Fungal Biosynthesis of Nanoparticles, a Cleaner Alternative

  • Ernestina Castro-LongoriaEmail author
Part of the Fungal Biology book series (FUNGBIO)


Fungi play important roles in our daily lives, from the edible ones to those that can provoke severe diseases and even death. There are many fields in which fungi are extensively used and a number of species are economically important. In nanotechnology, they have also been identified as excellent candidates for the production of nanoparticles (NPs), thus presenting a cleaner alternative to produce new materials with a wide range of potential applications in biomedicine and industry. In this respect, several species have demonstrated excellent bioreducing capacity to produce metallic NPs, presenting a number of advantages over other biological systems such as a rapid growth rate, simple nutrient requirements, and easy handling of biomass/cultures. Furthermore, they secrete proteins that are assumed to have enhanced reducing and stabilizing capacity. Metallic NPs have been successfully produced using fungal biomass, cell-free filtrate, fungal extract, and single purified molecules. Recent investigations have also reported the potential applications of NPs produced using fungi; particularly silver nanoparticles (AgNPs) for their excellent antimicrobial activity. Despite the advances in this field, there is still much work to be done, especially in finding efficient protocols to control shape and size. Also, the use of nonpathogenic fungi will greatly improve the biocompatibility of the produced nanomaterial. In this chapter, the state of the art in fungal biosynthesis of metallic NPs is reviewed.


Fungi Nanotechnology Biosynthesis Nanoparticles 



Part of this work was funded by a SEP-CONACyT grant (CB2011/169154).


  1. Abdeen S, Isaac RS, R, Geo S, Rose A, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed Eng 5:39–45Google Scholar
  2. Afreen RV, Ranganath E (2011) Synthesis of monodispersed silver nanoparticles by Rhizopus Stolonifer and its antibacterial activity against MDR strains of Pseudomonas Aeruginosa from burnt patients. Int J Environ Sci 1(7):1582–1592Google Scholar
  3. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances 4(8):3974–3983CrossRefGoogle Scholar
  4. Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod 55:202–206CrossRefGoogle Scholar
  5. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R et al (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108–12109PubMedCrossRefGoogle Scholar
  6. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318Google Scholar
  7. Ahmed M, Karns M, Goodson M, Rowe J, Hussain S, Schlager J et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410CrossRefGoogle Scholar
  8. Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086PubMedCrossRefGoogle Scholar
  9. Anand BG, Thomas CN, Prakash S, Kumar CS (2015) Biosynthesis of silver nanoparticles by marine sediment fungi for a dose dependent cytotoxicity against HEp2 cell lines. Biocatal Agr Biotechnol 4:150–157Google Scholar
  10. Arun G, Eyini M, Gunasekaran P (2014) Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng 19(6):1083–1090CrossRefGoogle Scholar
  11. Azmath P, Baker S, Rakshith D, Satish S (2015) Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J. doi: 10.1016/j.jsps.2015.01.008 PubMedPubMedCentralGoogle Scholar
  12. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B 68:88–92CrossRefGoogle Scholar
  13. Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128:11958–11963PubMedCrossRefGoogle Scholar
  14. Banu A, Rathod V (2011) Synthesis and characterization of silver nanoparticles by Rhizopus stolonier. Int J Biomed Adv Res 2:148–158CrossRefGoogle Scholar
  15. Banu AN, Balasubramanian C (2014a) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(8):2869–2877PubMedCrossRefGoogle Scholar
  16. Banu AN, Balasubramanian C (2014b) Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res 113(10):3843–3851PubMedCrossRefGoogle Scholar
  17. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164CrossRefGoogle Scholar
  18. Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger–its characterization and stability. Chem Eng Technol 32(7):1036–1041CrossRefGoogle Scholar
  19. Bhargava A, Jain N, Barathi M, Akhtar MS, Yun YS, Panwar J (2013) Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. In: Nanotechnology for sustainable development (pp 337–348). Springer International PublishingGoogle Scholar
  20. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141PubMedCrossRefGoogle Scholar
  21. Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun S-I (2010a) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545Google Scholar
  22. Binupriya AR, Sathishkumar M, Yun S-I (2010b) Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surf B 79:531–534Google Scholar
  23. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179PubMedCrossRefGoogle Scholar
  24. Blackwell M (2011) The fungi: 1, 2, 3. 5.1 million species? Am J Bot 98:426–438PubMedCrossRefGoogle Scholar
