Fungal Enzymes and Their Role in Bioenergy

  • Cristiane Sanchez FarinasEmail author
  • Fernanda Marisa da Cunha
Part of the Fungal Biology book series (FUNGBIO)


Cultivation processes for production of fungal enzymes needed in the bioenergy sector can be conducted using a liquid medium (submerged fermentation, SmF) or a solid medium (solid-state fermentation, SSF). However, several technical and economic issues regarding the implementation of the use of fungal enzymes must be overcome for the biotechnological route to become feasible in large-scale industrial process. The focus of this chapter is about cellulases and the application of these fungal enzymes in the bioenergy sector. Recent developments in the production process of cellulases and application of fungal enzymes in the bioenergy sector are also presented.


Bioprocess Submerged fermentation Solid-state fermentation Fungal enzymes Cellulases Bioenergy 


  1. Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42(1):41–46CrossRefGoogle Scholar
  2. Ahamed A, Vermette P (2009) Effect of culture medium composition on Trichoderma reeseis morphology and cellulase production. Bioresour Technol 100(23):5979–5987CrossRefPubMedGoogle Scholar
  3. Ahamed A, Vermette P (2010) Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochem EngJ 49(3):379–387CrossRefGoogle Scholar
  4. Ali HKQ, Zulkali MMD (2011) Design aspects of bioreactors for solid-state fermentation: a review. Chem Biochem Eng Q 25(2):255–266Google Scholar
  5. Andersen MR, Giese M, de Vries RP, Nielsen J (2012) Mapping the polysaccharide degradation potential of Aspergillus niger. BMC Genom 13:17CrossRefGoogle Scholar
  6. Campesi A, Cerri MO, Hokka CO, Badino AC (2009) Determination of the average shear rate in a stirred and aerated tank bioreactor. Bioprocess Biosyst Eng 32(2):241–248CrossRefPubMedGoogle Scholar
  7. Castro AM, Castilho LR, Freire DMG (2015) Performance of a fixed-bed solid-state fermentation bioreactor with forced aeration for the production of hydrolases by Aspergillus awamori. Biochem Eng J 93:303–308CrossRefGoogle Scholar
  8. Cerri MO, Badino AC (2010) Oxygen transfer in three scales of concentric tube airlift bioreactors. Biochem Eng J 51(1–2):40–47CrossRefGoogle Scholar
  9. Chen HZ, He Q (2012) Value-added bioconversion of biomass by solid-state fermentation. J Chem Technol Biotechnol 87(12):1619–1625CrossRefGoogle Scholar
  10. Chipeta ZA, du Preez JC, Christopher L (2008) Effect of cultivation pH and agitation rate on growth and xylanase production by Aspergillus oryzae in spent sulphite liquor. J Ind Microbiol Biotechnol 35(6):587–594CrossRefPubMedGoogle Scholar
  11. Chundawat S, Beckham G, Himmel M, Dale B, Prausnitz J (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Ann Rev Chem Biomol Eng 2(2):121–145CrossRefGoogle Scholar
  12. Correa RCG, Rhoden SA, Mota TR, Azevedo JL, Pamphile JA, de Souza CGM et al (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41(10):1467–1478CrossRefPubMedGoogle Scholar
  13. Cunha FM, Esperanca MN, Zangirolami TC, Badino AC, Farinas CS (2012) Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour Technol 112:270–274CrossRefPubMedGoogle Scholar
  14. Cunha FM, Esperanca MN, Florencio C, Vasconcellos VM, Farinas CS, Badino AC (2015) Three-phasic fermentation systems for enzyme production with sugarcane bagasse in stirred tank bioreactors: effects of operational variables and cultivation method. Biochem Eng J 97:32–39CrossRefGoogle Scholar
  15. de Vries RP (2003) Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Appl Microbiol Biotechnol 61(1):10–20CrossRefPubMedGoogle Scholar
  16. Delabona P, Farinas C, da Silva M, Azzoni S, Pradella J (2012) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour Technol 107:517–521CrossRefGoogle Scholar
  17. Delabona PD, Farinas CS, Lima DJD, Pradella JGD (2013a) Experimental mixture design as a tool to enhance glycosyl hydrolases production by a new Trichoderma harzianum P49P11 strain cultivated under controlled bioreactor submerged fermentation. Bioresour Technol 132:401–405CrossRefGoogle Scholar
