• Geoffrey Michael GaddEmail author
Part of the Fungal Biology book series (FUNGBIO)


Geomycology can be simply defined as ‘the scientific study of the roles of fungi in processes of fundamental importance to geology’. As such it can be considered as a sub-discipline of geomicrobiology and a component of biogeochemistry. The geomycological importance of fungi is significant in several key areas, such as nutrient and element cycling, rock and mineral transformations, bioweathering and mycogenic biomineral formation. Such processes can occur in aquatic and terrestrial habitats, but it is in the terrestrial environment where fungi probably have the greatest geochemical influence. Of special significance are the mutualistic relationships with phototrophic organisms, lichens (algae, cyanobacteria) and mycorrhizas (plants). Central to most geomycological processes are transformations of metals and minerals, and fungi possess a variety of properties that affect metal speciation, toxicity and mobility, as well as mineral formation, dissolution or deterioration. Some fungal transformations have potential beneficial applications in environmental biotechnology, e.g. in metal and radionuclide leaching, biorecovery, detoxification and bioremediation, and in the production or deposition of biominerals or metallic elements with catalytic or other properties. Metal and mineral transformations may also result in adverse effects when these processes result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. plaster, mortar, concrete), biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment. The ubiquity and importance of fungi in biosphere processes underlines the importance of geomycology as an interdisciplinary subject area.


Geomycology Geomicrobiology Biomineralization Bioremediation Metal-microbe interactions Biominerals Mineral dissolution Biorecovery Biocorrosion 



The author gratefully acknowledges research support from the Natural Environment Research Council (NE/M010910/1 (TeaSe); NE/M011275/1 (COG3)), the National Natural Science Foundation of China (U1503281), the Biotechnology and Biological Sciences Research Council, the Royal Societies of London and Edinburgh, CCLRC Daresbury SRS, British Nuclear Fuels plc, the National Nuclear Laboratory and Nuclear Decommissioning Agency, and an award under the 1000 Talents Plan with the Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, China.


  1. Adamo P, Violante P (2000) Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16:229–256CrossRefGoogle Scholar
  2. Adamo P, Vingiani S, Violante P (2002) Lichen-rock interactions and bioformation of minerals. Dev Soil Sci 28B:377–391CrossRefGoogle Scholar
  3. Adeyemi AO, Gadd GM (2005) Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18:269–281PubMedCrossRefGoogle Scholar
  4. Adriaensen K, Vralstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284PubMedPubMedCentralCrossRefGoogle Scholar
  5. Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142CrossRefGoogle Scholar
  6. Arnott HJ (1995) Calcium oxalate in fungi. In Khan SR (ed) Calcium oxalate in biological systems, pp 73–111. CRC Press, Boca Raton, FLGoogle Scholar
  7. Arocena JM, Glowa KR, Massicotte HB, Lavkulich L (1999) Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the AE horizon of a Luvisol. Can J Soil Sci 79:25–35CrossRefGoogle Scholar
  8. Arocena JM, Zhu LP, Hall K (2003) Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau, China. Earth Surf Proc Landforms 28:1429–1437CrossRefGoogle Scholar
  9. Baldrian P (2003) Interaction of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91CrossRefGoogle Scholar
  10. Balogh-Brunstad Z, Keller CK, Gill RA, Bormann BT, Li CY (2008) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochem 88:153–167CrossRefGoogle Scholar
  11. Banfield JP, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Nat Acad Sci USA 96:3404–3411PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barker WW, Banfield JF (1996) Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiotic communities. Chem Geol 132:55–69CrossRefGoogle Scholar
  13. Barker WW, Banfield JF (1998) Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiol J 15:223–244CrossRefGoogle Scholar
  14. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opinion Biotechnol 15:181–186CrossRefGoogle Scholar
  15. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181PubMedCrossRefGoogle Scholar
  16. Bennett PC, Rogers JA, Hiebert FK, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19CrossRefGoogle Scholar
  17. Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiol 146:1109–1117CrossRefGoogle Scholar
  18. Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Brydson R et al (2009) Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37:615–618CrossRefGoogle Scholar
