Advertisement

Mycoremediation of Heavy Metal/Metalloid-Contaminated Soil: Current Understanding and Future Prospects

  • Wai Kit Chan
  • Dirk Wildeboer
  • Hemda Garelick
  • Diane PurchaseEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

In natural environments, heavy metals and metalloids are widely dispersed as a consequence of anthropogenic (e.g. mining) and geological (e.g. volcanic eruption) activities. The toxicity of these metals/metalloids could adversely affect the ecosystem as well as causing major human health concerns. Mycoremediation (remediation by fungi) has received attention from many researchers as an alternative to conventional chemical and physical methods in removing toxic metals and metalloids. A number of regulatory mechanisms to control the concentrations and counteract the toxicity of these pollutants have been observed in fungi. These mechanisms include: (i) precipitation or binding to cell surface materials, (ii) intracellular chelation and precipitation, (iii) biotransformation and (iv) control of membrane transport systems. This chapter examines the use of fungi to bioremediate metals and metalloids and their detoxification mechanisms, with special focus on an extremophilic fungus, Acidomyces acidophilus, isolated from a disused tin mine in the UK, to illustrate some of the mechanisms involved. Future biotechnological and nanotechnological prospects of metal/metalloids bioremediation using fungi are also discussed.

Keywords

Metalloids Arsenic Antimony Heavy metals Extremophilic fungi Acidomyces acidophilus Biosorption Biotransformation Siderophores Metal precipitates Nanoparticles 

References

  1. Adamo GM, Brocca S, Passolunghi S, Salvato B, Lotti M (2012) Laboratory evolution of copper tolerant yeast strains. Microb Cell Fact. doi: 10.1186/1475-2859-11-1 PubMedPubMedCentralGoogle Scholar
  2. Adriano DC (1986) Trace elements in the terrestrial environment. Springer, HeidelbergCrossRefGoogle Scholar
  3. Aguilera A (2013) Eukaryotic organisms in extreme acidic environments, the Río Tinto case. Life (Basel) 3(3):363–74. doi: 10.3390/life3030363
  4. Aguilera A, Zettler E, Gómez F, Amaral-Zettler L, Rodríguez N, Amils R (2007) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30(7):531–546 Epub 2007 Jul 17PubMedCrossRefGoogle Scholar
  5. Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. doi: 10.1111/1751-7915.12117 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alloway BJ (2013) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, The Netherlands. doi: 10.1007/978-94-007-4470-7
  7. Amaral LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137. doi: 10.1038/417137a CrossRefGoogle Scholar
  8. Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97(8):1018–1025. doi: 10.1016/j.biortech.2005.04.046 PubMedCrossRefGoogle Scholar
  9. Andrewes P, Cullen WR, Polishchuk E (2000) Antimony biomethylation by Scopulariopsis brevicaulis: characterization of intermediates and the methyl donor. Chemosphere 41(11):1717–1725. doi: 10.1016/S0045-6535(00)00063-1 PubMedCrossRefGoogle Scholar
  10. Bai J, Lin X, Yin R, Zhang H, Junhua W, Xueming C, Yongming L (2008) The influence of arbuscularmycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl Soil Ecol 38(2):137–145CrossRefGoogle Scholar
  11. Bai Z, Harvey LM, McNeil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302PubMedCrossRefGoogle Scholar
  12. Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70(10):6264–6271PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barkay T, Wagner-Döbler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52. doi: 10.1016/S0065-2164(05)57001-1 PubMedCrossRefGoogle Scholar
  14. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91. doi: 10.1016/S0141-0229(02)00245-4 CrossRefGoogle Scholar
  15. Bayramoğlu G, Bektaş S, Arica MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101(3):285–300PubMedCrossRefGoogle Scholar
