: properties, enzymology, production, and applications: the encyclopedia of bioprocessing technology: fermentation, biocatalysis, and bioseparation. John Wiley & Sons, New YorkGoogle Scholar
  87. Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE (2013) Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeter Biodegr 85:483–490CrossRefGoogle Scholar
  88. Zelena K, Hardebusch B, H€ulsdau B, Berger RG, Zorn H (2009) Generation of norisoprenoid flavors from carotenoids by fungal peroxidases. J Agr Food Chem 57:9951–9955Google Scholar
  89. Zhang Y, Geissen SU (2012) Elimination of carbamazepine in a non-sterile fungal bioreactor. Bioresour Technol 112:221–227CrossRefPubMedGoogle Scholar
  90. Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG (2003) A peroxidase from Lepista irina cleaves b, b-carotene to flavor compounds. Biol Chem 384:1049–1056CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Ceit-IK4Unit of Environmental EngineeringSan SebastianSpain
  2. 2.IKERBASQUEBasque Foundation for ScienceBilbaoSpain

Personalised recommendations