  19. Bonneville S, Morgan DJ, Schmalenberger A, Bray A, Brown A, Banwart SA et al (2011) Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim Cosmochim Acta 75:6988–7005CrossRefGoogle Scholar
  20. Bradley R, Burt AJ, Read DJ (1981) Mycorrhizal infection and resistance to heavy metals. Nature 292:335–337CrossRefGoogle Scholar
  21. Bradley B, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–209CrossRefGoogle Scholar
  22. Brandl H (2001) Heterotrophic leaching. In Gadd GM (ed) Fungi in bioremediation, pp 383–423. Cambridge University Press, CambridgeGoogle Scholar
  23. Brandl H, Faramarzi MA (2006) Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Partic 4:93–97CrossRefGoogle Scholar
  24. Brehm U, Gorbushina A, Mottershead D (2005) The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeo Palaeoclim Palaeoecol 219:117–129CrossRefGoogle Scholar
  25. Burford EP, Fomina M, Gadd GM (2003a) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155CrossRefGoogle Scholar
  26. Burford EP, Kierans M, Gadd GM (2003b) Geomycology: fungal growth in mineral substrata. Mycologist 17:98–107CrossRefGoogle Scholar
  27. Burford EP, Hillier S, Gadd GM (2006) Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms. Geomicrobiol J 23:599–611CrossRefGoogle Scholar
  28. Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116CrossRefGoogle Scholar
  29. Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740CrossRefGoogle Scholar
  30. Callot G, Guyon A, Mousain D (1985a) Inter-relation entre aiguilles de calcite et hyphes mycéliens. Agronomie 5:209–216CrossRefGoogle Scholar
  31. Callot G, Mousain D, Plassard C (1985b) Concentrations de carbonate de calcium sur les parois des hyphes mycéliens. Agronomie 5:143–150CrossRefGoogle Scholar
  32. Canovas D, Duran C, Rodriguez N, Amils R, de Lorenzo V (2003a) Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto. Environ Microbiol 5:133–138PubMedCrossRefGoogle Scholar
  33. Canovas D, Mukhopadhyay R, Rosen BP, de Lorenzo V (2003b) Arsenate transport and reduction in the hyper-tolerant fungus Aspergillus sp P37. Environ Microbiol 5:1087–1093PubMedCrossRefGoogle Scholar
  34. Ceci A, Rhee YJ, Kierans M, Hillier S, Pendlowski H, Gray N et al (2015a) Transformation of vanadinite (Pb5(VO4)3Cl) by fungi. Environ Microbiol 17:2018–2034PubMedCrossRefGoogle Scholar
  35. Ceci A, Kierans M, Hillier S, Persiani AM, Gadd GM (2015b) Fungal bioweathering of mimetite and a general geomycological model for lead apatite mineral biotransformations. Appl Environ Microbiol 81:4955–4964PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chen BD, Jakobsen I, Roos P, Zhu YG (2005a) Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil 275:349–359CrossRefGoogle Scholar
  37. Chen BD, Zhu YG, Zhang XH, Jakobsen I (2005b) The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Environ Sci Poll Res 12:325–331CrossRefGoogle Scholar
  38. Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146CrossRefGoogle Scholar
  39. Christie P, Li XL, Chen BD (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217CrossRefGoogle Scholar
  40. Cockell CS, Herrera A (2008) Why are some microorganisms boring? Trends Microbiol 16:101–106PubMedCrossRefGoogle Scholar
  41. Cotter-Howells J (1996) Lead phosphate formation in soils. Environ Pollut 93:9–16PubMedCrossRefGoogle Scholar
  42. Cotter-Howells J, Caporn S (1996) Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342CrossRefGoogle Scholar
  43. Cromack K Jr, Solkins P, Grausten WC, Speidel K, Todd AW, Spycher G et al (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468CrossRefGoogle Scholar
  44. Cutler N, Viles H (2010) Eukaryotic microorganisms and stone biodeterioration. Geomicrobiol J 27:630–646CrossRefGoogle Scholar
  45. Daghino S, Turci F, Tomatis M, Favier A, Perotto S, Douki T et al (2006) Soil fungi reduce the iron content and the DNA damaging effects of asbestos fibers. Environ Sci Technol 40:5793–5798PubMedCrossRefGoogle Scholar
  46. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML et al (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  47. De la Torre MA, Gomez-Alarcon G, Vizcaino C, Garcia MT (1993) Biochemical mechanisms of stone alteration carried out by filamentous fungi living on monuments. Biogeochemistry 19:129–147CrossRefGoogle Scholar
  48. De los Rios A, Galvan V, Ascaso C (2004) In situ microscopical diagnosis of biodeterioration processes at the convent of Santa Cruz la Real, Segovia, Spain. Int Biodeterior Biodegrad 51:113–120CrossRefGoogle Scholar
  49. De Rome L, Gadd GM (1987) Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium italicum. Appl Microbiol Biotechnol 26:84–90CrossRefGoogle Scholar