  16. Bhargavi SD, Savitha J (2014) Arsenate resistant Penicillium coffeae: a potential fungus for soil bioremediation. B Environ Contam Toxicol 92(3):369–373. doi: 10.1007/s00128-014-1212-y CrossRefGoogle Scholar
  17. Bhattacharjee H, Mukhopadhyay R, Thiyagarajan S, Rosen BP (2008) Aquaglyceroporins: ancient channels for metalloids. J Biol 7. doi: 10.1186/jbiol91
  18. Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M et al (2010) Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10:3811–3834PubMedCrossRefGoogle Scholar
  19. Britannica Academic. Metalloid (2015) http://www.britannica.com/science/metalloid. Accessed 13 Oct 2015
  20. Bun-Ya M, Harashima S, Oshima Y (1992) Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol 12(7):2958–2966PubMedPubMedCentralCrossRefGoogle Scholar
  21. Černaňský S, Kolenčik M, Ševc J, Urík M, Hiller E (2009) Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Bioresour Technol 100:1037–1040PubMedCrossRefGoogle Scholar
  22. Černaňský S, Urik M, Sevc J, Khun M (2007) Biosorption and biovolatilization of arsenic by heat-resistant fungi. Env Sci Poll Res 14:31–35. doi: 10.1065/espr2006.11.361 CrossRefGoogle Scholar
  23. Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 3:627–635Google Scholar
  24. Chiacchiarini P, Lavalle L, Giaveno A, Donati E (2010) First assessment of acidophilic microorganisms from geothermal Copahue-Cavahue system. Hydrometallurgy 104(3–4):334–341. doi: 10.1016/j.hydromet.2010.02.020 CrossRefGoogle Scholar
  25. Chouchane S, Snow ET (2001) In vitro effect of arsenical compounds on glutathione-related enzymes. Chem Res Toxicol 14:517–522. doi: 10.1021/tx000123x PubMedCrossRefGoogle Scholar
  26. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  28. Crumbliss AL, Harrington JM (2009) Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. In: van Eldik R, Hubbard CD (eds) Advanced Inorganic Chemistry, vol 61. Academic Press, London, pp 179–249Google Scholar
  29. Cox DP, Alexander M (1973) Production of trimethylarsine gas from various arsenic compounds by three sewage fungi. Bull Environ Contam Toxicol 9(2):84–88PubMedCrossRefGoogle Scholar
  30. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764. doi: 10.1021/cr00094a002 CrossRefGoogle Scholar
  31. Danesh YR, Tajbakhsh M, Goltapeh EM, Varma A (2013) Mycoremediation of heavy metals. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Germany, pp 245–67Google Scholar
  32. Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2014) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res Int 21(3):2346–2357. doi: 10.1007/s11356-013-2163-2 PubMedCrossRefGoogle Scholar
  33. Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2013) Enhancement of phytoremediation of Cd- and Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp. CBRF59. Chemosphere 91(1):41–47. doi: 10.1016/j.chemosphere.2012.11.065
  34. Dhankhar R, Hooda A (2011) Fungal biosorption—an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5):467–491. doi: 10.1080/09593330.2011.572922 PubMedCrossRefGoogle Scholar
  35. Dias MA, Lacerda ICA, Pimentel PF, De Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34:46–50PubMedCrossRefGoogle Scholar
  36. Diels L, Van der Lelie N, Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1(1):75–82CrossRefGoogle Scholar
  37. Dietz KJ, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagaemeyer J (eds) Heavy metal stress in plants. Springer, Berlin Heidelberg, pp 73–97Google Scholar
  38. Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120PubMedCrossRefGoogle Scholar
  39. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212CrossRefGoogle Scholar
  40. dos Santos JV, de Melo Rangel W, Guimaraes AA, Jaramillo PMD, Rufini M, Marra LM, de Souza Moreira FM (2013) Soil biological attributes in arsenic-contaminated gold mining sites after revegetation. Ecotoxicology 22(10):1526–1537Google Scholar
  41. Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93(3):931–940. doi: 10.1007/s00253-011-3777-2 PubMedCrossRefGoogle Scholar
  42. Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier. Morocco. Afr J Microbiol Res. 3:25–48Google Scholar