  25. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102PubMedCrossRefGoogle Scholar
  26. Castro ME, Cottet L, Castillo A (2014) Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Mater Lett 115:42–44CrossRefGoogle Scholar
  27. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B 83:42–48CrossRefGoogle Scholar
  28. Castro-Longoria E, Moreno-Velásquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol 22:1000–1004PubMedCrossRefGoogle Scholar
  29. Chen L, Bazylinksi DA, Lower BH (2010) Bacteria that synthesize nano-sized compasses to navigate using earth’s geomagnetic field. Nat Edu Knowl 1:14Google Scholar
  30. Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean Forests. J Nanomater. doi: 10.1155/2015/789089 Google Scholar
  31. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML et al (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  32. Dar MA, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed Nanotechnol Biol Med 9(1):105–110CrossRefGoogle Scholar
  33. Das SK, Das AR, Guha AK (2009a) Adsorption behavior of mercury on functionalized Aspergillus versicolor mycelia: Atomic force microscopic study. Langmuir 25:360–366PubMedCrossRefGoogle Scholar
  34. Das SK, Das AR, Guha AK (2009b) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199PubMedCrossRefGoogle Scholar
  35. Das SK, Das AR, Guha AK (2010) Microbial synthesis of multishaped gold nanostructures. Small 6:1012–1021PubMedCrossRefGoogle Scholar
  36. Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya. Mycobiology 40(1):27–34PubMedPubMedCentralCrossRefGoogle Scholar
  37. Devi LS, Bareh DA, Joshi SR (2014) Studies on biosynthesis of antimicrobial silver nanoparticles using endophytic fungi isolated from the ethno-medicinal plant Gloriosa superba L. Proc Natl Acad Sci India Sect B: Biol Sci 84:1091–1099CrossRefGoogle Scholar
  38. Du L, Xian L, Feng JX (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13(3):921–930CrossRefGoogle Scholar
  39. Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. doi: 10.1186/1477-3155-3-8 Google Scholar
  40. Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC (2014) Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. SpringerPlus 3:645PubMedPubMedCentralCrossRefGoogle Scholar
  41. El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80(3):779–782CrossRefGoogle Scholar
  42. Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf B 87(1):23–27CrossRefGoogle Scholar
  43. Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009a) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252CrossRefGoogle Scholar
  44. Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009b) Fungal based synthesis of silver nanoparticles—an effect of temperature on the size of particles. Colloids Surf B 74:123–126CrossRefGoogle Scholar
  45. Fayaz AM, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010a) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf B 75:175–178CrossRefGoogle Scholar
  46. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010b) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109PubMedGoogle Scholar
  47. Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenerg 2:123–129CrossRefGoogle Scholar
  48. Gade A, Gaikwad S, Durán N, Rai M (2014) Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59:52–59PubMedCrossRefGoogle Scholar
  49. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5(4):382–386CrossRefGoogle Scholar
  50. Ganachari SV, Bhat R, Deshpande R, Venkataraman A (2012) Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies. BioNanoScience 2(4):316–321CrossRefGoogle Scholar
  51. Ganbarov KG, Ahmadov IS, Ramazanov MA, Musayev EM, Eyvazova QI, Aghamaliyev ZA (2014) Silver nanoparticles synthesized by the Azerbaijanian environmental isolates Aspergillus niger. J Microbiol Biotechnol Food Sci 4(2):137–141CrossRefGoogle Scholar
  52. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  53. Ghodake VP, Kininge PT, Magdum SP, Dive AS, Pillai MM (2011) Biosynthesis of silver nanoparticles using Trichosporon beigelii NCIM 3326 and evaluation of their antimicrobial activity. J Eng Res Stud E-ISSN 976:7916Google Scholar
  54. Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A et al (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172(8):4084–4098PubMedCrossRefGoogle Scholar
  55. Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100PubMedCrossRefGoogle Scholar
  56. Gupta S, Bector S (2013) Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Antonie Van Leeuwenhoek 103(5):1113–1123PubMedCrossRefGoogle Scholar
  57. Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158:389–392PubMedPubMedCentralGoogle Scholar
  58. Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S (2014) Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30(2):693–704PubMedCrossRefGoogle Scholar
  59. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873CrossRefGoogle Scholar