  50. Drever JI, Stillings LL (1997) The role of organic acids in mineral weathering. Coll Surf 120:167–181CrossRefGoogle Scholar
  51. Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895CrossRefGoogle Scholar
  52. Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183PubMedCrossRefGoogle Scholar
  53. Edwards KJ, Bach W, McCollom TM (2005) Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. Trends Microbiol 13:449–456PubMedCrossRefGoogle Scholar
  54. Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth Sci Rev 45:45–60CrossRefGoogle Scholar
  55. Ehrlich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC Press/Taylor and Francis Group, Boca Raton, FLGoogle Scholar
  56. Eckhardt FEW (1985) Solubilisation, transport, and deposition of mineral cations by microorganisms-efficient rock-weathering agents. In: Drever J (ed) The chemistry of weathering, pp 161–173. D. Reidel Publishing Company, DordrechtGoogle Scholar
  57. Finlay R, Wallander H, Smits M, Holmstrom S, Van Hees P, Lian B et al (2009) The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev 23:101–106CrossRefGoogle Scholar
  58. Fomina M, Gadd GM (2002a) Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. J Chem Technol Biotechnol 78:23–34CrossRefGoogle Scholar
  59. Fomina M, Gadd GM (2002b) Influence of clay minerals on the morphology of fungal pellets. Mycol Res 106:107–117CrossRefGoogle Scholar
  60. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Biores Technol 160:3–14CrossRefGoogle Scholar
  61. Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res 107:861–871PubMedCrossRefGoogle Scholar
  62. Fomina MA, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366CrossRefGoogle Scholar
  63. Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005a) Role of oxalic acid over-excretion in toxic metal mineral transformations by Beauveria caledonica. Appl Environ Microbiol 71:371–381PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005b) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866CrossRefGoogle Scholar
  65. Fomina M, Burford EP, Gadd GM (2005c) Toxic metals and fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community. Its organization and role in the ecosystem, pp 733–758. CRC Press, Boca Raton, FLGoogle Scholar
  66. Fomina M, Charnock JM, Hillier S, Alexander IJ, Gadd GM (2006) Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microbial Ecol 52:322–333CrossRefGoogle Scholar
  67. Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007a) Fungal transformations of uranium oxides. Environ Microbiol 9:1696–1710PubMedCrossRefGoogle Scholar
  68. Fomina M, Charnock J, Bowen AD, Gadd GM (2007b) X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321PubMedCrossRefGoogle Scholar
  69. Fomina M, Podgorsky VS, Olishevska SV, Kadoshnikov VM, Pisanska IR, Hillier S et al (2007c) Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol J 24:643–653CrossRefGoogle Scholar
  70. Fomina M, Charnock JM, Hillier S, Alvarez R, Livens F, Gadd GM (2008) Role of fungi in the biogeochemical fate of depleted uranium. Curr Biol 18:375–377CrossRefGoogle Scholar
  71. Fomina M, Burford EP, Hillier S, Kierans M, Gadd GM (2010) Rock-building fungi. Geomicrobiol J 27:624–629CrossRefGoogle Scholar
  72. Gadd GM (1984) Effect of copper on Aureobasidium pullulans in solid medium: adaptation not necessary for tolerant behaviour. Trans Brit Mycol Soc 82:546–549CrossRefGoogle Scholar
  73. Gadd GM (1986) The uptake of heavy metals by fungi and yeasts: the chemistry and physiology of the process and applications for biotechnology. In: Eccles H, Hunt S (eds) Immobilisation of ions by bio–sorption. Ellis Horwood Ltd, Chichester, pp 135–147Google Scholar
  74. Gadd GM (1990) Fungi and yeasts for metal binding. In: Ehrlich H, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 249–275Google Scholar
  75. Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204PubMedCrossRefGoogle Scholar
  76. Gadd GM (1993a) Interactions of fungi with toxic metals. New Phytol 124:25–60CrossRefGoogle Scholar
  77. Gadd GM (1993b) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316CrossRefGoogle Scholar
  78. Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92PubMedCrossRefGoogle Scholar
  79. Gadd GM (2000a) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opinion Biotechnol 11:271–279CrossRefGoogle Scholar
  80. Gadd GM (2000b) Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258:119–127PubMedCrossRefGoogle Scholar
  81. Gadd GM (ed) (2001a) Fungi in bioremediation. Cambridge University Press, CambridgeGoogle Scholar
  82. Gadd GM (2001b) Accumulation and transformation of metals by microorganisms. In: Rehm H-J, Reed G, Puhler A, Stadler P (eds) Biotechnology, a multi-volume comprehensive treatise, volume 10: special processes. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 225–264Google Scholar
