Advertisement

Application of Biosorption and Biodegradation Functions of Fungi in Wastewater and Sludge Treatment

  • Tao Lu
  • Qi-Lei Zhang
  • Shan-Jing YaoEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Wastewater and sewage treatment has always been one of the core problems of environmental protection as they contain a variety of harmful substances. Biological treatment is a relatively economical when comparing to the traditional physical and chemical processes. Biotechnology for water environment treatment attracted increasing attention in recent years. The utilization of biosorption and biodegradation functions of fungi in industrial wastewater disposal had been extensively studied and their great potential was demonstrated. However, most of these researches are still performed on a laboratory scale, and extensive pilot scale studies are essential for future industrial process applications. This article summarized the biosorption and biodegradation functions of fungi, including performances, mechanism studies and related influencing factors. The main goal of this text is to examine the situation and development trend of biological application of fungi in wastewater and sewage treatment.

Keywords

Fungi Biosorption Biodegradation Wastewater treatment Dye Heavy metal Laccase 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China, and Scientific Technology Program of Zhoushan City (2013C51021).

References

  1. Abd El-Rahim WM, Moawad H, Khalafallah M (2003) Microflora involved in textile dye waste removal. J Basic Microb 43(3):167–174. doi: 10.1002/jobm.200390019 CrossRefGoogle Scholar
  2. Akar T, Arslan S, Akar ST (2013) Utilization of Thamnidium elegans fungal culture in environmental cleanup: a reactive dye biosorption study. Ecol Eng 58:363–370. doi: 10.1016/j.ecoleng.2013.06.026 CrossRefGoogle Scholar
  3. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3–4):997–1026. doi: 10.1016/j.procbio.2004.04.008 CrossRefGoogle Scholar
  4. Aksu Z, Balibek E (2007) Chromium(VI) biosorption by dried Rhizopus arrhizus: Effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mater 145(1–2):210–220. doi: 10.1016/j.jhazmat.2006.11.011 PubMedCrossRefGoogle Scholar
  5. Aksu Z, Balibek E (2010) Effect of salinity on metal-complex dye biosorption by Rhizopus arrhizus. J Environ Manage 91(7):1546–1555. doi: 10.1016/j.jenvman.2010.02.026 PubMedCrossRefGoogle Scholar
  6. Aksu Z, Gonen F (2004) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem 39(5):599–613. doi: 10.1016/S0032-9592(03)00132-8 CrossRefGoogle Scholar
  7. Amin M, Bhatti HN, Sadaf S (2013) Bioremediation of zirconium from aqueous solution by Coriolus versicolor: process optimization. J Chem Soc Pakistan 35(3):692–698Google Scholar
  8. Arica MY, Bayramoğlu G (2007) Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J Hazard Mater 149(2):499–507. doi: 10.1016/j.jhazmat.2007.04.021 PubMedCrossRefGoogle Scholar
  9. Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M (2008) Optimization of medium for decolorization of Solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeter Biodegr 61(2):189–193. doi: 10.1016/j.ibiod.2007.07.009 CrossRefGoogle Scholar
  10. Auriol M, Filali-Meknassi Y, Adams CD, Tyagi RD, Noguerol TN, Pina B (2008) Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor. Chemosphere 70(3):445–452. doi: 10.1016/j.chemosphere.2007.06.064 PubMedCrossRefGoogle Scholar
  11. Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD (2007) Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater. Water Res 41(15):3281–3288. doi: 10.1016/j.watres.2007.05.008 PubMedCrossRefGoogle Scholar
  12. Aust SD, Benson JT (1993) The fungus among us—use of white-rot fungi to biodegrade environmental-pollutants. Environ Health Persp 101(3):232–233. doi: 10.2307/3431547 CrossRefGoogle Scholar