  60. Hiremath J, Rathod V, Ninganagouda S, Singh D, Prema K (2014) Antibacterial activity of silver nanoparticles from Rhizopus spp. against Gram negative E. coli MDR strains. J Pure Appl Microbiol 8(1):555–562Google Scholar
  61. Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios 7:999–1005Google Scholar
  62. Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12(1):7–11Google Scholar
  63. Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924PubMedCrossRefGoogle Scholar
  64. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  65. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079–2085CrossRefGoogle Scholar
  66. Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B 81:430–433CrossRefGoogle Scholar
  67. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641PubMedCrossRefGoogle Scholar
  68. Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2013) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol 97(2):859–869PubMedCrossRefGoogle Scholar
  69. Jain S, Hirst DG (2012) O’sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jebali A, Ramezani F, Kazemi B (2011) Biosynthesis of silver nanoparticles by Geotricum sp. J Cluster Sci 22(2):225–232CrossRefGoogle Scholar
  71. Joshi PA, Bonde SR, Gaikwad SC, Gade AK, Abd-Elsalam K, Rai MK (2013) Comparative studies on synthesis of silver nanoparticles by Fusarium oxysporum and Macrophomina phaseolina and it’s efficacy against bacteria and Malassezia furfur. J Bionanosci 7(4):378–385CrossRefGoogle Scholar
  72. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71:133–137CrossRefGoogle Scholar
  73. Kathiresan K, Alikunhi NM, Pathmnaban S, Nabikhan A, Kandasamy S (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059PubMedCrossRefGoogle Scholar
  74. Kaul RK, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, Tarafdar JC (2012) Magnesium and iron nanoparticles production using microorganisms and various salts. Mater Sci Pol 30(3):254–258CrossRefGoogle Scholar
  75. Kim YC, Park NC, Shin JS, Lee SR, Lee YJ, Moon DJ (2003) Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catal Today 87(1):153–162CrossRefGoogle Scholar
  76. Kirthi AV, Rahuman AA, Jayaseelan C, Karthik L, Marimuthu S, Santhoshkumar T et al (2012) Novel approach to synthesis silver nanoparticles using plant pathogenic fungi Puccinia graminis. Mater Lett 81:69–72CrossRefGoogle Scholar
  77. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6(4):570–574CrossRefGoogle Scholar
  79. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588PubMedCrossRefGoogle Scholar
  80. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100CrossRefGoogle Scholar
  81. Krishna G, Prasad MR, Krishna PS, Bindu NSH, Samatha B, Charya MA (2015) Fungus-mediated synthesis of silver nanoparticles and their activity against Gram positive and Gram negative bacteria in combination with antibiotics. Walailak J Sci Technol (WJST), 12(7)Google Scholar
  82. Krumov N, Oder S, Perner-Nocht I, Angelov A, Posten C (2007) Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol 132:481–486PubMedCrossRefGoogle Scholar
  83. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007a) Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus Fusarium oxysporum. J Biomed Nanotechnol 3:190–194CrossRefGoogle Scholar
  84. Kumar SA, Abyabeh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A et al (2007b) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  85. Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanopart Res 14:1–7Google Scholar
  86. Li G, He D, Qian Y, Guan B, Gao S, Cui Y et al (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476PubMedCrossRefGoogle Scholar
  87. Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, Zanella M. et al. (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. Acs Nano 3(2):395–401Google Scholar
  88. Maier SA (2006) Plasmonics: The promise of highly integrated optical devices. IEEE J Sel Topics Quantum Electron 12(6):1671–1677CrossRefGoogle Scholar
  89. Maliszewska I, Sadowski Z (2009) Synthesis and antibacterial activity of silver nanoparticles. In: Journal of Physics: Conference Series 146(1):012024. IOP PublishingGoogle Scholar
  90. Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using Ascomycota fungi Penicillium nalgiovense AJ12. J Cluster Sci 25(4):989–1004CrossRefGoogle Scholar
  91. Moazeni M, Shahverdi AR, Nabili M, Noorbakhsh F, Rezaie S (2014) Green synthesis of silver nanoparticles: The reasons for and against Aspergillus parasiticus. Nanomed J 1(4):267–275Google Scholar
  92. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289. doi: 10.4103/0975-7406.72127 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mohamed AGMT (2014) Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indonesian J Biotechnol 18(2)Google Scholar
  94. Mohamed YM, Azzam AM, Amin BH, Safwat NA (2015) Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol 14(14):1234–1241CrossRefGoogle Scholar
  95. Mohammadi B, Salouti M (2015) Extracellular bioynthesis of silver nanoparticles by Penicillium chrysogenum and Penicillium expansum. Synth React Inorg Met-Org Nano-Met Chem 45(6):844–847CrossRefGoogle Scholar