  83. Gadd GM (2001c) Metal transformations. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 359–382CrossRefGoogle Scholar
  84. Gadd GM (2004a) Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70CrossRefGoogle Scholar
  85. Gadd GM (2004b) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  86. Gadd GM (2005) Microorganisms in toxic metal polluted soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, pp 325–356CrossRefGoogle Scholar
  87. Gadd GM (ed) (2006) Fungi in biogeochemical cycles. Cambridge University Press, CambridgeGoogle Scholar
  88. Gadd GM (2007a) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49PubMedCrossRefGoogle Scholar
  89. Gadd GM (2007b) Fungi and industrial pollutants. In: Kubicek CP, Druzhinina IS (eds) The mycota, volume IV: environmental and microbial relationships. Springer-Verlag, Berlin, pp 68–84Google Scholar
  90. Gadd GM (2008a) Fungi and their role in the biosphere. In: Jorgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier, Amsterdam, pp 1709–1717CrossRefGoogle Scholar
  91. Gadd GM (2008b) Bacterial and fungal geomicrobiology: a problem with communities? Geobiol 6:278–284CrossRefGoogle Scholar
  92. Gadd GM (2008c) Transformation and mobilization of metals by microorganisms. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, Chichester, pp 53–96Google Scholar
  93. Gadd GM (2009a) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28CrossRefGoogle Scholar
  94. Gadd GM (2009b) Heavy metal pollutants: environmental and biotechnological aspects. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 321–334CrossRefGoogle Scholar
  95. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156:609–643CrossRefGoogle Scholar
  96. Gadd GM (2011) Geomycology. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology, part 7. Springer, Heidelberg, pp 416–432CrossRefGoogle Scholar
  97. Gadd GM, De Rome L (1988) Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29:610–617CrossRefGoogle Scholar
  98. Gadd GM, Fomina M (2011) Uranium and fungi. Geomicrobiol J 28:471–482CrossRefGoogle Scholar
  99. Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317CrossRefGoogle Scholar
  100. Gadd GM, Griffiths AJ (1980) Effect of copper on morphology of Aureobasidium pullulans. Trans Brit Mycol Soc 74:387–392CrossRefGoogle Scholar
  101. Gadd GM, Mowll JL (1985) Copper uptake by yeast-like cells, hyphae and chlamydospores of Aureobasidium pullulans. Exp Mycol 9:230–240CrossRefGoogle Scholar
  102. Gadd GM, Raven JA (2010) Geomicrobiology of eukaryotic microorganisms. Geomicrobiol J 27:491–519CrossRefGoogle Scholar
  103. Gadd GM, Sayer JA (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe-metal interactions, pp 237–256. American Society for Microbiology, WashingtonGoogle Scholar
  104. Gadd GM, White C (1989) The removal of thorium from simulated acid process streams by fungal biomass. Biotechnol Bioeng 33:592–597PubMedCrossRefGoogle Scholar
  105. Gadd GM, White C (1990) Biosorption of radionuclides by yeast and fungal biomass. J Chem Technol Biotechnol 49:331–343PubMedGoogle Scholar
  106. Gadd GM, White C (1992) Removal of thorium from simulated acid process streams by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J Chem Technol Biotechnol 55:39–44CrossRefGoogle Scholar
  107. Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359PubMedCrossRefGoogle Scholar
  108. Gadd GM, White C, Mowll JL (1987) Heavy metal uptake by intact cells and protoplasts of Aureobasidium pullulans. FEMS Microbiol Ecol 45:261–267CrossRefGoogle Scholar
  109. Gadd GM, Ramsay L, Crawford JW, Ritz K (2001) Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiol Lett 204:311–316PubMedCrossRefGoogle Scholar
  110. Gadd GM, Fomina M, Burford EP (2005) Fungal roles and function in rock, mineral and soil transformations. In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Microorganisms in Earth systems—advances in geomicrobiology. Cambridge University Press, Cambridge, pp 201–231CrossRefGoogle Scholar
  111. Gadd GM, Burford EP, Fomina M, Melville K (2007) Mineral transformations and biogeochemical cycles: a geomycological perspective. In: Gadd GM, Dyer P, Watkinson S (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 78–111CrossRefGoogle Scholar
  112. Gadd GM, Rhee YJ, Stephenson K, Wei Z (2012) Geomycology: metals, actinides and biominerals. Environ Microbiol Reports 4:270–296CrossRefGoogle Scholar
  113. Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M et al (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55CrossRefGoogle Scholar
