Advertisement

Unraveling the Chemical Interactions of Fungal Endophytes for Exploitation as Microbial Factories

  • Wen-Xuan Wang
  • Souvik KusariEmail author
  • Michael SpitellerEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Endophytic fungi are a group of mutualistic fungi harbored in plant tissues that are known to provide a plethora of fitness benefits to host plants. It is now firmly established that fungal endophytes have a remarkable capability to produce bioactive secondary metabolites including valuable pharmaceutically relevant agents. Unfortunately, efforts to utilize endophytic fungi as sustainable microbial resources for industrial production of compounds have not yet been successful. Recent studies have revealed that endophytic fungi not only interact with their host plant but also engage in complex communication strategies with associated macro- and microorganisms in order to survive and function in their natural habitat. These multifaceted interactions are difficult to introduce and maintain in vitro under artificial fermentation conditions in the laboratory. Our emerging knowledge on the complex interaction between endophytic fungi and associated organisms as well as the host plants provides a silver lining toward industrial exploitation of endophytes. Herein, we highlight the importance of endophytes (particularly endophytic fungi) in plant-microbe associations and discuss future strategies that might be employed to investigate the chemical communication within endophytic microbial communities, which can lead the way toward sustainable industrial production of important compounds using endophytic fungi.

Keywords

Endophytic fungi Natural products Chemical crosstalk Plant-microbe interactions Biotechnology 