  43. Factor-Litvak P, Wasserman G, Kline JK, Graziano P (1999) The Yugoslavia prospective study of environmental lead exposure. Environ Health Perspect 107:9–15PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005) Role of oxalic acid overexcretion in transformation of toxic metal minerals by Beauveria caledonica. Appl Env Microbiol. 71:371–381. doi: 10.1128/AEM.71.1.371-381.2005.1 CrossRefGoogle Scholar
  45. Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209PubMedGoogle Scholar
  46. Fujs S, Gazdag Z, Poljšak B, Stibilj V, Milačič R, Pesti M (2005) The oxidative stress response of the yeast Candida intermedia to copper, zinc, and selenium exposure. J Basic Microbiol 45:125–135PubMedCrossRefGoogle Scholar
  47. Gadd GM (1993) Interactions of fungi with toxic metals. New Phytologist 124(1):25–60CrossRefGoogle Scholar
  48. Gadd GM (ed) (2001) Fungi in bioremediation (No. 23). Cambridge University PressGoogle Scholar
  49. Gadd GM (2004) Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70CrossRefGoogle Scholar
  50. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49PubMedCrossRefGoogle Scholar
  51. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28CrossRefGoogle Scholar
  52. Gadd GM (2010) Metals, minerals and microbes: geomicrobiolgy and bioremediation. Microbiology 156:609–643. doi: 10.1099/mic0.037143.0 PubMedCrossRefGoogle Scholar
  53. Gadd GM (2011) Geomycology. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology, part 7. Springer, Heidelberg, pp 416–432CrossRefGoogle Scholar
  54. Gebel T (1997) Arsenic and antimony: comparative approach on mechanistic toxicology. Chem Biol Interact 107(3):131–144PubMedCrossRefGoogle Scholar
  55. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  56. Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96(9):5001–5006PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gimmler H, de Jesus J, Greiser A (2001) Heavy metal resistance of the extreme acidotolerant filamentous fungus Bispora sp. Microbial Ecol 42:87–98CrossRefGoogle Scholar
  58. Gitan RS, Shababi M, Kramer M, Eide DJ (2003) A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium. J Biol Chem 278:3955–3964CrossRefGoogle Scholar
  59. Gomes DS, Fragoso LC, Riger CJ, Panek AD, Eleutherio EC (2002) Regulation of cadmium uptake by Saccharomyces cerevisiae. Biochim Biophys Acta 1573:21–25PubMedCrossRefGoogle Scholar
  60. González-Chávez MC, Ortega-Larrocea Mdel P, Carrillo-González R, López-Meyer M, Xoconostle-Cázares B, Gomez SK et al (2011) Arsenate induces the expression of fungal genes involved in as transport in arbuscular mycorrhiza. Fungal Biol 115(12):1197–1209. doi: 10.1016/j.funbio.2011.08.005 CrossRefGoogle Scholar
  61. González-Guerrero M, Benabdellah K, Ferrol N, Azcón-Aguilar C (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas—functional processes and ecological impacts. Springer, Berlin , pp 107–22Google Scholar
  62. González-Chávez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171CrossRefGoogle Scholar
  63. Gould WD, Fujikawa JI, Cook FD (1974) A soil fungus tolerant to extreme acidity and high salt concentrations. Can J Microbiol 20:1023–1027PubMedCrossRefGoogle Scholar
  64. Guibal E, Roulph C, Le Cloirec P (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ Sci Technol 29(10):2496–2503. doi: 10.1021/es00010a007 PubMedCrossRefGoogle Scholar
  65. Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78(8):967–973Google Scholar
  66. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192. doi: 10.1038/nrmicro2519 PubMedCrossRefGoogle Scholar
  67. Harrison VF, Gow WA, Ivarsson KC (1966) Leaching of uranium from Elliott Lake ore in the presence of bacteria. Can Min J 87:64–67Google Scholar
  68. Hartmann LM, Craig PJ, Jenkins RO (2003) Influence of arsenic on antimony methylation by the aerobic yeast Cryptococcus humicolus. Arch Microbiol 180(5):347–352. doi. 10.1007/s00203-003-0600-1