  96. Muhsin TM, Hachim AK (2014) Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria. World J Microbiol Biotechnol 30(7):2081–2090PubMedCrossRefGoogle Scholar
  97. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  98. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R et al (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463PubMedCrossRefGoogle Scholar
  99. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J et al (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103PubMedCrossRefGoogle Scholar
  100. Musarrat J, Dwivedi S, Singh BS, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776PubMedCrossRefGoogle Scholar
  101. Narayanan KB, Park HH, Sakthivel N (2013) Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta Part A Mol Biomol Spectrosc 116:485–490CrossRefGoogle Scholar
  102. Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostruct 4(4):623–629Google Scholar
  103. Nithya R, Ragunathan R (2014) In vitro synthesis, characterization and medical application of silver nanoparticle by using a lower fungi. Middle-East J Sci Res 21(6):922–928Google Scholar
  104. Nitta SK, Numata K (2013) Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering. Int J Mol Sci 14(1):1629–1654PubMedPubMedCentralCrossRefGoogle Scholar
  105. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819CrossRefGoogle Scholar
  106. Nohynek GJ, Dufour EK (2012) Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Arch Toxicol 86:1063–1075PubMedCrossRefGoogle Scholar
  107. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176PubMedCrossRefGoogle Scholar
  108. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A Mol Biomol Spectrosc 73(2):374–381CrossRefGoogle Scholar
  109. Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticles synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B 74:309–316CrossRefGoogle Scholar
  110. Prakasham RS, Buddana SK, Yannam SK, Guntuku GS (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22:614–621PubMedCrossRefGoogle Scholar
  111. Prusinkiewicz MA, Farazkhorasani F, Dynes JJ, Wang J, Kaminskyj SG et al (2012) Proof-of-principle for SERS imaging of Aspergillus nidulans hyphae using in vivo synthesis of gold nanoparticles. Analyst 137:4934–4942. doi: 10.1039/c2an35620a PubMedCrossRefGoogle Scholar
  112. Quester K (2014) The use of Neurospora crassa soluble proteins as bioreducing agent for the production of gold and silver nanostructures. Doctoral thesis. Centro de Investigación Científica y Educación Superior de Ensenada, Baja California, 166 ppGoogle Scholar
  113. Quester K, Avalos-Borja M, Castro-Longoria E (2013a) Biosynthesis and microscopic study of metallic nanoparticles. Micron 54:1–27PubMedCrossRefGoogle Scholar
  114. Quester K, Avalos-Borja M, Vilchis-Nestor AR, Camacho-López MA, Castro-Longoria E (2013b) SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora crassa extract. PLoS ONE 8(10):e77486PubMedPubMedCentralCrossRefGoogle Scholar
  115. Qian Y, Yu H, He D, Yang H, Wang W, Wan X et al (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36(11):1613–1619PubMedCrossRefGoogle Scholar
  116. Radziuk D, Skirtach A, Sukhorukov G, Shchukin D, Möhwald H (2007) Stabilization of silver nanoparticles by polyelectrolytes and poly(ethylene glycol). Macromol Rapid Commun 28:848–855CrossRefGoogle Scholar
  117. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano. Biomed Eng 3(3):174–178Google Scholar
  118. Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C et al (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29PubMedCrossRefGoogle Scholar
  119. Rathod V, Banu A, Ranganath E (2011) Biosynthesis of highly stabilized silver nanoparticles by Rhizopus stolonifer and their Anti-fungal efficacy. Int J Mol Clin Microbiol 1(2):65–70Google Scholar
  120. Ravindra BK, Rajasab AH (2015) Silver Nanoparticles synthesis from different fungal species and their antifungal effect. Int J Pharm Pharm Sci 7(5):165–170Google Scholar
  121. Ray S, Sarkar S, Kundu S (2011) Extracellular biosynthesis of silver nanoparticles using the mycorrhizal mushroom Tricholoma crassum (Berk.) Sacc: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Dig J Nanomater Biostruc 6:1289–1299Google Scholar
  122. Re F, Moresco R, Masserini M (2012) Nanoparticles for neuroimaging. J Phys D Appl Phys 45:073001. doi: 10.1088/0022-3727/45/7/073001
  123. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489PubMedCrossRefGoogle Scholar
  124. Rodrigues AG, Ping LY, Marcato PD, Alves OL, Silva MC, De Souza AO et al (2013) Biogenic antimicrobial silver nanoparticles produced by fungi. Appl Microbiol Biotechnol 97(2):775–782PubMedCrossRefGoogle Scholar
  125. Roy S, Mukherjee T, Chakraborty S, Das TK (2013) Biosynthesis, characterization and antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Dig J Nanomat Bios 8:197–205Google Scholar
  126. Sadhasivam S, Shammugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B 81:358–362CrossRefGoogle Scholar