  114. Garnham GW, Codd GA, Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environ Sci Technol 26:1764–1770CrossRefGoogle Scholar
  115. Gaylarde C, Morton G (2002) Biodeterioration of mineral materials. In: Bitton G (ed) Environmental microbiology, vol 1, pp 516–528. Wiley, New YorkGoogle Scholar
  116. Gharieb MM, Gadd GM (1999) Influence of nitrogen source on the solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi. Mycol Res 103:473–481CrossRefGoogle Scholar
  117. Gharieb MM, Wilkinson SC, Gadd GM (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Industrial Microbiol 14:300–301CrossRefGoogle Scholar
  118. Gharieb MM, Kierans M, Gadd GM (1999) Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycol Res 103:299–305CrossRefGoogle Scholar
  119. Gharieb MM, Sayer JA, Gadd GM (1998) Solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycol Res 102:825–830CrossRefGoogle Scholar
  120. Gleeson DB, Clipson NJW, Melville K, Gadd GM, McDermott FP (2005) Mineralogical control of fungal community structure in a weathered pegmatitic granite. Microbial Ecol 50:360–368CrossRefGoogle Scholar
  121. Gleeson DB, Kennedy NM, Clipson NJW, Melville K, Gadd GM, McDermott FP (2006) Mineralogical influences on bacterial community structure on a weathered pegmatitic granite. Microbial Ecol 51:526–534CrossRefGoogle Scholar
  122. Gleeson D, McDermott F, Clipson N (2007) Understanding microbially active biogeochemical environments. Adv Appl Microbiol 62:81–104PubMedCrossRefGoogle Scholar
  123. Gleeson DB, Melville K, McDermott FP, Clipson NJW, Gadd GM (2010) Molecular characterization of fungal communities in sandstone. Geomicrobiol J 27:559–571CrossRefGoogle Scholar
  124. Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122PubMedCrossRefGoogle Scholar
  125. Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235PubMedCrossRefGoogle Scholar
  126. Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Poll 130:317–323CrossRefGoogle Scholar
  127. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631PubMedCrossRefGoogle Scholar
  128. Gorbushina AA, Broughton WJ (2009) Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Ann Rev Microbiol 63:431–450CrossRefGoogle Scholar
  129. Gorbushina AA, Boettcher M, Brumsack HJ, Krumbein WE, Vendrell-Saz M (2001) Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (tepuis) of Venezuela. Geomicrobiol J 18:117–132CrossRefGoogle Scholar
  130. Gorbushina AA, Krumbein WE, Hamann R, Panina L, Soucharjevsky S, Wollenzien U (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221CrossRefGoogle Scholar
  131. Grote G, Krumbein WE (1992) Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiol J 10:49–57CrossRefGoogle Scholar
  132. Gu JD (2009) Corrosion, microbial. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn, pp 259–269. Elsevier, AmsterdamGoogle Scholar
  133. Gu JD, Ford TE, Berke NS, Mitchell R (1998) Biodeterioration of concrete by the fungus Fusarium. Int Biodet Biodegrad 41:101–109CrossRefGoogle Scholar
  134. Guggiari M, Bloque R, Aragno M, Verrecchia E, Job D, Junier P (2011) Experimental calcium-oxalate crystal production and dissolution by selected wood-rot fungi. Int Biodet Biodegrad 65:803–809CrossRefGoogle Scholar
  135. Haas JR, Purvis OW (2006) Lichen biogeochemistry. In: Gadd GM (ed) Fungi in biogeochemical cycles, pp 344–276. Cambridge University Press, CambridgeGoogle Scholar
  136. Hennebel T, Gusseme BD, Verstraete W (2009) Biogenic metals in advanced water treatment. Trends Biotechnol 27:90–98PubMedCrossRefGoogle Scholar
  137. Hirsch P, Eckhardt FEW, Palmer RJ Jr (1995) Methods for the study of rock inhabiting microorganisms—a mini review. J Microbiol Meth 23:143–167CrossRefGoogle Scholar
  138. Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmstrom S, Landeweert R, Lundstrom US, Rosling A, Sen R, Smits MM, Van Hees PAW, Van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264CrossRefGoogle Scholar
  139. Howlett NG, Avery SV (1997) Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:539–545PubMedCrossRefGoogle Scholar
  140. Hutchens E (2009) Microbial selectivity on mineral surfaces: possible implications for weathering processes. Fungal Biol Rev 23:115–121CrossRefGoogle Scholar
  141. Ioannidis TA, Zouboulis AI (2003) Detoxification of a highly toxic lead-loaded industrial solid waste by stabilization using apatites. J Hazard Mater 97:173–191PubMedCrossRefGoogle Scholar
  142. Jarosz-Wilkołazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547PubMedCrossRefGoogle Scholar
  143. Joho M, Inouhe M, Tohoyama H, Murayama T (1995) Nickel resistance mechanisms in yeasts and other fungi. J Industrial Microbiol 14:164–168CrossRefGoogle Scholar