  18. Delabona PD, Pirota R, Codima CA, Tremacoldi CR, Rodrigues A, Farinas CS (2013b) Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: biomass-degrading enzymes production and characterization. Ind Crops Prod 42:236–242CrossRefGoogle Scholar
  19. Dodd D, Cann I (2009) Enzymatic deconstruction of xylan for biofuel production. Global Change Biol Bioenergy 1(1):2–17CrossRefPubMedGoogle Scholar
  20. Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13(2–3):113–125CrossRefGoogle Scholar
  21. El-Shishtawy RM, Mohamed SA, Asiri AM, Gomaa ABM, Ibrahim IH, Al-Talhi HA (2015) Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. BMC Biotechnol 15:13CrossRefGoogle Scholar
  22. Farinas C, Vitcosque G, Fonseca R, Neto V, Couri S (2011) Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor. Ind Crops Prod 34(1):1186–1192CrossRefGoogle Scholar
  23. Farinas CS (2015) Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sustain Energy Rev 9Google Scholar
  24. Gabelle JC, Jourdier E, Licht RB, Ben Chaabane F, Henaut I, Morchain J et al (2012) Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chem Eng Sci 75:408–417CrossRefGoogle Scholar
  25. Gao DH, Uppugundla N, Chundawat SPS, Yu XR, Hermanson S, Gowda K et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:11CrossRefGoogle Scholar
  26. Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guimaraes LHS, Peixoto-Nogueira SC, Michelin M, Rizzatti ACS, Sandrim VC, Zanoelo FF et al (2006) Screening of filamentous fungi for production of enzymes of biotechnological interest. Braz J Microbiol 37(4):474–480CrossRefGoogle Scholar
  28. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39(2):235–251CrossRefGoogle Scholar
  29. Holker U, Hofer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64(2):175–186CrossRefPubMedGoogle Scholar
  30. Holker U, Lenz J (2005) Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol 8(3):301–306CrossRefPubMedGoogle Scholar
  31. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5Google Scholar
  32. Hwang HT, Qi F, Yuan CL, Zhao XB, Ramkrishna D, Liu DH, Varma A (2014) Lipase-catalyzed process for biodiesel production: protein engineering and lipase production. Biotechnol Bioeng 111(4):639–653CrossRefPubMedGoogle Scholar
  33. Ilmen M, Thrane C, Penttila M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251(4):451–460PubMedGoogle Scholar
  34. Jecu L (2000) Solid state fermentation of agricultural wastes for endoglucanase production. Ind Crops Prod 11(1):1–5CrossRefGoogle Scholar
  35. Kim SW, Kang SW, Lee JS (1997) Cellulase and xylanase production by Aspergillus niger KKS in various bioreactors. Bioresour Technol 59(1):63–67CrossRefGoogle Scholar
  36. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087CrossRefPubMedGoogle Scholar
  37. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:14CrossRefGoogle Scholar
  38. Lin P-J, Scholz A, Krull R (2010) Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger. Biochem Eng J 49(2):213–220CrossRefGoogle Scholar
  39. Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y et al (2013) Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels 6Google Scholar
  40. Liu X, Ma Y, Zhang M (2015) Advances in expansins and expansion-like proteins involved in lignocellulose degradation. Biotechnol LettGoogle Scholar
  41. Mamma D, Kourtoglou E, Christakopoulos P (2008) Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour Technol 99(7):2373–2383CrossRefPubMedGoogle Scholar
  42. Michelin M, Mota AMD, Polizeli M, da Silva DP, Vicente AA, Teixeira JA (2013) Influence of volumetric oxygen transfer coefficient (k(L)a) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochem Eng J 80:19–26CrossRefGoogle Scholar
  43. Michelin M, Polizeli M, da Silva DP, Ruzene DS, Vicente AA, Jorge JA et al (2011) Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. J Ind Microbiol Biotechnol 38(12):1979–1984CrossRefPubMedGoogle Scholar
  44. Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) New developments in solid-state fermentation II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35(10):1211–1225CrossRefGoogle Scholar
  45. Nagel F, Tramper J, Bakker MSN, Rinzema A (2001) Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol Bioeng 72(2):219–230CrossRefPubMedGoogle Scholar