  13. Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JWC, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour Technol 168:214–221. doi: 10.1016/j.biortech.2014.01.048 PubMedCrossRefGoogle Scholar
  14. Bakshi DK, Saha S, Sindhu I, Sharma P (2006) Use of Phanerochaete chrysosporium biomass for the removal of textile dyes from a synthetic effluent. World J Microbiol Biotechnol 22(8):835–839. doi: 10.1007/s11274-005-9111-3 CrossRefGoogle Scholar
  15. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242. doi: 10.1111/j.1574-4976.2005.00010.x PubMedCrossRefGoogle Scholar
  16. Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O (2000) Adsorption of phenol by bentonite. Environ Pollut 107(3):391–398. doi: 10.1016/S0269-7491(99)00173-6 PubMedCrossRefGoogle Scholar
  17. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresource Technol 58(3):217–227. doi: 10.1016/S0960-8524(96)00113-7 CrossRefGoogle Scholar
  18. Bayramoğlu G, Arica MY (2007) Biosorption of benzidine based textile dyes “Direct Blue 1 and Direct Red 128” using native and heat-treated biomass of Trametes versicolor. J Hazard Mater 143(1–2):135–143. doi: 10.1016/j.jhazmat.2006.09.002 PubMedCrossRefGoogle Scholar
  19. Bell JP, Tsezos M (1987) Removal of hazardous organic pollutants by adsorption on microbial biomass. Water Sci Technol 19(3–4):409–416Google Scholar
  20. Benoit P, Barriuso E, Calvet R (1998) Biosorption characterization of herbicides, 2,4-D and atrazine, and two chlorophenols on fungal mycelium. Chemosphere 37(7):1271–1282. doi: 10.1016/S0045-6535(98)00125-8 CrossRefGoogle Scholar
  21. Bingol A, Ucun H, Bayhan YK, Karagunduz A, Cakici A, Keskinler B (2004) Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast. Bioresour Technol 94(3):245–249. doi: 10.1016/j.biotech.2004.01.018 PubMedCrossRefGoogle Scholar
  22. Binupriya AR, Sathishkumar M, Kavitha D, Swaminathan K, Yun SE, Mun SP (2007) Experimental and isothermal studies on sorption of Congo red by modified mycelial biomass of wood-rotting fungus. Clean-Soil Air Water 35(2):143–150. doi: 10.1002/clen.200700025 CrossRefGoogle Scholar
  23. Binupriya AR, Sathishkumar M, Swaminathan K, Ku CS, Yun SE (2008) Comparative studies on removal of Congo red by native and modified mycelial pellets of Trametes versicolor in various reactor modes. Bioresour Technol 99(5):1080–1088PubMedCrossRefGoogle Scholar
  24. Bohmer U, Kirsten C, Bley T, Noack M (2010) White-rot fungi combined with lignite granules and lignitic xylite to decolorize textile industry wastewater. Eng Life Sci 10(1):26–34. doi: 10.1002/elsc.200900024 CrossRefGoogle Scholar
  25. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28(8):799–808. doi: 10.1002/Bies.20441 PubMedCrossRefGoogle Scholar
  26. Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell-wall synthesis—the construction of a biological structure. Microbiol Sci 5(12):370–375PubMedGoogle Scholar
  27. Canas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28(6):694–705. doi: 10.1016/j.biotechadv.2010.05.002 PubMedCrossRefGoogle Scholar
  28. Chang JS, Kuo TS, Chao YP, Ho JY, Lin PJ (2000) Azo dye decolorization with a mutant Escherichia coli strain. Biotechnol Lett 22(9):807–812. doi: 10.1023/A:1005624707777 CrossRefGoogle Scholar
  29. Chen BL, Ding J (2012) Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. J Hazard Mater 229:159–169. doi: 10.1016/j.jhazmat.2012.05.090 PubMedCrossRefGoogle Scholar
  30. Chen HY, Guan YX, Yao SJ (2014a) A novel two-species whole-cell immobilization system composed of marine-derived fungi and its application in wastewater treatment. J Chem Technol Biotechnol 89(11):1733–1740. doi: 10.1002/Jctb.4253 CrossRefGoogle Scholar
  31. Chen HY, Wang MX, Shen YB, Yao SJ (2014b) Optimization of two-species whole-cell immobilization system constructed with marine-derived fungi and its biological degradation ability. Chin J Chem Eng 22(2):187–192. doi: 10.1016/S1004-9541(14)60024-0 CrossRefGoogle Scholar