  69. Hernlem BJ, Vane LM, Sayles GD (1999) The application of siderophores for metal recovery and waste remediation: examination of correlations for prediction of metal affinities. Water Res 33:951–960CrossRefGoogle Scholar
  70. Hess M (2008) Thermoacidophilic proteins for biofuel production. Trends Microbiol 16(9):414–419PubMedCrossRefGoogle Scholar
  71. Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Antonie Van Leeuwenhoek 86(4):287–294PubMedCrossRefGoogle Scholar
  72. Hujslová M, Kubátová A, Kostovčík M, Kolařík M (2013) Acidiella bohemica gen. et sp. nov. and Acidomyces spp. (Teratosphaeriaceae), the indigenous inhabitants of extremely acidic soils in Europe. Fungal Div 58(1):33–45Google Scholar
  73. Iskandar NL, Zainudin NA, Tan SG (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci (China) 23(5):824–830CrossRefGoogle Scholar
  74. Ivarsson KC, Morita H (1982) Single-cell protein production by the acid-tolerant fungus Scytalidium acidophilum from acid hydrolysates of waste paper. Appl Environ Microbiol 43:643–647Google Scholar
  75. Jacobson ES, Hove E, Emery HS (1995) Antioxidant function of melanin in black fungi. Infect Immun 63(12):4944–4945PubMedPubMedCentralGoogle Scholar
  76. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdisc Toxicol 7(2):60–72. doi: 10.2478/intox-2014-0009 CrossRefGoogle Scholar
  77. Jakubiak M, Giska I, Asztemborska M, Bystrzejewska-Piotrowska G (2014) Bioaccumulation and biosorption of inorganic nanoparticles: factors affecting the efficiency of nanoparticle mycoextraction by liquid-grown mycelia of Pleurotus eryngiii and Trametes versicolor. Mycol Prog 13:525–532. doi: 10.1007/s11557-013-0933-3 CrossRefGoogle Scholar
  78. Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527PubMedCrossRefGoogle Scholar
  79. Jarosz-Wilkołazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic-metal-amended medium. Chemospere 52:541–547. doi: 10.1016/S0045-6535(03)00235-2 CrossRefGoogle Scholar
  80. Jiang J, Qin C, Shu X, Chen R, Song H, Li Q et al (2015) Effects of copper on induction of thiol-compounds and antioxidant enzymes by the fruiting body of Oudemansiella radicata. Ecotoxicol Environ Saf 111:60–65. doi: 10.1016/j.ecoenv.2014.09.014 PubMedCrossRefGoogle Scholar
  81. Joseph E, Cario S, Simon A, Wörle M, Mazzeo R, Junier P, Job D (2012) Protection of metal artifacts with the formation of metal-oxalates complexes by Beauveria bassiana. Front Microbiol 2:270. doi: 10.3389/fmicb.2011.00270. eCollection 2011
  82. Joshi BH (2014) Evaluation and characterization of heavy metal resistant fungi for their prospects in bioremediation. J Environ Res Dev 8(04):876–882Google Scholar
  83. Jung WH, Sham A, White R, Kronsta JW (2006) Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. doi: 10.1371/journal.pbio.0040410 PubMedPubMedCentralGoogle Scholar
  84. Karman SB, Zaleha S, Diah M, Gebeshuber IC (2015) Raw materials synthesis from heavy metal industry effluents with bioremediation and phytomining: a biomimetic resource management approach. Adv Mater Sci Eng. doi: 10.1155/2015/185071 Google Scholar
  85. Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J et al (1998) The role of oxidative stress in chemical carcinogenesis. Environ. Health Perspect 106:289–295Google Scholar
  86. Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express. 4:29. doi: 10.1186/s13568-014-0029-8 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lazarova N, Krumova E, Stefanova T, Georgieva N, Angelova M (2014) The oxidative stress response of the filamentous yeast Trichosporon cutaneum R57 to copper, cadmium and chromium exposure. Biotechnol Biotechnol Equip 28(5):855–862PubMedPubMedCentralCrossRefGoogle Scholar
  88. Li HY, Li DW, He CM, Zhou ZP, Mei T, Xu HM (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn wasteland in China. Fungal Ecol 5:309–315. doi: 10.1016/j.funeco.2011.06.002 CrossRefGoogle Scholar
  89. Lin CH, Huang CF, Chen WY, Chang YY, Ding WH, Lin MS et al (2006) Characterization of the interaction of galectin-1 with sodium arsenite. Chem Res Toxicol 19:469–474. doi: 10.1021/tx0503348 PubMedCrossRefGoogle Scholar