  144. Jongmans AG, van Breemen N, Lundstrom US, van Hees PAW, Finlay RD, Srinivasan M et al (1997) Rock-eating fungi. Nature 1997(389):682–683CrossRefGoogle Scholar
  145. Kangwankraiphaisan T, Suntornvongsagul K, Sihanonth P, Klysubun W, Gadd GM (2013) Influence of arbuscular mycorrhizal fungi (AMF) on zinc biogeochemistry in the rhizosphere of Lindenbergia philippensis growing in zinc-contaminated sediment. Biometals 26:489–505PubMedCrossRefGoogle Scholar
  146. Kartal SN, Katsumata N, Imamura Y (2006) Removal of copper, chromium, and arsenic from CCA-treated wood by organic acids released by mold and staining fungi. Forest Products J 56:33–37Google Scholar
  147. Kierans M, Staines AM, Bennett H, Gadd GM (1991) Silver tolerance and accumulation in yeasts. Biol Metals 4:100–106CrossRefGoogle Scholar
  148. Klaus-Joerger T, Joerger R, Olsson E, Granquist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials sciences. Trends Biotechnol 19:15–20PubMedCrossRefGoogle Scholar
  149. Koele N, Turpault M-P, Hildebrand EE, Uroz S, Frey-Klett P (2009) Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification. Soil Biol Biochem 41:1935–1942CrossRefGoogle Scholar
  150. Kolo K, Claeys P (2005) In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences 2:277–293CrossRefGoogle Scholar
  151. Kolo K, Keppens E, Preat A, Claeys P (2007) Experimental observations on fungal diagenesis of carbonate substrates. J Geophys Res 112:1–20CrossRefGoogle Scholar
  152. Krupa P, Kozdroj J (2004) Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J Microbiol Biotechnol 20:427–430CrossRefGoogle Scholar
  153. Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments: an overview. The J. Paul Getty Trust, Madison, USAGoogle Scholar
  154. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, Van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evolution 16:248–254CrossRefGoogle Scholar
  155. Lapeyrie F, Picatto C, Gerard J, Dexheimer J (1990) TEM Study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 9:163–166Google Scholar
  156. Lapeyrie F, Ranger J, Vairelles D (1991) Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342–346CrossRefGoogle Scholar
  157. Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere, pp. 165–185. CRC Press, Boca Raton, FLGoogle Scholar
  158. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  159. Li Q, Csetenyi L, Gadd GM (2014) Biomineralization of metal carbonates by Neurospora crassa. Environ Sci Technol 48:14409–14416PubMedCrossRefGoogle Scholar
  160. Li Q, Csetenyi L, Paton GI, Gadd GM (2015) CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environ Microbiol 17:3082–3097PubMedCrossRefGoogle Scholar
  161. Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98CrossRefGoogle Scholar
  162. Liang X, Hillier S, Pendlowski H, Gray N, Ceci A, Gadd GM (2015) Uranium phosphate biomineralization by fungi. Environ Microbiol 17:2064–2075PubMedCrossRefGoogle Scholar
  163. Liang X, Kierans M, Ceci A, Hillier S, Gadd GM (2016a) Phosphatase-mediated bioprecipitation of lead by soil fungi. Environ Microbiol 18:219–231Google Scholar
  164. Liang X, Csetenyi L, Gadd GM (2016b) Lead bioprecipitation by yeasts utilizing organic phosphorus substrates. Geomicrobiol J. 33:294–307Google Scholar
  165. Lisci L, Monte M, Pacini E (2003) Lichens and higher plants on stone: a review. Int Biodet Biodegrad 51:1–17CrossRefGoogle Scholar
  166. Lloyd JR, Pearce CI, Coker VS, Pattrick RADP, van der Laan G, Cutting R et al (2008) Biomineralization: linking the fossil record to the production of high value functional materials. Geobiology 6:285–297PubMedCrossRefGoogle Scholar
  167. Mandal SK, Roy A, Banerjee PC (2002) Iron leaching from china clay by fungal strains. Trans Indian Inst Metals 55:1–7Google Scholar
  168. Manning DAC (2008) Phosphate minerals, environmental pollution and sustainable agriculture. Elements 4:105–108CrossRefGoogle Scholar
  169. Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141CrossRefGoogle Scholar
  170. McMaster TJ (2012) Atomic force microscopy of the fungi-mineral interface: applications in mineral dissolution, weathering and biogeochemistry. Curr Opinion Biotechnol 23:562–569CrossRefGoogle Scholar
  171. Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265PubMedCrossRefGoogle Scholar
  172. Miyata N, Tani Y, Iwahori K, Soma M (2004) Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol Ecol 47:101–109PubMedCrossRefGoogle Scholar
  173. Miyata M, Tani Y, Sakata M, Iwahori K (2007) Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8PubMedCrossRefGoogle Scholar
  174. Morley GF, Gadd GM (1995) Sorption of toxic metals by fungi and clay minerals. Mycol Res 99:1429–1438CrossRefGoogle Scholar
  175. Newby PJ, Gadd GM (1987) Synnema induction in Penicillium funiculosum by tributyltin compounds. Trans Brit Mycol Soc 89:381–384CrossRefGoogle Scholar