  32. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085. doi: 10.1016/j.biortech.2005.05.001 PubMedCrossRefGoogle Scholar
  33. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog Polym Sci 33(4):399–447. doi: 10.1016/j.progpolymsci.2007.11.001 CrossRefGoogle Scholar
  34. Dal Bosco SM, Jimenez RS, Vignado C, Fontana J, Geraldo B, Figueiredo FCA et al (2006) Removal of Mn(II) and Cd(II) from wastewaters by natural and modified clays. Adsorption 12(2):133–146. doi: 10.1007/s10450-006-0375-1 CrossRefGoogle Scholar
  35. Das SK, Bhowal J, Das AR, Guha AK (2006) Adsorption behavior of rhodamine B on Rhizopus oryzae biomass. Langmuir 22(17):7265–7272. doi: 10.1021/La0526378 PubMedCrossRefGoogle Scholar
  36. Demarche P, Junghanns C, Mazy N, Agathos SN (2012) Design-of-experiment strategy for the formulation of laccase biocatalysts and their application to degrade bisphenol A. New Biotechnol 30(1):96–103. doi: 10.1016/j.nbt.2012.05.023 CrossRefGoogle Scholar
  37. Denizli A, Cihangir N, Rad AY, Taner M, Alsancak G (2004) Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium. Process Biochem 39(12):2025–2030. doi: 10.1016/j.procbio.2003.10.003 CrossRefGoogle Scholar
  38. Denizli A, Cihangir N, Tuzmen N, Alsancak G (2005) Removal of chlorophenols from aquatic systems using the dried and dead fungus Pleurotus sajor caju. Bioresour Technol 96(1):59–62. doi: 10.1016/j.biortech.2003.11.029 PubMedCrossRefGoogle Scholar
  39. Dincer AR, Gunes Y, Karakaya N, Gunes E (2007) Comparison of activated carbon and bottom ash removal of reactive dye from aqueous solution. Bioresour Technol 98(4):834–839PubMedCrossRefGoogle Scholar
  40. Enayatzamir K, Alikhani HA, Yakhchali B, Tabandeh F, Rodriguez-Couto S (2010) Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environ Sci Pollut Res 17(1):145–153. doi: 10.1007/s11356-009-0109-5 CrossRefGoogle Scholar
  41. Erdal S, Taskin M (2010) Uptake of textile dye Reactive Black-5 by Penicillium chrysogenum MT-6 isolated from cement-contaminated soil. Afr J Microbiol Res 4(8):618–625Google Scholar
  42. Erden E, Kaymaz Y, Pazarlioglu NK (2011) Biosorption kinetics of a direct azo dye Sirius Blue K-CFN by Trametes versicolor. Electron J Biotechn 14(2) doi:ARTN 8. doi: 10.2225/vol14-issue2-fulltext-8
  43. Esplugas S, Gimenez J, Contreras S, Pascual E, Rodriguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36(4):1034–1042. doi: 10.1016/S0043-1354(01)00301-3 PubMedCrossRefGoogle Scholar
  44. Fakhru’l-Razi A, Molla AH (2007) Enhancement of bioseparation and dewaterability of domestic wastewater sludge by fungal treated dewatered sludge. J Hazard Mater 147(1–2):350–356. doi: 10.1016/j.jhazmat.2007.01.060 PubMedCrossRefGoogle Scholar
  45. Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418. doi: 10.1016/j.jenvman.2010.11.011 PubMedCrossRefGoogle Scholar
  46. Fu YZ, Viraraghavan T (2000) Removal of a dye from an aqueous solution by the fungus Aspergillus niger. Water Qual Res J Can 35(1):95–111Google Scholar
  47. Fu YZ, Viraraghavan T (2001a) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79(3):251–262. doi: 10.1016/S0960-8524(01)00028-1 PubMedCrossRefGoogle Scholar
  48. Fu YZ, Viraraghavan T (2001b) Removal of CI Acid Blue 29 from an aqueous solution by Aspergillus niger. Aatcc Rev 1(1):36–40Google Scholar
  49. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28. doi: 10.1002/Jctb.1999 CrossRefGoogle Scholar
  50. Gadd GM, White C (1985) Copper Uptake by Penicillium-Ochro-Chloron—influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts. J Gen Microbiol 131:1875–1879 (Aug)Google Scholar
  51. Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology. Trends Biotechnol 11(8):353–359. doi: 10.1016/0167-7799(93)90158-6 PubMedCrossRefGoogle Scholar
  52. Garcia HA, Hoffman CM, Kinney KA, Lawler DF (2011) Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent. Water Res 45(5):1921–1932. doi: 10.1016/j.watres.2010.12.027 PubMedCrossRefGoogle Scholar