References

  1. Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albuquerque P, Casadevall A (2012) Quorum sensing in fungi—a review. Med Mycol 50:337–345CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arabiodopsis Interactome Mapping Consortium (2011) Evidence for network evolution in an Arbidopsis interactome map. Science 333:601–607CrossRefGoogle Scholar
  4. Arkin AP, Schaffer DV (2011) Network news: innovations in 21st century systems biology. Cell 144:844–849CrossRefPubMedGoogle Scholar
  5. Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J et al (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464CrossRefPubMedGoogle Scholar
  6. Bandara HMHN, Lam OLT, Jin LJ, Samaranayake L (2012) Microbial chemical signaling: a current perspective. Crit Rev Microbiol 38:217–249CrossRefPubMedGoogle Scholar
  7. Bertrand S, Schumpp O, Bohni N, Monod M, Gindro K, Wolfender JL (2013) De novo production of metabolites by fungal co-culture of Trichophyton rubrum and Bionectria ochroleuca. J Nat Prod 76:1157–1165CrossRefPubMedGoogle Scholar
  8. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627CrossRefPubMedGoogle Scholar
  9. Cano J, Guarro J, Gené J (2004) Molecular and morphological identification of Colletotrichum species of clinical interest. J Clin Microbiol 42:2450–2454CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21:534–540CrossRefPubMedGoogle Scholar
  11. Christian N, Whitaker BK, Clay K (2015) Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol 6:869CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clay K, Cheplick GP (1989) Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera frugiperda). J Chem Ecol 15:169–182CrossRefPubMedGoogle Scholar
  13. Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920CrossRefPubMedGoogle Scholar
  14. Dandekar AA, Chugani S, Greenberg EP (2012) Bacterial quorum sensing and metabolic incentives to cooperate. Science 338:264–266CrossRefPubMedPubMedCentralGoogle Scholar
  15. Deng Y, Wu J, Tao F, Zhang LH (2011) Listening to a new language: DSF-based quorum sensing in gram-negative bacteria. Chem Rev 111:160–173CrossRefPubMedGoogle Scholar
  16. Dong L-H, Fan S-W, Ling Q-Z, Huang B-B, Wei Z-J (2014) Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata. World J Microbiol Biotechnol 30:1011–1017CrossRefPubMedGoogle Scholar
  17. Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195CrossRefPubMedGoogle Scholar
  18. Eldar A (2011) Social conflict drives the evolutionary divergence of quorum sensing. Proc Natl Acad Sci 108:13635–13640CrossRefPubMedPubMedCentralGoogle Scholar
  19. El-Elimat T, Raja HA, Graf TN, Faeth SH, Cech NB, Oberlies NH (2014) Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J Nat Prod 77:193–199CrossRefPubMedGoogle Scholar
  20. Esquenazi E, Yang YL, Watrous J, Gerwick WH, Dorrestein PC (2009) Imaging mass spectrometry of natural products. Nat Prod Rep 26:1521–1534CrossRefPubMedGoogle Scholar
  21. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124CrossRefPubMedGoogle Scholar
  22. Feldman M, Al-Quntar A, Polacheck I, Friedman M, Steinberg D (2014) Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans. PLoS ONE 9:e93225CrossRefPubMedPubMedCentralGoogle Scholar
  23. Flores-Bustamante ZR, Rivera-Orduña FN, Martínez-Cárdenas A, Flores-Cotera LB (2010) Microbial paclitaxel: Advances and perspectives. J Antibiot (Tokyo) 63:460–467CrossRefGoogle Scholar
  24. Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78CrossRefPubMedGoogle Scholar
  25. Goh CH, Vallejos DFV, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grice CM, Bertuzzi M, Bignell EM (2013) Receptor-mediated signaling in Aspergillus fumigatus. Front Microbiol 4:26CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hao X, Pan J, Zhu X (2013) Taxol producing fungi. Natural products. Springer, Berlin Heidelberg, pp 2797–2812CrossRefGoogle Scholar
  28. Howat S, Park B, Oh IS, Jin Y-W, Lee E-K, Loake GJ (2014) Paclitaxel: biosynthesis, production and future prospects. N Biotechnol 31:242–245CrossRefPubMedGoogle Scholar
  29. Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorganic Med Chem 9:2237–2242CrossRefGoogle Scholar
  30. Huxtable RJ (1992) The pharmacology of extinction. J Ethnopharmacol 37:1–11CrossRefPubMedGoogle Scholar
  31. Jennewein S, Park H, DeJong JM, Long RM, Bollon AP, Croteau RB (2005) Coexpression in yeast of taxus cytochrome P450 reductase with cytochrome p450 oxygenases involved in taxol biosynthesis. Biotechnol Bioeng 89:588–598CrossRefPubMedGoogle Scholar
  32. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228CrossRefPubMedGoogle Scholar
  33. Kim G, LeBlanc ML, Wafula EK, DePamphilis CW, Westwood JH (2014) Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345:808–811CrossRefPubMedGoogle Scholar
  34. Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363CrossRefPubMedGoogle Scholar
  35. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8:e71805CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207CrossRefPubMedGoogle Scholar
  37. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162CrossRefPubMedGoogle Scholar
  38. Kusari S, Zühlke S, Košuth J, Čellárová E, Spiteller M (2009a) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72:1825–1835CrossRefPubMedGoogle Scholar
  39. Kusari S, Zühlke S, Spiteller M (2009b) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7CrossRefPubMedGoogle Scholar
  40. Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775CrossRefPubMedGoogle Scholar
  41. Kusari S, Hertweck C, Spiteller M (2012a) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798CrossRefPubMedGoogle Scholar
  42. Kusari S, Verma VC, Lamshöft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294CrossRefPubMedGoogle Scholar
  43. Kusari S, Lamshöft M, Kusari P, Gottfried S, Zühlke S, Louven K et al (2014a) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577–2584CrossRefPubMedGoogle Scholar
  44. Kusari S, Singh S, Jayabaskaran C (2014b) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303CrossRefPubMedGoogle Scholar
  45. Kusari S, Singh S, Jayabaskaran C (2014c) Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol 32:304–311CrossRefPubMedGoogle Scholar
  46. Kusari P, Kusari S, Spiteller M, Kayser O (2015) Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 99:5383–5390CrossRefPubMedGoogle Scholar
  47. Kusari P, Kusari S, Eckelmann D, Zühlke S, Kayser O, Spiteller M (2016) Cross-species biosynthesis of maytansine in Maytenus serrata. RSC Adv 6:10011–10016CrossRefGoogle Scholar
  48. Lahrmann U, Zuccaro A (2012) Opprimo ergo sum–evasion and suppression in the root endophytic fungus Piriformospora indica. Mol Plant Microbe Interact 25:727–737CrossRefPubMedGoogle Scholar
  49. Li SM (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27:57–78CrossRefPubMedGoogle Scholar
  50. Li YF, Tsai KJS, Harvey CJB, Li JJ, Ary BE, Berlew EE et al (2016) Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet Biol. doi: 10.1016/j.fgb.2016.01.012 CrossRefGoogle Scholar