  90. Liu Z, Boles E, Rosen BP (2004) Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279:17312–17318PubMedCrossRefGoogle Scholar
  91. López-Archilla AI, González AE, Terrón MC, Amils R (2004). Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50(11):923–934Google Scholar
  92. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579. doi: 10.1038/35054664 PubMedCrossRefGoogle Scholar
  93. Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R (2012) Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13(3):3527–3548. doi: 10.3390/ijms13033527 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Maciaszczyk-Dziubinska E, Migdal I, Migocka M, Bocer T, Wysocki R (2010) The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett 584:726–732PubMedCrossRefGoogle Scholar
  95. Maheswari S, Murugesan AG (2009) Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic-contaminated site. Environ Technol 30(9):921–926. doi: 10.1080/09593330902971279 PubMedCrossRefGoogle Scholar
  96. Majorel C, Hannibal L, Ducousso M, Lebrun M, Jourand P (2014) Evidence of nickel (Ni) efflux in Ni-tolerant ectomycorrhizal Pisolithus albus isolated from ultramafic soil. Environ Microbiol Rep 6:510–518. doi: 10.1111/1758-2229.12176 PubMedCrossRefGoogle Scholar
  97. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278PubMedCrossRefGoogle Scholar
  98. Matschullat J (2000) Arsenic in the geosphere—a review. Sci Total Environ 249(1–3):297–312PubMedCrossRefGoogle Scholar
  99. McDougall DN, Blanchette RA (1996) Metal ion adsorption by pseudoschlerotial plates of Phelliunus weirii. Mycologia 88:98–103CrossRefGoogle Scholar
  100. Muller S, Walter RD, Fairlamb AH (1995) Differential susceptibility of filarial and human erythrocyte glutathione reductase to inhibition by the trivalent organic arsenical melarsen oxide. Mol Biochem Parasitol 71:211–219. doi: 10.1016/0166-6851(94)00053-P PubMedCrossRefGoogle Scholar
  101. Ochiai E (1997) Bio-inorganic chemistry: an Inroduction. Align and Bawn, BostonGoogle Scholar
  102. Oggerin M, Tornos F, Rodríguez N, del Moral C, Sánchez-Román M, Amils R (2013) Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Environ Microbiol 15(8):2228–2237. doi: 10.1111/1462-2920.12094 PubMedCrossRefGoogle Scholar
  103. Pócsi I (2011) Toxic metal/metalloid tolerance in fungi—a biotechnological-oriented approach. In: Bánfalvi G (ed) Cellular effects of heavy metals. Springer, Berlin, pp 31–58. doi: 10.1007/978-94-0097-0428-2_2
  104. Polizeli M, Rizzatti L, Monti T, Terenzi A, Jorge C, Amorim S (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591PubMedCrossRefGoogle Scholar
  105. Porquet A, Filella M (2007) Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem Res Toxicol 20:1269–1276PubMedCrossRefGoogle Scholar
  106. Purchase D, Scholes LNL, Revitt DM, Shutes RBE (2009) Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol 106:1163–1174PubMedCrossRefGoogle Scholar
  107. Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601CrossRefGoogle Scholar
  108. Qiu Z, Deng Z, Tan H, Zhou S, Cao L (2015) Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene. J Ind Microbiol Biotechnol 42(4):537–542. doi: 10.1007/s10295-014-1573-6 PubMedCrossRefGoogle Scholar
  109. Quesada AR, Byrnes RW, Krezoski SO, Petering DH (1996) Direct reaction of H2O2 with sulfhydryl groups in HL-60 cells: zinc-metallothionein and other sites. Arch Biochem Biophys 334:241–250PubMedCrossRefGoogle Scholar
  110. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122. doi: 10.1104/pp.103.033506 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41(9):935–944PubMedGoogle Scholar
  112. Ramirez-Solis A, Mukopadhyay R, Rosen BP, Stemmler TL (2004) Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O. Inorg Chem 43(9):2954–2959PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396. doi: 10.1136/pmj.79.933.391 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Reese RN, Mehra RK, Tarbet EB, Winge DR (1988) Studies on the γ-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J Biol Chem 263:4186–4192PubMedGoogle Scholar