  53. Gasser CA, Ammann EM, Shahgaldian P, Corvini PFX (2014a) Laccases to take on the challenge of emerging organic contaminants in wastewater. Appl Microbiol Biotechnol 98(24):9931–9952. doi: 10.1007/s00253-014-6177-6 PubMedCrossRefGoogle Scholar
  54. Gasser CA, Yu L, Svojitka J, Wintgens T, Ammann EM, Shahgaldian P et al (2014b) Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scale. Appl Microbiol Biotechnol 98(7):3305–3316. doi: 10.1007/s00253-013-5414-8 PubMedCrossRefGoogle Scholar
  55. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67(3):369–385. doi: 10.1007/s00018-009-0169-1 PubMedCrossRefGoogle Scholar
  56. Gou M, Qu YY, Zhou JT, Ma F, Tan L (2009) Azo dye decolorization by a new fungal isolate, Penicillium sp QQ and fungal-bacterial cocultures. J Hazard Mater 170(1):314–319. doi: 10.1016/j.jhazmat.2009.04.094 PubMedCrossRefGoogle Scholar
  57. Grinhut T, Salame TM, Chen YN, Hadar Y (2011) Involvement of ligninolytic enzymes and Fenton-like reaction in humic acid degradation by Trametes sp. Appl Microbiol Biotechnol 91(4):1131–1140. doi: 10.1007/s00253-011-3300-9 PubMedCrossRefGoogle Scholar
  58. Hamdaoui O, Naffrechoux E (2007a) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon—Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147(1–2):381–394. doi: 10.1016/j.jhazmat.2007.01.021 PubMedCrossRefGoogle Scholar
  59. Hamdaoui O, Naffrechoux E (2007b) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon—Part II. Models with more than two parameters. J Hazard Mater 147(1–2):401–411. doi: 10.1016/j.jhazmat.2007.01.023 PubMedCrossRefGoogle Scholar
  60. Hanif A, Bhatti HN, Hanif MA (2015) Removal of zirconium from aqueous solution by Ganoderma lucidum: biosorption and bioremediation studies. Desalin Water Treat 53(1):195–205. doi: 10.1080/19443994.2013.837005 CrossRefGoogle Scholar
  61. Hank D, Azi Z, Hocine SA, Chaalal O, Hellal A (2014) Optimization of phenol adsorption onto bentonite by factorial design methodology. J Ind Eng Chem 20(4):2256–2263. doi: 10.1016/j.jiec.2013.09.058 CrossRefGoogle Scholar
  62. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192. doi: 10.1038/Nrmicro2519 PubMedCrossRefGoogle Scholar
  63. Hommes G, Gasser CA, Howald CBC, Goers R, Schlosser D, Shahgaldian P, Corvini PFX (2012) Production of a robust nanobiocatalyst for municipal wastewater treatment. Bioresour Technol 115:8–15. doi: 10.1016/j.biortech.2011.11.129 PubMedCrossRefGoogle Scholar
  64. Huang HW, Cao LX, Wan YX, Zhang RD, Wang WF (2012) Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions. Appl Microbiol Biotechnol 96(3):829–840. doi: 10.1007/s00253-011-3846-6 PubMedCrossRefGoogle Scholar
  65. Ip AWM, Barford JP, Mckay G (2010) A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chem Eng J 157(2–3):434–442. doi: 10.1016/j.cej.2009.12.003 CrossRefGoogle Scholar
  66. Iqbal M, Saeed A (2007) Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium. Process Biochem 42(7):1160–1164. doi: 10.1016/j.procbio.2007.05.014 CrossRefGoogle Scholar
  67. Iskandar NL, Zainudin NAIM, Tan SG (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci China 23(5):824–830. doi: 10.1016/S1001-0742(10)60475-5 PubMedCrossRefGoogle Scholar
  68. Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy 35(5):1675–1682. doi: 10.1016/j.biombioe.2010.12.035 CrossRefGoogle Scholar
  69. Kabsch-Korbutowicz M, Krupinska B (2008) Removal of natural organic matter from water by using ion-exchange resins. Przem Chem 87(5):473–475Google Scholar
  70. Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour Technol 76(1):63–65. doi: 10.1016/S0960-8524(00)00072-9 PubMedCrossRefGoogle Scholar
  71. Karimi A, Vahabzadeh F, Bonakdarpour B (2006) Use of Phanerochaete chrysosporium immobilized on Kissiris for synthetic dye decolourization: involvement of manganese peroxidase. World J Microbiol Biotechnol 22(12):1251–1257. doi: 10.1007/s11274-006-9169-6 CrossRefGoogle Scholar