  176. Nica D, Davis JL, Kirby L, Zuo G, Roberts DJ (2000) Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int Biodet Biodegrad 46:61–68CrossRefGoogle Scholar
  177. Oelkers EH, Valsami-Jones E (2008) Phosphate mineral reactivity and global sustainability. Elements 4:83–87CrossRefGoogle Scholar
  178. Oelkers EH, Montel J-M (2008) Phosphates and nuclear waste storage. Elements 4:113–116CrossRefGoogle Scholar
  179. Ruby MV, Davis A, Nicholson A (1994) In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28:646–654PubMedCrossRefGoogle Scholar
  180. Perotto S, Martino E (2001) Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotechnol 13:55–63Google Scholar
  181. Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil 244:41–53CrossRefGoogle Scholar
  182. Pinzari F, Zotti M, De Mico A, Calvini P (2010) Biodegradation of inorganic components in paper documents: formation of calcium oxalate crystals as a consequence of Aspergillus terreus Thom growth. Int Biodet Biodegrad 64:499–505CrossRefGoogle Scholar
  183. Pinzari F, Tate J, Bicchieri M, Rhee YJ, Gadd GM (2013) Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen. Environ Microbiol 15:1050–1062PubMedCrossRefGoogle Scholar
  184. Pumpel T, Paknikar KM (2001) Bioremediation technologies for metal-containing wastewaters using metabolically active microorganisms. Adv Appl Microbiol 48:135–169PubMedCrossRefGoogle Scholar
  185. Purvis OW (1996) Interactions of lichens with metals. Science Prog 79:283–309Google Scholar
  186. Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601CrossRefGoogle Scholar
  187. Purvis OW, Pawlik-Skowronska B (2008) Lichens and metals. In Stress in yeasts and filamentous fungi, pp. 175–200. Elsevier, AmsterdamGoogle Scholar
  188. Ramsay LM, Sayer JA, Gadd GM (1999) Stress responses of fungal colonies towards metals. In: Gow NAR, Robson GD, Gadd GM (eds) The fungal colony. Cambridge University Press, Cambridge, pp 178–200CrossRefGoogle Scholar
  189. Reitner J, Schumann G, Pedersen K (2006) Fungi in subterranean environments. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 377–403CrossRefGoogle Scholar
  190. Rhee YJ, Hillier S, Gadd GM (2012) Lead transformation to pyromorphite by fungi. Curr Biol 22:237–241PubMedCrossRefGoogle Scholar
  191. Rhee YJ, Hillier S, Pendlowski H, Gadd GM (2014a) Pyromorphite formation in a fungal biofilm community growing on lead metal. Environ Microbiol 16:1441–1451PubMedCrossRefGoogle Scholar
  192. Rhee YJ, Hillier S, Pendlowski H, Gadd GM (2014b) Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere 113:17–21PubMedCrossRefGoogle Scholar
  193. Rhee YJ, Hillier S, Gadd GM (2016) A new lead hydroxycarbonate produced during transformation of lead metal by the soil fungus Paecilomyces javanicus. Geomicrobiol J 33:250–260CrossRefGoogle Scholar
  194. Ritz K, Young IM (2004) Interaction between soil structure and fungi. Mycologist 18:52–59CrossRefGoogle Scholar
  195. Roeselers G, van Loosdrecht MCM, Muyzer G (2007) Heterotrophic pioneers facilitate phototrophic biofilm development. Microbial Ecol 54:578–585CrossRefGoogle Scholar
  196. Rosen K, Zhong WL, Martensson A (2005) Arbuscular mycorrhizal fungi mediated uptake of Cs-137 in leek and ryegrass. Sci Total Environ 338:283–290PubMedCrossRefGoogle Scholar
  197. Rosling A, Lindahl BD, Taylor AFS, Finlay RD (2004a) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37PubMedCrossRefGoogle Scholar
  198. Rosling A, Lindahl BD, Finlay RD (2004b) Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytol 162:795–802CrossRefGoogle Scholar
  199. Rosling A, Roose T, Herrmann AM, Davidson FA, Finlay RD, Gadd GM (2009) Approaches to modelling mineral weathering by fungi. Fungal Biol Rev 23:1–7CrossRefGoogle Scholar
  200. Rufyikiri G, Huysmans L, Wannijn J, Van Hees M, Leyval C, Jakobsen I (2004) Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Environ Poll. 130:427–436CrossRefGoogle Scholar
  201. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  202. Sand W (1997) Microbial mechanisms of deterioration of inorganic substrates: a general mechanistic overview. Int Biodeter Biodeg 40:183–190CrossRefGoogle Scholar
  203. Santhiya D, Ting YP (2005) Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. J Biotechnol 116:171–184PubMedCrossRefGoogle Scholar
  204. Saratovsky I, Gurr SJ, Hayward MA (2009) The structure of manganese oxide formed by the fungus Acremonium sp. strain KR21-2. Geochim Cosmochim Acta 73:3291–3300CrossRefGoogle Scholar
  205. Sayer JA, Gadd GM (1997) Solubilization and transformation of insoluble metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res 101:653–661CrossRefGoogle Scholar