  115. Rizzo DM, Blanchette RA, Palmer MA (1992) Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot 1992(70):1515–1520CrossRefGoogle Scholar
  116. Romero-Isart N, Vašák M (2002) Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 88:388–396PubMedCrossRefGoogle Scholar
  117. Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87(10):2559–2569PubMedCrossRefGoogle Scholar
  118. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92PubMedCrossRefGoogle Scholar
  119. Rothenberg SJ, Rothenberg JC (2005) Testing the dose-response specification in epidemiology: public health policy consequences for lead. Environ Health Perspect 113:1190–1195CrossRefGoogle Scholar
  120. Ruotolo R, Marchini G, Ottonello S (2008) Membrane transporters and protein traffic networks differentially affecting metal tolerance: a genomic phenotyping study in yeast. Genome Biol 9:R67. doi: 10.1186/gb-2008-9-4-r67 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Salvadori MR, Ando RA, Oller do Nascimento CA, Corrêa B (2014a) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS ONE 9(1):e87968. doi: 10.1371/journal.pone.0087968. eCollection 2014
  122. Salvadori MR, Nascimento CA, Corrêa B (2014b) Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci Rep. doi: 10.1038/srep06404 PubMedPubMedCentralGoogle Scholar
  123. Salvadori MR, Ando RA, Do Oller Nascimento CA, Corrêa B (2014c) Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J Environ Sci Health A Tox Hazard Subst Environ Eng 49(11):1286–1295. doi: 10.1080/10934529.2014.910067 PubMedCrossRefGoogle Scholar
  124. Salvadori MR, Ando RA, Nascimento CA, Corrêa B (2015) Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One 10(6):e0129799. doi: 10.1371/journal.pone.0129799
  125. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504. doi: 10.1016/j.biortech.2008.05.048 PubMedCrossRefGoogle Scholar
  126. Sari A, Tuzen M (2009a) Kinetic and equilibrium studies of biosorption of Pb(II) aned Cd(ii) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164:1004–1011. doi: 10.1016/j.jhazmat.2008.09.002 PubMedCrossRefGoogle Scholar
  127. Sari A, Tuzen M (2009b) Biosorption of As(III) and As(V) form aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. J Hazard Mater 164(2–3):1372–1378. doi: 10.1016/j.jhazmat.2008.09.047 PubMedCrossRefGoogle Scholar
  128. Saxena P, Bhattacharyya AK, Mathur N (2006) Nickel tolerance and accumulation by filamentous fungi from sludge of metal finishing industry. Geomicrobiol J 23:333–340CrossRefGoogle Scholar
  129. Schalk IJ, Hannauer M, Braud A (2011) Minireview new roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854PubMedCrossRefGoogle Scholar
  130. Schweitzer AD, Howell RC, Jiang Z, Bryan RA, Gerfen G, Chen CC et al (2009) Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PLoS ONE 4(9):e7229. doi: 10.1371/journal.pone.0007229 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Scholtmeijer K, Wessels J, Wösten H (2001) Fungal hydrophobins in medical and technical applications. Appl Microbiol Biotechnol 56(1–2):1–8PubMedCrossRefGoogle Scholar
  132. Schwantes HO (1996) The biology of fungi: an introduction to applied mycology. Verlag Eugen Ulmer GmbHGoogle Scholar
  133. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56PubMedCrossRefGoogle Scholar
  134. Selbmann L, De Hoog GS, Zucconi L, Isola D, Ruisi S, van den Ende AG et al (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20PubMedPubMedCentralCrossRefGoogle Scholar
  135. Seyedmousavi S, Badali H, Chlebicki A, Zhao J, Prenafeta-Boldu FX, De Hoog GS (2011) Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. Fungal Biol 115(10):1030–1037PubMedCrossRefGoogle Scholar
  136. Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol 124:1327–1334PubMedPubMedCentralCrossRefGoogle Scholar