  72. Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35(1):127–141. doi: 10.1016/j.envint.2008.05.010 PubMedCrossRefGoogle Scholar
  73. Kaushik P, Mishra A, Malik A, Pant KK (2014) Biosorption of textile dye by Aspergillus lentulus pellets: process optimization and cyclic removal in aerated Bioreactor. Water Air Soil Pollut 225(6). doi:Artn 1978 doi: 10.1007/S11270-014-1978-X
  74. Khambhaty Y, Mody K, Basha S, Jha B (2009) Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem Eng J 145(3):489–495. doi: 10.1016/j.cej.2008.05.002 CrossRefGoogle Scholar
  75. Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12(1):75–97. doi: 10.1007/s11157-012-9287-6 CrossRefGoogle Scholar
  76. Khelifi E, Ayed L, Bouallagui H, Touhami Y, Hamdi M (2009) Effect of nitrogen and carbon sources on Indigo and Congo red decolourization by Aspergillus alliaceus strain 121C. J Hazard Mater 163(2–3):1056–1062. doi: 10.1016/j.jhazmat.2008.07.060 PubMedCrossRefGoogle Scholar
  77. Khursheed A, Kazmi AA (2011) Retrospective of ecological approaches to excess sludge reduction. Water Res 45(15):4287–4310. doi: 10.1016/j.watres.2011.05.018 PubMedCrossRefGoogle Scholar
  78. Kim TH, Lee Y, Yang J, Lee B, Park C, Kim S (2004) Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination 168:287–293. doi: 10.1016/j.desal.2004.07.011 CrossRefGoogle Scholar
  79. Kocaoba S, Arisoy M (2011) The use of a white rot fungi (Pleurotus ostreatus) immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination. Bioresour Technol 102(17):8035–8039. doi: 10.1016/j.biortech.2011.05.004 PubMedCrossRefGoogle Scholar
  80. Kodam KM, Soojhawon I, Lokhande PD, Gawai KR (2005) Microbial decolorization of reactive azo dyes under aerobic conditions. World J Microbiol Biotechnol 21(3):367–370. doi: 10.1007/s11274-004-5957-z CrossRefGoogle Scholar
  81. Kumar NS, Boddu VM, Krishnaiah A (2009) Biosorption of phenolic compounds by Trametes versicolor polyporus fungus. Adsorpt Sci Technol 27(1):31–46. doi: 10.1260/026361709788921597 CrossRefGoogle Scholar
  82. Kumar NS, Min K (2011) Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem Eng J 168(2):562–571. doi: 10.1016/j.cej.2011.01.023 CrossRefGoogle Scholar
  83. Kumar R, Bishnoi NR, Garima Bishnoi K (2008) Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135(3):202–208. doi: 10.1016/j.cej.2007.03.004 CrossRefGoogle Scholar
  84. Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366(2–3):409–426. doi: 10.1016/j.scitotenv.2005.10.001 PubMedCrossRefGoogle Scholar
  85. Levin L, Melignani E, Ramos AM (2010) Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour Technol 101(12):4554–4563. doi: 10.1016/j.biortech.2010.01.102 PubMedCrossRefGoogle Scholar
  86. Lin SH, Juang RS (2002) Removal of free and chelated Cu(II) ions from water by a nondispersive solvent extraction process. Water Res 36(14):3611–3619. doi:Pii S0043-1354(02)00074-X. doi: 10.1016/S0043-1354(02)00074-X
  87. Lloret L, Eibes G, Moreira MT, Feijoo G, Lema JM (2013a) On the use of a high-redox potential laccase as an alternative for the transformation of non-steroidal anti-inflammatory drugs (NSAIDs). J Mol Catal B Enzym 97:233–242. doi: 10.1016/j.molcatb.2013.08.021 CrossRefGoogle Scholar
  88. Lloret L, Eibes G, Moreira MT, Feijoo G, Lema JM (2013b) Removal of estrogenic compounds from filtered secondary wastewater effluent in a continuous enzymatic membrane reactor. Identification of biotransformation products. Environ Sci Technol 47(9):4536–4543. doi: 10.1021/es304783k PubMedCrossRefGoogle Scholar
  89. Lu Y, Yan LH, Wang Y, Zhou SF, Fu JJ, Zhang JF (2009) Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium. J Hazard Mater 165(1–3):1091–1097. doi: 10.1016/j.jhazmat.2008.10.091 PubMedCrossRefGoogle Scholar
  90. Mannan S, Fakhru’l-Razi A, Alam MZ (2005) Use of fungi to improve bioconversion of activated sludge. Water Res 39(13):2935–2943. doi: 10.1016/j.watres.2005.04.074 PubMedCrossRefGoogle Scholar