  206. Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM (1999) Lead mineral transformation by fungi. Curr Biol 9:691–694PubMedCrossRefGoogle Scholar
  207. Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments: an updated overview. Adv Appl Microbiol 66:97–139PubMedCrossRefGoogle Scholar
  208. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedCrossRefGoogle Scholar
  209. Seaward MRD (2003) Lichens, agents of monumental destruction. Microbiol Today 30:110–112Google Scholar
  210. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San DiegoGoogle Scholar
  211. Smits M (2006) Mineral tunnelling by fungi. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 311–327CrossRefGoogle Scholar
  212. Smits MM (2009) Scale matters? Exploring the effect of scale on fungal-mineral interactions. Fungal Biol Rev 23:132–137CrossRefGoogle Scholar
  213. Smits MM, Bonneville S, Benning LG, Banwart SA, Leake JR (2012) Plant-driven weathering of apatite—the role of an ectomycorrhizal fungus. Geobiology 10:445–456PubMedCrossRefGoogle Scholar
  214. Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124CrossRefGoogle Scholar
  215. Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370PubMedCrossRefGoogle Scholar
  216. Sverdrup H (2009) Chemical weathering of soil minerals and the role of biological processes. Fungal Biol Rev 23:94–100CrossRefGoogle Scholar
  217. Tazaki K (2006) Clays, microorganisms, and biomineralization. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, developments in clay science, vol 1, pp 477–497. Elsevier, AmsterdamGoogle Scholar
  218. Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4:395–399CrossRefGoogle Scholar
  219. Thomson-Eagle ET, Frankenberger WT (1992) Bioremediation of soils contaminated with selenium. In: Lal R, Stewart BA (eds) Advances in soil science. pp 261–309. Springer, New YorkGoogle Scholar
  220. Tiano P (2002) Biodegradation of cultural heritage: decay, mechanisms and control methods. Seminar article, New University of Lisbon, Department of Conservation and Restoration, 7–12 Jan 2002 (
  221. Tullio M, Pierandrei F, Salerno A, Rea E (2003) Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol Fertil Soils 37:211–214Google Scholar
  222. Turnau K, Gawroński S, Ryszka P, Zook D (2012) Mycorrhizal-based phytostabilization of Zn–Pb tailings: lessons from the Trzebionka mining works (Southern Poland). In: Kothe E, Varma A (eds) Bio-Geo interactions in metal-contaminated soils. Springer-Verlag, Berlin, pp 327–348CrossRefGoogle Scholar
  223. Van Breemen N, Lundstrom US, Jongmans AG (2000) Do plants drive podzolization via rock-eating mycorrhizal fungi? Geoderma 94:163–171CrossRefGoogle Scholar
  224. Verrecchia EP (2000) Fungi and sediments. In: Riding RE, Awramik SM (eds) Microbial sediments, pp. 69–75. Springer, BerlinGoogle Scholar
  225. Verrecchia EP, Dumont JL, Rolko KE (1990) Do fungi building limestones exist in semi-arid regions? Naturwissenschaften 77:584–586CrossRefGoogle Scholar
  226. Verrecchia EP, Braissant O, Cailleau G (2006) The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In Gadd GM (ed) Fungi in biogeochemical cycles, pp. 289–310. Cambridge University Press, CambridgeGoogle Scholar
  227. Volesky B (1990) Biosorption of heavy metals. CRC Press, Boca Raton, FLGoogle Scholar
  228. Volesky B (2007) Biosorption and me. Wat Res 41:4017–4029CrossRefGoogle Scholar
  229. Wallander H, Mahmood S, Hagerberg D, Johansson L, Pallon J (2003) Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65PubMedGoogle Scholar
  230. Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  231. Wang HL, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451PubMedCrossRefGoogle Scholar
  232. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27Google Scholar
  233. Wei Z, Hillier S, Gadd GM (2012a) Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environ Microbiol 14:1744–1753PubMedCrossRefGoogle Scholar
  234. Wei Z, Kierans M, Gadd GM (2012b) A model sheet mineral system to study fungal bioweathering of mica. Geomicrobiol J 29:323–331CrossRefGoogle Scholar
  235. Wei Z, Liang X, Pendlowski H, Hillier S, Suntornvongsagul K, Sihanonth P et al (2013) Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol 15:2173–2186PubMedCrossRefGoogle Scholar
  236. White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeter Biodegrad 35:17–40CrossRefGoogle Scholar
  237. Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665CrossRefGoogle Scholar
  238. Wright JS (2002) Geomorphology and stone conservation: sandstone decay in Stoke-on-Trent. Struct Surv 20:50–61CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Geomicrobiology Group, School of Life SciencesUniversity of DundeeDundeeUK

Personalised recommendations