  51. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459CrossRefGoogle Scholar
  52. Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B et al (2015) Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 44:5265–5290CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lyons PC, Plattner RD, Bacon CW (1986) Occurrence of peptide and clavine ergot alkaloids in tall fescue grass. Science 232:487–489CrossRefPubMedGoogle Scholar
  54. Mallick EM, Bennett RJ (2013) Sensing of the microbial neighborhood by Candida albicans. PLoS Pathog 9:e1003661CrossRefPubMedPubMedCentralGoogle Scholar
  55. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661CrossRefPubMedGoogle Scholar
  56. Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72:3805–3813CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59CrossRefPubMedGoogle Scholar
  58. Nongkhlaw FMW, Joshi SR (2016) Horizontal gene transfer of the non-ribosomal peptide synthetase gene among endophytic and epiphytic bacteria associated with ethnomedicinal plants. Curr Microbiol 72:1–11CrossRefPubMedGoogle Scholar
  59. Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520CrossRefPubMedGoogle Scholar
  60. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532CrossRefPubMedGoogle Scholar
  61. Parthasarathy R, Sathiyabama M (2014) Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br. Appl Biochem Biotechnol 172:3141–3152CrossRefPubMedGoogle Scholar
  62. Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100CrossRefPubMedPubMedCentralGoogle Scholar
  63. Photita W, Taylor PWJ, Ford R, Hyde KD, Lumyong S (2005) Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers 18:117–133Google Scholar
  64. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375CrossRefPubMedGoogle Scholar
  65. Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T et al (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510CrossRefPubMedGoogle Scholar
  66. Puri SG, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719CrossRefPubMedGoogle Scholar
  67. Redman RS, Ranson JC, Rodriguez RJ (1999) Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Mol Plant-Microbe Interact 12:969–975CrossRefGoogle Scholar
  68. Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P et al (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Micro 44:203–209CrossRefGoogle Scholar
  69. Saikkonen K, Gundel PE, Helander M (2013) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968CrossRefPubMedGoogle Scholar
  70. Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci 112:E5013–E5020CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599CrossRefPubMedGoogle Scholar
  72. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760CrossRefPubMedGoogle Scholar
  73. Shu S, Zhao X, Wang W, Zhang G, Cosoveanu A, Ahn Y et al (2014) Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World J Microbiol Biotechnol 30:3101–3109CrossRefPubMedGoogle Scholar
  74. Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013) Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20:337–342CrossRefPubMedGoogle Scholar
  75. Soen Y (2014) Environmental disruption of host-microbe co-adaptation as a potential driving force in evolution. Front Genet 5:168CrossRefPubMedPubMedCentralGoogle Scholar
  76. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216CrossRefPubMedGoogle Scholar
  77. Su J, Yang M (2015) Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata. Nat Prod Res 29:1035–1041CrossRefPubMedGoogle Scholar
  78. Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568CrossRefGoogle Scholar
  79. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19CrossRefGoogle Scholar
  80. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459CrossRefPubMedGoogle Scholar
  81. Tanaka A, Takemoto D, Chujo T, Scott B (2012) Fungal endophytes of grasses. Curr Opin Plant Biol 15:462–468CrossRefPubMedGoogle Scholar
  82. von Maltzahn G, Flavell RB, Toledo GV, Leff JW, Samayoa P, Marquez LM et al. (2016) Endophytes, associated compositions, and methods of use thereof. United States Patent Application 20160021891Google Scholar
  83. Wada-Katsumata A, Zurek L, Nalyanya G, Roelofs WL, Zhang A, Schal C (2015) Gut bacteria mediate aggregation in the German cockroach. Proc Natl Acad Sci 112:15678–15683PubMedPubMedCentralGoogle Scholar
  84. Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY, Zhu D (2011) Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. J Ind Microbiol Biotechnol 38:1267–1278CrossRefPubMedGoogle Scholar
  85. Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68:336–341CrossRefPubMedGoogle Scholar
  86. Wang WX, Kusari S, Sezgin S, Lamshöft M, Kusari P, Kayser O et al (2015) Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta. Appl Microbiol Biotechnol 99:7651–7662CrossRefPubMedGoogle Scholar
  87. Wang WX, Kusari S, Laatsch H, Golz C, Kusari P, Strohmann C et al (2016) Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J Nat Prod 79:704–710Google Scholar
  88. Wever WJ, Bogart JW, Baccile JA, Chan AN, Schroeder FC, Bowers AA (2015) Chemoenzymatic synthesis of thiazolyl peptide natural products featuring an enzyme-catalyzed formal [4 + 2] cycloaddition. J Am Chem Soc 137:3494–3497CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276CrossRefGoogle Scholar
  90. Xiong ZQ, Yang YY, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew. Taxus x media. BMC Microbiol 13:71CrossRefPubMedGoogle Scholar
  91. Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J et al (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498–501CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yang YL, Xu Y, Straight P, Dorrestein PC (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5:885–887CrossRefPubMedPubMedCentralGoogle Scholar
  93. Youk H, Lim WA (2014) Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science 343:1242782CrossRefPubMedPubMedCentralGoogle Scholar
  94. Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT et al (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693CrossRefPubMedGoogle Scholar
  95. Zhang Q, Wei X, Wang J (2012) Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 83:1500–1505CrossRefPubMedGoogle Scholar
  96. Zhang G, Wang W, Zhang X, Xia Q, Zhao X, Ahn Y et al (2015) De Novo RNA sequencing and transcriptome analysis of Colletotrichum gloeosporioides ES026 reveal genes related to biosynthesis of huperzine A. PLoS ONE 10:e0120809CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zhao XM, Wang ZQ, Shu SH, Wang WJ, Xu HJ, Ahn YJ et al (2013) Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026. PLoS ONE 8:e61777CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zuck KM, Shipley S, Newman DJ (2011) Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J Nat Prod 74:1653–1657CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical ChemistryInstitute of Environmental Research (INFU), TU DortmundDortmundGermany

Personalised recommendations