  91. Martins AMP, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge—a critical review. Water Res 38(4):793–817. doi: 10.1016/j.watres.2003.11.005 PubMedCrossRefGoogle Scholar
  92. Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: Effect of dye structure, ionic strength and pH. Bioresour Technol 97(3):512–521. doi: 10.1016/j.biortech.2005.02.045 PubMedCrossRefGoogle Scholar
  93. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P et al (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56(1–2):81–87PubMedCrossRefGoogle Scholar
  94. Mishra A, Malik A (2014a) Metal and dye removal using fungal consortium from mixed waste stream: optimization and validation. Ecol Eng 69:226–231. doi: 10.1016/j.ecoleng.2014.04.007 CrossRefGoogle Scholar
  95. Mishra A, Malik A (2014b) Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol 171:217–226. doi: 10.1016/j.biortech.2014.08.047 PubMedCrossRefGoogle Scholar
  96. Molla AH, Fakhru’l-Razi A, Abd-Aziz S, Hanafi MM, Alam MZ (2001) In-vitro compatibility evaluation of fungal mixed culture for bioconversion of domestic wastewater sludge. World J Microbiol Biotechnol 17(9):849–856. doi: 10.1023/A:1013844306960 CrossRefGoogle Scholar
  97. More TT, Yan S, Tyagi RD, Surampalli RY (2010) Potential use of filamentous fungi for wastewater sludge treatment. Bioresour Technol 101(20):7691–7700. doi: 10.1016/j.biortech.2010.05.033 PubMedCrossRefGoogle Scholar
  98. Moussous S, Selatnia A, Merati A, Junter GA (2012) Batch cadmium(II) biosorption by an industrial residue of macrofungal biomass (Clitopilus scyphoides). Chem Eng J 197:261–271. doi: 10.1016/j.cej.2012.04.106 CrossRefGoogle Scholar
  99. Muraleedharan TR, Iyengar L, Venkobachar C (1991) Biosorption—an attractive alternative for metal removal and recovery. Curr Sci India 61(6):379–385Google Scholar
  100. Nair RR, Demarche P, Agathos SN (2013) Formulation and characterization of an immobilized laccase biocatalyst and its application to eliminate organic micropollutants in wastewater. New Biotechnol 30(6):814–823. doi: 10.1016/j.nbt.2012.12.004 CrossRefGoogle Scholar
  101. O’Mahony T, Guibal E, Tobin JM (2002) Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme Microb Tech 31(4):456–463. doi:Pii S0141-0229(02)00110-2; doi: 10.1016/S0141-0229(02)00110-2
  102. Osiewacz HD (2002) Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev 1(3):425–442. doi:Pii S1568-1637(02)00010-7; doi: 10.1016/S1568-1637(02)00010-7
  103. Ozer A, Ozer D (2003) Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100(1–3):219–229. doi: 10.1016/S0304-3894(03)00109-2 PubMedCrossRefGoogle Scholar
  104. Pang C, Liu YH, Cao XH, Li M, Huang GL, Hua R et al (2011) Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chem Eng J 170(1):1–6. doi: 10.1016/j.cej.2010.10.068 CrossRefGoogle Scholar
  105. Raghukumar C, Chandramohan D, Michel FC, Reddy CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol Lett 18(1):105–106. doi: 10.1007/Bf00137820 CrossRefGoogle Scholar
  106. Rahman RA, Molla A, Fakhru’l-Razi A (2014) Assessment of sewage sludge bioremediation at different hydraulic retention times using mixed fungal inoculation by liquid-state bioconversion. Environ Sci Pollut Res 21(2):1178–1187. doi: 10.1007/s11356-013-1974-5 CrossRefGoogle Scholar
  107. Rangabhashiyam S, Suganya E, Selvaraju N, Varghese LA (2014) Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants. World J Microbiol Biotechnol 30(6):1669–1689. doi: 10.1007/s11274-014-1599-y PubMedCrossRefGoogle Scholar
  108. Rao JR, Viraraghavan T (2002) Biosorption of phenol from an aqueous solution by Aspergillus niger biomass. Bioresource Technol 85(2):165–171. doi:Pii S0960-8524(02)00079-2; doi: 10.1016/S0960-8524(02)00079-2
  109. Reiss R, Ihssen J, Thony-Meyer L (2011) Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. Bmc Biotechnol 11. doi:Artn 9; doi: 10.1186/1472-6750-11-9