  46. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77(1):149–162Google Scholar
  47. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35(10):1153–1169CrossRefGoogle Scholar
  48. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259CrossRefPubMedGoogle Scholar
  49. Pirota R, Baleeiro FCF, Farinas CS (2013a) Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps. Biotechnol Prog 29(6):1430–1440CrossRefPubMedGoogle Scholar
  50. Pirota R, Tonelotto M, Delabona PD, Fonseca RF, Paixao DAA, Baleeiro FCF et al (2013b) Enhancing xylanases production by a new Amazon Forest strain of Aspergillus oryzae using solid-state fermentation under controlled operation conditions. Ind Crops Prod 45:465–471CrossRefGoogle Scholar
  51. Pirota R, Delabona PS, Farinas CS (2014) Simplification of the biomass to ethanol conversion process by using the whole medium of filamentous fungi cultivated under solid-state fermentation. Bioenergy Res 7(2):744–752CrossRefGoogle Scholar
  52. Polizeli M, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591CrossRefPubMedGoogle Scholar
  53. Raghavarao K, Ranganathan T, Karanth N (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13(2–3):127–135CrossRefGoogle Scholar
  54. Raimbault R (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 3–45Google Scholar
  55. Rodriguez-Zuniga UF, Couri S, Neto VB, Crestana S, Farinas CS (2013) Integrated strategies to enhance cellulolytic enzyme production using an instrumented bioreactor for solid-state fermentation of sugarcane bagasse. Bioenergy Res 6(1):142–152CrossRefGoogle Scholar
  56. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291CrossRefPubMedGoogle Scholar
  57. Schell DJ, Farmer J, Hamilton J, Lyons B, McMillan JD, Saez JC, Tholudar A (2001) Influence of operating conditions and vessel size on oxygen transfer during cellulase production. Appl Biochem Biotechnol 91–3:627–642CrossRefGoogle Scholar
  58. Shahriarinour M, Ramanan RN, Wahab MNA, Mohamad R, Mustafa S, Ariff AB (2011) Improved cellulase production by Aspergillus terreus using oil palm empty fruit bunch fibre as substrate in a stirred tank bioreactor through optimization of the fermentation conditions. Bioresources 6(3):2663–2675Google Scholar
  59. Siedenberg D, Gerlach SR, Czwalinna A, Schugerl K, Giuseppin MLF, Hunik J (1997) Production of xylanase by Aspergillus awamori on complex medium in stirred tank and airlift tower loop reactors. J Biotechnol 56(3):205–216CrossRefGoogle Scholar
  60. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166(2):486–520CrossRefPubMedGoogle Scholar
  61. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18CrossRefGoogle Scholar
  62. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46(7):541–549CrossRefGoogle Scholar
  63. Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25(6):437–441CrossRefGoogle Scholar
  64. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64(11):832–844Google Scholar
  65. Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424CrossRefGoogle Scholar
  66. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161CrossRefGoogle Scholar
  67. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492CrossRefPubMedPubMedCentralGoogle Scholar
  68. van den Brink J, Maitan-Alfenas GP, Zou G, Wang CS, Zhou ZH, Guimaraes VM et al (2014) Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse. Biotechnol J 9(10):1329–1338CrossRefPubMedGoogle Scholar
  69. Vasconcellos VM, Tardioli PM, Giordano RLC, Farinas CS (2015) Production efficiency versus thermostability of (hemi)cellulolytic enzymatic cocktails from different cultivation systems. Process BiochemGoogle Scholar
  70. Vitcosque GL, Fonseca RF, Rodríguez-Zúniga UF, Bertucci Neto V, Couri V, Farinas CS (2012) Production of biomass-degrading multienzyme complexes under solid-state fermentation of soybeanmeal using a bioreactor. Enzyme Res 2012:8CrossRefGoogle Scholar
  71. Zhang Y, Himmel M, Mielenz J (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cristiane Sanchez Farinas
    • 1
    • 2
    Email author
  • Fernanda Marisa da Cunha
    • 1
  1. 1.Embrapa InstrumentationSão CarlosBrazil
  2. 2.Graduate Program of Chemical EngineeringFederal University of São CarlosSão CarlosBrazil

Personalised recommendations