  137. Shen M, Zhao D-K, Qiao Q, Liu L, Wang J-L, Cao G-H et al (2015) Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metal stress. PLoS ONE 10(4):e0123418. doi: 10.1371/journal.pone.0123418 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Sigler L, Carmichael JW (1974) A new acidophilic Scytalidium. Can J Microbiol 20(2):267–268PubMedCrossRefGoogle Scholar
  139. Singh H (2006) Mycoremediation: fungal bioremediation. WileyGoogle Scholar
  140. Snow ET, Hu Y, Yan CC, Chouchane S (1999) Modulation of DNA repair and glutathione levels in human keratinocytes by micromolar arsenite. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier, Oxford, pp 243–251. doi: 10.1016/b978-008043648-7/50028-5
  141. Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442. doi: 10.1016/j.scitotenv.2011.03.002 PubMedCrossRefGoogle Scholar
  142. Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora, JW et al (2009) The fungi. Curr Biol 19(18):R840–5Google Scholar
  143. Starkey RL, Waksman SA (1943) Fungi tolerant to extreme acidity and high concentrations of copper sulfate. J Bacteriol 45(5):509–691PubMedPubMedCentralGoogle Scholar
  144. Styblo M, Serves SV, Cullen WR, Thomas DJ (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenthiols. Chem Res Toxicol 10:27–33. doi: 10.1021/tx960139g PubMedCrossRefGoogle Scholar
  145. Su S, Zeng X, Bai L, Jiang X, Li L (2010) Bioaccumulation and biovolatilisation of pentavalent arsenic by Penicillin janthinellum, Fusarium oxysporum and Trichoderma asperellum under laboratory conditions. Curr Microbiol 61(4):261–266. doi: 10.1007/s00284-010-9605-6 PubMedCrossRefGoogle Scholar
  146. Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology. Pearson Prentice Hall, Upper Saddle River, NJGoogle Scholar
  147. Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110PubMedGoogle Scholar
  148. Tamás MJ, Labarre J, Toledano MB, Wysocki R (2005) Mechanisms of toxic metal tolerance in yeast. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, Heidelberg, pp 395–454CrossRefGoogle Scholar
  149. Tan Q, Chen G, Zeng G, Chen A, Guan S, Li Z et al (2015) Physiological fluxes and antioxidative enzymes activities of immobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles after exposure to toxic pollutants in solution. Chemosphere 2015(128):21–27. doi: 10.1016/j.chemosphere.2014.12.088 CrossRefGoogle Scholar
  150. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. doi: 10.1007/978-3-7643-8340-4_6 PubMedPubMedCentralGoogle Scholar
  151. Tereshina VM, Mar’in AP, Kosyakov VN, Kozlov VP, Feofilova EP (1999) Different metal sorption capacities of cell wall polysaccharides of Aspergillus niger. Appl Biochem Micorbiol 35:389–392Google Scholar
  152. Tetsch L, Bend J, Hölker U (2006) Molecular and enzymatic characterisation of extra- and intracellular laccases from the acidophilic ascomycete Hortaea acidophila. Antonie Van Leeuwenhoek 90(2):183–194PubMedCrossRefGoogle Scholar
  153. Todorova TT, Kujumdzieva AV, Vuilleumier S (2010) Non-enzymatic roles for the URE2 glutathione S-transferase in the response of Saccharomyces cerevisiae to arsenic. Arch Microbiol 192(11):909–918. doi: 10.1007/s00203-010-0614-4 PubMedCrossRefGoogle Scholar
  154. Trasande L, Landrigan PJ, Schechter C (2005) Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect 113:590–596PubMedPubMedCentralCrossRefGoogle Scholar
  155. Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT et al (2013) Tricoderma: a potential bioremediator for environmental clean up. Clean Technol Environ Policy 15:541–550. doi: 10.1007/s10098-012-0553-7 CrossRefGoogle Scholar
  156. Tripathi V, Fraceto LF, Abhilash PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-micorb-pollutant and climate nexus. Ecol Eng 82:330–335. doi: 10.1016/j.ecoleng.2015.05.027 CrossRefGoogle Scholar
  157. Tschan M, Robinson B, Schulin R (2008) Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environ Geochem Health 30:187–191PubMedCrossRefGoogle Scholar
  158. Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH et al (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659PubMedCrossRefGoogle Scholar