  127. Sadhasivam S, Shanmugam P, Veerapandian M, Subbiah R, Yun K (2012) Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Biometals 25:351–360PubMedCrossRefGoogle Scholar
  128. Sagar G, Ashok B (2012) Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. Eur J Exp Biol 2:1654–1658Google Scholar
  129. Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Biostruct 5:887–895Google Scholar
  130. Saha S, Chattopadhyay D, Acharya K (2011) Preparation of silver nanoparticles by bio-reduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Digest J Nanomater Biostruct (DJNB) 6(4)Google Scholar
  131. Salunkhe RB, Patil SV, Patil CD (2011) Salunke. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831PubMedCrossRefGoogle Scholar
  132. San Chan Y, Don MM (2013) Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Mater Sci Eng C 33(1):282–288Google Scholar
  133. Sanghi R, Verma P (2009a) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504PubMedCrossRefGoogle Scholar
  134. Sanghi R, Verma P (2009b) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891CrossRefGoogle Scholar
  135. Sanghi R, Verma P (2010) pH dependant fungal proteins in the ‘green’ synthesis of gold nanoparticles. Adv Mat Lett 1:193–199CrossRefGoogle Scholar
  136. Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B 77:214–218CrossRefGoogle Scholar
  137. Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng 35:637–643PubMedCrossRefGoogle Scholar
  138. Sarkar J, Roy SK, Laskar A, Chattopadhyay D, Acharya K (2013) Bioreduction of chloroaurate ions to gold nanoparticles by culture filtrate of Pleurotus sapidus Quél. Mater Lett 92:313–316CrossRefGoogle Scholar
  139. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012CrossRefGoogle Scholar
  140. Selvi KV, Sivakumar T (2012) Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int J Curr Microbiol App Sci 1(1):56–62Google Scholar
  141. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520PubMedCrossRefGoogle Scholar
  142. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943CrossRefGoogle Scholar
  143. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  144. Shankar SS, Ahmad A, Pasricha R, Khan MI, Kumar R, Sastry M (2004) Immobilization of biogenic gold nanoparticles in thermally evaporated fatty acid and amine thin films. J Colloid Interface Sci 274:69–75PubMedCrossRefGoogle Scholar
  145. Sheikhloo Z, Salouti M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Cluster Sci 22(4):661–665CrossRefGoogle Scholar
  146. Singh P, Raja RB (2011) Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum. Asian J Exp Biol Sci 2(4):600–605Google Scholar
  147. Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. doi: 10.1155/2014/408021 Google Scholar
  148. Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184. doi: 10.1007/s00436-011-2467-4 PubMedCrossRefGoogle Scholar
  149. Spring S, Schleifer KH (1995) Diversity of magnetotactic bacteria. Syst Appl Microbiol 18:147–153CrossRefGoogle Scholar
  150. Sundaravadivelan C, Padmanabhan MN (2014) Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res 21(6):4624–4633CrossRefGoogle Scholar
  151. Tripathi RM, Gupta RK, Singh P, Bhadwal AS, Shrivastav A, Kumar N et al (2014) Ultra-sensitive detection of mercury (II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sensors Actuators B: Chem 204:637–646CrossRefGoogle Scholar
  152. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1(1):65–79CrossRefGoogle Scholar
  153. Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Progress Sustain Energy 34(1):194–197CrossRefGoogle Scholar
  154. Vala AK, Shah S, Patel R (2014) Biogenesis of silver nanoparticles by marine-derived fungus Aspergillus flavus from Bhavnagar Coast, Gulf of Khambhat, India. J Mar Biol Oceanogr 3(1):2Google Scholar
  155. Varshney R, Mishra AN, Bhadauria S, Gaur MS (2009) A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Digest J Nanomater Biostruct 4(2):349–355Google Scholar
  156. Velmurugan P, Shim J, You Y, Choi S, Kamala-Kannan S, Lee K.-J, et al. (2010) Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. J Hazard Mater 182:317–324Google Scholar
  157. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40PubMedCrossRefGoogle Scholar
  158. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus Phaenerochete chrysosporium. Colloids Surf B 53:55–59CrossRefGoogle Scholar
  159. Vigneshwaran N, Ashtputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418CrossRefGoogle Scholar
  160. Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865CrossRefGoogle Scholar
  161. Yehia RS, Al-Sheikh H (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30(11):2797–2803PubMedCrossRefGoogle Scholar
  162. Zhang Y, Gao G, Qian Q, Cui D (2012) Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res Lett 7:475PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MicrobiologyCenter for Scientific Research and Higher Education of Ensenada (CICESE)EnsenadaMexico

Personalised recommendations