  110. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255. doi: 10.1016/S0960-8524(00)00080-8 PubMedCrossRefGoogle Scholar
  111. Sag Y (2001) Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Sep Purif Method 30(1):1–48. doi: 10.1081/Spm-100102984 CrossRefGoogle Scholar
  112. Sanghi R, Sankararamakrishnan N, Dave BC (2009) Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions. J Hazard Mater 169(1–3):1074–1080. doi: 10.1016/j.jhazmat.2009.04.056 PubMedCrossRefGoogle Scholar
  113. Sari A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164(2–3):1004–1011. doi: 10.1016/j.jhazmat.2008.09.002 PubMedCrossRefGoogle Scholar
  114. Senthilkumar S, Perumalsamy M, Prabhu HJ (2014) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc 18(6):845–853. doi: 10.1016/j.jscs.2011.10.010 CrossRefGoogle Scholar
  115. Senturk HB, Ozdes D, Gundogdu A, Duran C, Soylak M (2009) Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study. J Hazard Mater 172(1):353–362. doi: 10.1016/j.jhazmat.2009.07.019 PubMedCrossRefGoogle Scholar
  116. Sharma P, Kaur H, Sharma M, Sahore V (2011) A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environ Monit Assess 183(1–4):151–195. doi: 10.1007/s10661-011-1914-0 PubMedCrossRefGoogle Scholar
  117. Shen DZ, Fan JX, Zhou WZ, Gao BY, Yue QY, Kang Q (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J Hazard Mater 172(1):99–107. doi: 10.1016/j.jhazmat.2009.06.139 PubMedCrossRefGoogle Scholar
  118. Shinde NR, Bankar AV, Kumar AR, Zinjarde SS (2012) Removal of Ni (II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. J Environ Manage 102:115–124. doi: 10.1016/j.jenvman.2012.02.026 PubMedCrossRefGoogle Scholar
  119. Shroff KA, Vaidya VK (2011) Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chem Eng J 171(3):1234–1245. doi: 10.1016/j.cej.2011.05.034 CrossRefGoogle Scholar
  120. Si J, Yuan TQ, Cui BK (2015) Exploring strategies for adsorption of azo dye Congo Red using free and immobilized biomasses of Trametes pubescens. Ann Microbiol 65(1):411–421. doi: 10.1007/s13213-014-0874-3 CrossRefGoogle Scholar
  121. Singh AP, Singh T (2014) Biotechnological applications of wood-rotting fungi: a review. Biomass Bioenerg 62:198–206. doi: 10.1016/j.biombioe.2013.12.013 CrossRefGoogle Scholar
  122. Solis M, Solis A, Perez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47(12):1723–1748. doi: 10.1016/j.procbio.2012.08.014 CrossRefGoogle Scholar
  123. Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage 91(10):1915–1929. doi: 10.1016/j.jenvman.2010.05.003 PubMedCrossRefGoogle Scholar
  124. Subbaiah MV, Vijaya Y, Reddy AS, Yuvaraja G, Krishnaiah A (2011a) Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto Trametes versicolor biomass. Desalination 276(1–3):310–316. doi: 10.1016/j.desal.2011.03.067 CrossRefGoogle Scholar
  125. Subbaiah MV, Yuvaraja G, Vijaya Y, Krishnaiah A (2011b) Equilibrium, kinetic and thermodynamic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by fungus (Trametes versicolor) biomass. J Taiwan Inst Chem Eng 42(6):965–971. doi: 10.1016/j.jtice.2011.04.007 CrossRefGoogle Scholar
  126. Subramanian SB, Yan S, Tyagi RD, Surampalli RY (2008) A new, pellet-forming fungal strain: its isolation, molecular identification, and performance for simultaneous sludge-solids reduction, flocculation, and dewatering. Water Environ Res 80(9):840–852. doi: 10.2175/106143008x304703 PubMedCrossRefGoogle Scholar
  127. Tanaka T, Tonosaki T, Nose M, Tomidokoro N, Kadomura N, Fujii T et al (2001) Treatment of model soils contaminated with phenolic endocrine-disrupting chemicals with laccase from Trametes sp in a rotating reactor. J Biosci Bioeng 92(4):312–316. doi: 10.1263/Jbb.92.312 PubMedCrossRefGoogle Scholar
  128. Taskin M, Erdal S (2010) Reactive dye bioaccumulation by fungus Aspergillus niger isolated from the effluent of sugar fabric-contaminated soil. Toxicol Ind Health 26(4):239–247. doi: 10.1177/0748233710364967 PubMedCrossRefGoogle Scholar