  159. Urik M, Littera P, Kolen M (2009) Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies): kinetics and isotherm studies. Int J Environ Sci Technol 6(3):451–456CrossRefGoogle Scholar
  160. Urik M, Hlodak M, Mikusova P, Matus P (2014) Potential of microscopic fungi isolated from mercury contaminated soils to accumulate and volatilize mercury(II). Water Air Soil Pollut 225:2219–2229. doi: 10.1007/s11270-014-2219-z CrossRefGoogle Scholar
  161. Vázquez-Campos X, Kinsela AS, Collins RN, Neilan BA, Aoyagi N, Waite TD (2015) Uranium binding mechanisms of the acid-tolerant fungus Coniochaeta fodinicola. Environ Sci Technol 49(14):8487–8496. doi: 10.1021/acs.est.5b01342 PubMedCrossRefGoogle Scholar
  162. Velmurugan P, Shim J, You Y, Choi S, Kamala-Kannan S, Lee KJ, Kim HJ, Oh BT (2010) Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. J Hazard Mater 182(1–3):317–324. doi: 10.1016/j.jhazmat.2010.06.032 PubMedCrossRefGoogle Scholar
  163. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133(1–3):304–308PubMedCrossRefGoogle Scholar
  164. Vodyanitskii YN (2013) Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Sci 46(7):793–801CrossRefGoogle Scholar
  165. Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141. doi: 10.1016/j.biortech.2013.12.110 PubMedCrossRefGoogle Scholar
  166. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotech Adv 27:195–226. doi: 10.1016/j.biotechadv.2008.11.002 CrossRefGoogle Scholar
  167. Wang Q, He M, Wang Y (2011) Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities. Ecotoxicology 20(1):9–19PubMedCrossRefGoogle Scholar
  168. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A (2004) Water arsenic exposure and children’s intellectual function in Araihazar. Bangladesh Environ Health Perspect. 112:1329–1333PubMedCrossRefGoogle Scholar
  169. Wei Z, Liang X, Pendlowski H, Hillier S, Suntornvongsagul K, Sihanonth P et al (2013) Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol 15(8):2173–2186. doi: 10.1111/1462-2920.12089 PubMedCrossRefGoogle Scholar
  170. White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20(3–4):503–516PubMedCrossRefGoogle Scholar
  171. Winkelmann G (2007) Ecologyof siderophores with special reference to the fungi. Biometals 20:379–392. doi: 10.1007/s10534-006-9076-1 PubMedCrossRefGoogle Scholar
  172. Wysocki R, Bobrowicz P, Ułaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272(48):30061–30066PubMedCrossRefGoogle Scholar
  173. Wysocki R, Fortier PK, Maciaszczyk E, Thorsen M, Leduc A, Odhagen A, Owsianik G, Ulaszewski S, Ramotar D, Tamás MJ (2004) Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Mol Biol Cell 15:2049–2060Google Scholar
  174. Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951PubMedCrossRefGoogle Scholar
  175. Xu X, Xia L, Huang Q, Gu JD, Chen W (2012) Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environ Technol 33(14):1661–1670PubMedCrossRefGoogle Scholar
  176. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98(13):2557–2561PubMedCrossRefGoogle Scholar
  177. Zhang W, Cai Y (2003) Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure. Anal Chem 15, 75(24):7030–7035Google Scholar
  178. Zhang YJ, Zhang Y, Liu MJ, Shi XD, Zhao ZW (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46(6):624–632. doi: 10.1007/s12275-008-0163-6 PubMedCrossRefGoogle Scholar
  179. Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51:686–693CrossRefGoogle Scholar
  180. Zuo Y, Chen G, Zeng G, Li Z, Yan M, Chen A, Guo Z, Huang Z, Tan Q (2015) Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions. J Hazard Mater 285:236–244. doi: 10.1016/j.jhazmat.2014.12.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wai Kit Chan
    • 1
  • Dirk Wildeboer
    • 1
  • Hemda Garelick
    • 1
  • Diane Purchase
    • 1
    Email author
  1. 1.Department of Natural Sciences, Faculty of Science and TechnologyMiddlesex UniversityLondonUnited Kingdom

Personalised recommendations