  129. Tastan BE, Donmez G (2015) Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pestic Biochem Phys 118:33–37. doi: 10.1016/j.pestbp.2014.11.002 CrossRefGoogle Scholar
  130. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44(3):301–316. doi: 10.1016/S0304-386x(96)00059-X CrossRefGoogle Scholar
  131. Verma M, Brar SK, Tyagi RD, Valero JR, Surampalli RY (2005) Wastewater sludge as a potential raw material for antagonistic fungus (Trichoderma sp.): role of pre-treatment and solids concentration. Water Res 39(15):3587–3596. doi: 10.1016/j.watres.2005.07.001 PubMedCrossRefGoogle Scholar
  132. Volesky B (2007) Biosorption and me. Water Res 41(18):4017–4029. doi: 10.1016/j.watres.2007.05.062 PubMedCrossRefGoogle Scholar
  133. Wang JL, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451. doi: 10.1016/j.biotechadv.2006.03.001 PubMedCrossRefGoogle Scholar
  134. Wang JS, Hu XJ, Wang J, Bao ZL, Xie SB, Yang JH (2010) The tolerance of Rhizopus arrihizus to U(VI) and biosorption behavior of U(VI) onto R. arrihizus. Biochem Eng J 51(1–2):19–23. doi: 10.1016/j.bej.2010.04.010 CrossRefGoogle Scholar
  135. Wang MX, Zhang QL, Yao SJ (2015) A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chem Eng J 259:837–844. doi: 10.1016/j.cej.2014.08.003 CrossRefGoogle Scholar
  136. Wells A, Teria M, Eve T (2006) Green oxidations with laccase-mediator systems. Biochem Soc Trans 34:304–308PubMedCrossRefGoogle Scholar
  137. Xiong XJ, Meng XJ, Zheng TL (2010) Biosorption of CI Direct Blue 199 from aqueous solution by nonviable Aspergillus niger. J Hazard Mater 175(1–3):241–246. doi: 10.1016/j.jhazmat.2009.09.155 PubMedCrossRefGoogle Scholar
  138. Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochemistry-Us 35(23):7608–7614. doi: 10.1021/Bi952971a CrossRefGoogle Scholar
  139. Yan GY, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37(18):4486–4496. doi: 10.1016/S0043-1354(03)00409-3 PubMedCrossRefGoogle Scholar
  140. Yang QX, Yang M, Pritsch K, Yediler A, Hagn A, Schloter M et al (2003) Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol Lett 25(9):709–713. doi: 10.1023/A:1023454513952 PubMedCrossRefGoogle Scholar
  141. Zaidi MK (2008) Wastewater reuse risk assessment, decision making, and environmental security: a technical report. NATO Science for Peace Security Programme, pp 445–450Google Scholar
  142. Zhang FM, Knapp JS, Tapley KN (1999) Development of bioreactor systems for decolorization of Orange II using white rot fungus. Enzyme Microb Technol 24(1–2):48–53. doi: 10.1016/S0141-0229(98)00090-8 CrossRefGoogle Scholar
  143. Zhang S, Li A, Cui D, Yang JX, Ma F (2011) Performance of enhanced biological SBR process for aniline treatment by mycelial pellet as biomass carrier. Bioresour Technol 102(6):4360–4365. doi: 10.1016/j.biortech.2010.12.079 PubMedCrossRefGoogle Scholar
  144. Zhang SJ, Yang M, Yang QX, Zhang Y, Xin BP, Pan F (2003) Biosorption of reactive dyes by the mycelium pellets of a new isolate of Penicillium oxalicum. Biotechnol Lett 25(17):1479–1482. doi: 10.1023/A:1025036407588 PubMedCrossRefGoogle Scholar
  145. Zhang X, Renaud S, Paice M (2005) The potential of laccase to remove extractives present in pulp and white water from TMP newsprint mills. J Pulp Pap Sci 31(4):175–180Google Scholar
  146. Zhou JL, Banks CJ (1993) Mechanism of humic-acid color removal from natural-waters by fungal biomass biosorption. Chemosphere 27(4):607–620. doi: 10.1016/0045-6535(93)90096-N CrossRefGoogle Scholar
  147. Zhou JL, Kiff RJ (1991) The uptake of copper from aqueous-solution by immobilized fungal biomass. J Chem Technol Biotechnol 52(3):317–330CrossRefGoogle Scholar
  148. Zouboulis AI, Lazaridis NK, Grohmann A (2002) Toxic metals removal from waste waters by upflow filtration with floating filter medium. I. The case of zinc. Separ. Sci Technol 37(2):403–416. doi: 10.1081/Ss-120000795 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations