Skip to main content

Mycoremediation of Heavy Metal/Metalloid-Contaminated Soil: Current Understanding and Future Prospects

  • Chapter
  • First Online:
Fungal Applications in Sustainable Environmental Biotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

In natural environments, heavy metals and metalloids are widely dispersed as a consequence of anthropogenic (e.g. mining) and geological (e.g. volcanic eruption) activities. The toxicity of these metals/metalloids could adversely affect the ecosystem as well as causing major human health concerns. Mycoremediation (remediation by fungi) has received attention from many researchers as an alternative to conventional chemical and physical methods in removing toxic metals and metalloids. A number of regulatory mechanisms to control the concentrations and counteract the toxicity of these pollutants have been observed in fungi. These mechanisms include: (i) precipitation or binding to cell surface materials, (ii) intracellular chelation and precipitation, (iii) biotransformation and (iv) control of membrane transport systems. This chapter examines the use of fungi to bioremediate metals and metalloids and their detoxification mechanisms, with special focus on an extremophilic fungus, Acidomyces acidophilus, isolated from a disused tin mine in the UK, to illustrate some of the mechanisms involved. Future biotechnological and nanotechnological prospects of metal/metalloids bioremediation using fungi are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Additional information on isolation and cloning of genes from resistant fungi is presented in Chap. 2The genetic basis of abiotic stress resistance in extermophilic fungi: the genes cloning and application.

  2. 2.

    Further information fungal biosynthesis of nanoparticles can be found in Chap. 13Fungal biosynthesis of nanoparticles, a cleaner alternative.

References

  • Adamo GM, Brocca S, Passolunghi S, Salvato B, Lotti M (2012) Laboratory evolution of copper tolerant yeast strains. Microb Cell Fact. doi:10.1186/1475-2859-11-1

    PubMed  PubMed Central  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, Heidelberg

    Book  Google Scholar 

  • Aguilera A (2013) Eukaryotic organisms in extreme acidic environments, the Río Tinto case. Life (Basel) 3(3):363–74. doi:10.3390/life3030363

    Google Scholar 

  • Aguilera A, Zettler E, Gómez F, Amaral-Zettler L, Rodríguez N, Amils R (2007) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30(7):531–546 Epub 2007 Jul 17

    Article  CAS  PubMed  Google Scholar 

  • Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. doi:10.1111/1751-7915.12117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alloway BJ (2013) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, The Netherlands. doi:10.1007/978-94-007-4470-7

    Google Scholar 

  • Amaral LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137. doi:10.1038/417137a

    Article  CAS  Google Scholar 

  • Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97(8):1018–1025. doi:10.1016/j.biortech.2005.04.046

    Article  CAS  PubMed  Google Scholar 

  • Andrewes P, Cullen WR, Polishchuk E (2000) Antimony biomethylation by Scopulariopsis brevicaulis: characterization of intermediates and the methyl donor. Chemosphere 41(11):1717–1725. doi:10.1016/S0045-6535(00)00063-1

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Lin X, Yin R, Zhang H, Junhua W, Xueming C, Yongming L (2008) The influence of arbuscularmycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl Soil Ecol 38(2):137–145

    Article  Google Scholar 

  • Bai Z, Harvey LM, McNeil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302

    Article  CAS  PubMed  Google Scholar 

  • Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70(10):6264–6271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkay T, Wagner-Döbler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52. doi:10.1016/S0065-2164(05)57001-1

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91. doi:10.1016/S0141-0229(02)00245-4

    Article  CAS  Google Scholar 

  • Bayramoğlu G, Bektaş S, Arica MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101(3):285–300

    Article  PubMed  CAS  Google Scholar 

  • Bhargavi SD, Savitha J (2014) Arsenate resistant Penicillium coffeae: a potential fungus for soil bioremediation. B Environ Contam Toxicol 92(3):369–373. doi:10.1007/s00128-014-1212-y

    Article  CAS  Google Scholar 

  • Bhattacharjee H, Mukhopadhyay R, Thiyagarajan S, Rosen BP (2008) Aquaglyceroporins: ancient channels for metalloids. J Biol 7. doi:10.1186/jbiol91

    Google Scholar 

  • Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M et al (2010) Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10:3811–3834

    Article  CAS  PubMed  Google Scholar 

  • Britannica Academic. Metalloid (2015) http://www.britannica.com/science/metalloid. Accessed 13 Oct 2015

  • Bun-Ya M, Harashima S, Oshima Y (1992) Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol 12(7):2958–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Černaňský S, Kolenčik M, Ševc J, Urík M, Hiller E (2009) Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Bioresour Technol 100:1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Černaňský S, Urik M, Sevc J, Khun M (2007) Biosorption and biovolatilization of arsenic by heat-resistant fungi. Env Sci Poll Res 14:31–35. doi:10.1065/espr2006.11.361

    Article  CAS  Google Scholar 

  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 3:627–635

    Google Scholar 

  • Chiacchiarini P, Lavalle L, Giaveno A, Donati E (2010) First assessment of acidophilic microorganisms from geothermal Copahue-Cavahue system. Hydrometallurgy 104(3–4):334–341. doi:10.1016/j.hydromet.2010.02.020

    Article  CAS  Google Scholar 

  • Chouchane S, Snow ET (2001) In vitro effect of arsenical compounds on glutathione-related enzymes. Chem Res Toxicol 14:517–522. doi:10.1021/tx000123x

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Crumbliss AL, Harrington JM (2009) Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. In: van Eldik R, Hubbard CD (eds) Advanced Inorganic Chemistry, vol 61. Academic Press, London, pp 179–249

    Google Scholar 

  • Cox DP, Alexander M (1973) Production of trimethylarsine gas from various arsenic compounds by three sewage fungi. Bull Environ Contam Toxicol 9(2):84–88

    Article  CAS  PubMed  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764. doi:10.1021/cr00094a002

    Article  CAS  Google Scholar 

  • Danesh YR, Tajbakhsh M, Goltapeh EM, Varma A (2013) Mycoremediation of heavy metals. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Germany, pp 245–67

    Google Scholar 

  • Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2014) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res Int 21(3):2346–2357. doi:10.1007/s11356-013-2163-2

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2013) Enhancement of phytoremediation of Cd- and Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp. CBRF59. Chemosphere 91(1):41–47. doi:10.1016/j.chemosphere.2012.11.065

    Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption—an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5):467–491. doi:10.1080/09593330.2011.572922

    Article  CAS  PubMed  Google Scholar 

  • Dias MA, Lacerda ICA, Pimentel PF, De Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34:46–50

    Article  CAS  PubMed  Google Scholar 

  • Diels L, Van der Lelie N, Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1(1):75–82

    Article  CAS  Google Scholar 

  • Dietz KJ, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagaemeyer J (eds) Heavy metal stress in plants. Springer, Berlin Heidelberg, pp 73–97

    Google Scholar 

  • Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  CAS  Google Scholar 

  • dos Santos JV, de Melo Rangel W, Guimaraes AA, Jaramillo PMD, Rufini M, Marra LM, de Souza Moreira FM (2013) Soil biological attributes in arsenic-contaminated gold mining sites after revegetation. Ecotoxicology 22(10):1526–1537

    Google Scholar 

  • Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93(3):931–940. doi:10.1007/s00253-011-3777-2

    Article  CAS  PubMed  Google Scholar 

  • Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier. Morocco. Afr J Microbiol Res. 3:25–48

    Google Scholar 

  • Factor-Litvak P, Wasserman G, Kline JK, Graziano P (1999) The Yugoslavia prospective study of environmental lead exposure. Environ Health Perspect 107:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005) Role of oxalic acid overexcretion in transformation of toxic metal minerals by Beauveria caledonica. Appl Env Microbiol. 71:371–381. doi:10.1128/AEM.71.1.371-381.2005.1

    Article  CAS  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    CAS  PubMed  Google Scholar 

  • Fujs S, Gazdag Z, Poljšak B, Stibilj V, Milačič R, Pesti M (2005) The oxidative stress response of the yeast Candida intermedia to copper, zinc, and selenium exposure. J Basic Microbiol 45:125–135

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytologist 124(1):25–60

    Article  CAS  Google Scholar 

  • Gadd GM (ed) (2001) Fungi in bioremediation (No. 23). Cambridge University Press

    Google Scholar 

  • Gadd GM (2004) Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70

    Article  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiolgy and bioremediation. Microbiology 156:609–643. doi:10.1099/mic0.037143.0

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2011) Geomycology. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology, part 7. Springer, Heidelberg, pp 416–432

    Chapter  Google Scholar 

  • Gebel T (1997) Arsenic and antimony: comparative approach on mechanistic toxicology. Chem Biol Interact 107(3):131–144

    Article  CAS  PubMed  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96(9):5001–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimmler H, de Jesus J, Greiser A (2001) Heavy metal resistance of the extreme acidotolerant filamentous fungus Bispora sp. Microbial Ecol 42:87–98

    Article  CAS  Google Scholar 

  • Gitan RS, Shababi M, Kramer M, Eide DJ (2003) A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium. J Biol Chem 278:3955–3964

    Article  Google Scholar 

  • Gomes DS, Fragoso LC, Riger CJ, Panek AD, Eleutherio EC (2002) Regulation of cadmium uptake by Saccharomyces cerevisiae. Biochim Biophys Acta 1573:21–25

    Article  CAS  PubMed  Google Scholar 

  • González-Chávez MC, Ortega-Larrocea Mdel P, Carrillo-González R, López-Meyer M, Xoconostle-Cázares B, Gomez SK et al (2011) Arsenate induces the expression of fungal genes involved in as transport in arbuscular mycorrhiza. Fungal Biol 115(12):1197–1209. doi:10.1016/j.funbio.2011.08.005

    Article  CAS  Google Scholar 

  • González-Guerrero M, Benabdellah K, Ferrol N, Azcón-Aguilar C (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas—functional processes and ecological impacts. Springer, Berlin , pp 107–22

    Google Scholar 

  • González-Chávez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171

    Article  Google Scholar 

  • Gould WD, Fujikawa JI, Cook FD (1974) A soil fungus tolerant to extreme acidity and high salt concentrations. Can J Microbiol 20:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Guibal E, Roulph C, Le Cloirec P (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ Sci Technol 29(10):2496–2503. doi:10.1021/es00010a007

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78(8):967–973

    CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192. doi:10.1038/nrmicro2519

    Article  CAS  PubMed  Google Scholar 

  • Harrison VF, Gow WA, Ivarsson KC (1966) Leaching of uranium from Elliott Lake ore in the presence of bacteria. Can Min J 87:64–67

    CAS  Google Scholar 

  • Hartmann LM, Craig PJ, Jenkins RO (2003) Influence of arsenic on antimony methylation by the aerobic yeast Cryptococcus humicolus. Arch Microbiol 180(5):347–352. doi.10.1007/s00203-003-0600-1

    Google Scholar 

  • Hernlem BJ, Vane LM, Sayles GD (1999) The application of siderophores for metal recovery and waste remediation: examination of correlations for prediction of metal affinities. Water Res 33:951–960

    Article  CAS  Google Scholar 

  • Hess M (2008) Thermoacidophilic proteins for biofuel production. Trends Microbiol 16(9):414–419

    Article  CAS  PubMed  Google Scholar 

  • Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Antonie Van Leeuwenhoek 86(4):287–294

    Article  PubMed  CAS  Google Scholar 

  • Hujslová M, Kubátová A, Kostovčík M, Kolařík M (2013) Acidiella bohemica gen. et sp. nov. and Acidomyces spp. (Teratosphaeriaceae), the indigenous inhabitants of extremely acidic soils in Europe. Fungal Div 58(1):33–45

    Google Scholar 

  • Iskandar NL, Zainudin NA, Tan SG (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci (China) 23(5):824–830

    Article  CAS  Google Scholar 

  • Ivarsson KC, Morita H (1982) Single-cell protein production by the acid-tolerant fungus Scytalidium acidophilum from acid hydrolysates of waste paper. Appl Environ Microbiol 43:643–647

    Google Scholar 

  • Jacobson ES, Hove E, Emery HS (1995) Antioxidant function of melanin in black fungi. Infect Immun 63(12):4944–4945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdisc Toxicol 7(2):60–72. doi:10.2478/intox-2014-0009

    Article  CAS  Google Scholar 

  • Jakubiak M, Giska I, Asztemborska M, Bystrzejewska-Piotrowska G (2014) Bioaccumulation and biosorption of inorganic nanoparticles: factors affecting the efficiency of nanoparticle mycoextraction by liquid-grown mycelia of Pleurotus eryngiii and Trametes versicolor. Mycol Prog 13:525–532. doi:10.1007/s11557-013-0933-3

    Article  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    Article  CAS  PubMed  Google Scholar 

  • Jarosz-Wilkołazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic-metal-amended medium. Chemospere 52:541–547. doi:10.1016/S0045-6535(03)00235-2

    Article  CAS  Google Scholar 

  • Jiang J, Qin C, Shu X, Chen R, Song H, Li Q et al (2015) Effects of copper on induction of thiol-compounds and antioxidant enzymes by the fruiting body of Oudemansiella radicata. Ecotoxicol Environ Saf 111:60–65. doi:10.1016/j.ecoenv.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  • Joseph E, Cario S, Simon A, Wörle M, Mazzeo R, Junier P, Job D (2012) Protection of metal artifacts with the formation of metal-oxalates complexes by Beauveria bassiana. Front Microbiol 2:270. doi:10.3389/fmicb.2011.00270. eCollection 2011

  • Joshi BH (2014) Evaluation and characterization of heavy metal resistant fungi for their prospects in bioremediation. J Environ Res Dev 8(04):876–882

    Google Scholar 

  • Jung WH, Sham A, White R, Kronsta JW (2006) Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. doi:10.1371/journal.pbio.0040410

    PubMed  PubMed Central  Google Scholar 

  • Karman SB, Zaleha S, Diah M, Gebeshuber IC (2015) Raw materials synthesis from heavy metal industry effluents with bioremediation and phytomining: a biomimetic resource management approach. Adv Mater Sci Eng. doi:10.1155/2015/185071

    Google Scholar 

  • Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J et al (1998) The role of oxidative stress in chemical carcinogenesis. Environ. Health Perspect 106:289–295

    Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express. 4:29. doi:10.1186/s13568-014-0029-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazarova N, Krumova E, Stefanova T, Georgieva N, Angelova M (2014) The oxidative stress response of the filamentous yeast Trichosporon cutaneum R57 to copper, cadmium and chromium exposure. Biotechnol Biotechnol Equip 28(5):855–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HY, Li DW, He CM, Zhou ZP, Mei T, Xu HM (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn wasteland in China. Fungal Ecol 5:309–315. doi:10.1016/j.funeco.2011.06.002

    Article  Google Scholar 

  • Lin CH, Huang CF, Chen WY, Chang YY, Ding WH, Lin MS et al (2006) Characterization of the interaction of galectin-1 with sodium arsenite. Chem Res Toxicol 19:469–474. doi:10.1021/tx0503348

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Boles E, Rosen BP (2004) Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279:17312–17318

    Article  CAS  PubMed  Google Scholar 

  • López-Archilla AI, González AE, Terrón MC, Amils R (2004). Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50(11):923–934

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579. doi:10.1038/35054664

    Article  CAS  PubMed  Google Scholar 

  • Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R (2012) Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13(3):3527–3548. doi:10.3390/ijms13033527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciaszczyk-Dziubinska E, Migdal I, Migocka M, Bocer T, Wysocki R (2010) The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett 584:726–732

    Article  CAS  PubMed  Google Scholar 

  • Maheswari S, Murugesan AG (2009) Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic-contaminated site. Environ Technol 30(9):921–926. doi:10.1080/09593330902971279

    Article  CAS  PubMed  Google Scholar 

  • Majorel C, Hannibal L, Ducousso M, Lebrun M, Jourand P (2014) Evidence of nickel (Ni) efflux in Ni-tolerant ectomycorrhizal Pisolithus albus isolated from ultramafic soil. Environ Microbiol Rep 6:510–518. doi:10.1111/1758-2229.12176

    Article  CAS  PubMed  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  PubMed  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere—a review. Sci Total Environ 249(1–3):297–312

    Article  CAS  PubMed  Google Scholar 

  • McDougall DN, Blanchette RA (1996) Metal ion adsorption by pseudoschlerotial plates of Phelliunus weirii. Mycologia 88:98–103

    Article  CAS  Google Scholar 

  • Muller S, Walter RD, Fairlamb AH (1995) Differential susceptibility of filarial and human erythrocyte glutathione reductase to inhibition by the trivalent organic arsenical melarsen oxide. Mol Biochem Parasitol 71:211–219. doi:10.1016/0166-6851(94)00053-P

    Article  CAS  PubMed  Google Scholar 

  • Ochiai E (1997) Bio-inorganic chemistry: an Inroduction. Align and Bawn, Boston

    Google Scholar 

  • Oggerin M, Tornos F, Rodríguez N, del Moral C, Sánchez-Román M, Amils R (2013) Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Environ Microbiol 15(8):2228–2237. doi:10.1111/1462-2920.12094

    Article  CAS  PubMed  Google Scholar 

  • Pócsi I (2011) Toxic metal/metalloid tolerance in fungi—a biotechnological-oriented approach. In: Bánfalvi G (ed) Cellular effects of heavy metals. Springer, Berlin, pp 31–58. doi:10.1007/978-94-0097-0428-2_2

  • Polizeli M, Rizzatti L, Monti T, Terenzi A, Jorge C, Amorim S (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  CAS  PubMed  Google Scholar 

  • Porquet A, Filella M (2007) Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem Res Toxicol 20:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Purchase D, Scholes LNL, Revitt DM, Shutes RBE (2009) Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol 106:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601

    Article  Google Scholar 

  • Qiu Z, Deng Z, Tan H, Zhou S, Cao L (2015) Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene. J Ind Microbiol Biotechnol 42(4):537–542. doi:10.1007/s10295-014-1573-6

    Article  CAS  PubMed  Google Scholar 

  • Quesada AR, Byrnes RW, Krezoski SO, Petering DH (1996) Direct reaction of H2O2 with sulfhydryl groups in HL-60 cells: zinc-metallothionein and other sites. Arch Biochem Biophys 334:241–250

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122. doi:10.1104/pp.103.033506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41(9):935–944

    CAS  PubMed  Google Scholar 

  • Ramirez-Solis A, Mukopadhyay R, Rosen BP, Stemmler TL (2004) Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O. Inorg Chem 43(9):2954–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396. doi:10.1136/pmj.79.933.391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reese RN, Mehra RK, Tarbet EB, Winge DR (1988) Studies on the γ-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J Biol Chem 263:4186–4192

    CAS  PubMed  Google Scholar 

  • Rizzo DM, Blanchette RA, Palmer MA (1992) Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot 1992(70):1515–1520

    Article  Google Scholar 

  • Romero-Isart N, Vašák M (2002) Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 88:388–396

    Article  CAS  PubMed  Google Scholar 

  • Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87(10):2559–2569

    Article  PubMed  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg SJ, Rothenberg JC (2005) Testing the dose-response specification in epidemiology: public health policy consequences for lead. Environ Health Perspect 113:1190–1195

    Article  CAS  Google Scholar 

  • Ruotolo R, Marchini G, Ottonello S (2008) Membrane transporters and protein traffic networks differentially affecting metal tolerance: a genomic phenotyping study in yeast. Genome Biol 9:R67. doi:10.1186/gb-2008-9-4-r67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salvadori MR, Ando RA, Oller do Nascimento CA, Corrêa B (2014a) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS ONE 9(1):e87968. doi:10.1371/journal.pone.0087968. eCollection 2014

    Google Scholar 

  • Salvadori MR, Nascimento CA, Corrêa B (2014b) Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci Rep. doi:10.1038/srep06404

    PubMed  PubMed Central  Google Scholar 

  • Salvadori MR, Ando RA, Do Oller Nascimento CA, Corrêa B (2014c) Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J Environ Sci Health A Tox Hazard Subst Environ Eng 49(11):1286–1295. doi:10.1080/10934529.2014.910067

    Article  CAS  PubMed  Google Scholar 

  • Salvadori MR, Ando RA, Nascimento CA, Corrêa B (2015) Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One 10(6):e0129799. doi:10.1371/journal.pone.0129799

    Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504. doi:10.1016/j.biortech.2008.05.048

    Article  CAS  PubMed  Google Scholar 

  • Sari A, Tuzen M (2009a) Kinetic and equilibrium studies of biosorption of Pb(II) aned Cd(ii) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164:1004–1011. doi:10.1016/j.jhazmat.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  • Sari A, Tuzen M (2009b) Biosorption of As(III) and As(V) form aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. J Hazard Mater 164(2–3):1372–1378. doi:10.1016/j.jhazmat.2008.09.047

    Article  CAS  PubMed  Google Scholar 

  • Saxena P, Bhattacharyya AK, Mathur N (2006) Nickel tolerance and accumulation by filamentous fungi from sludge of metal finishing industry. Geomicrobiol J 23:333–340

    Article  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) Minireview new roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer AD, Howell RC, Jiang Z, Bryan RA, Gerfen G, Chen CC et al (2009) Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PLoS ONE 4(9):e7229. doi:10.1371/journal.pone.0007229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scholtmeijer K, Wessels J, Wösten H (2001) Fungal hydrophobins in medical and technical applications. Appl Microbiol Biotechnol 56(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  • Schwantes HO (1996) The biology of fungi: an introduction to applied mycology. Verlag Eugen Ulmer GmbH

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, De Hoog GS, Zucconi L, Isola D, Ruisi S, van den Ende AG et al (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedmousavi S, Badali H, Chlebicki A, Zhao J, Prenafeta-Boldu FX, De Hoog GS (2011) Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. Fungal Biol 115(10):1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol 124:1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen M, Zhao D-K, Qiao Q, Liu L, Wang J-L, Cao G-H et al (2015) Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metal stress. PLoS ONE 10(4):e0123418. doi:10.1371/journal.pone.0123418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sigler L, Carmichael JW (1974) A new acidophilic Scytalidium. Can J Microbiol 20(2):267–268

    Article  CAS  PubMed  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley

    Google Scholar 

  • Snow ET, Hu Y, Yan CC, Chouchane S (1999) Modulation of DNA repair and glutathione levels in human keratinocytes by micromolar arsenite. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier, Oxford, pp 243–251. doi:10.1016/b978-008043648-7/50028-5

    Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442. doi:10.1016/j.scitotenv.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  • Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora, JW et al (2009) The fungi. Curr Biol 19(18):R840–5

    Google Scholar 

  • Starkey RL, Waksman SA (1943) Fungi tolerant to extreme acidity and high concentrations of copper sulfate. J Bacteriol 45(5):509–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Styblo M, Serves SV, Cullen WR, Thomas DJ (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenthiols. Chem Res Toxicol 10:27–33. doi:10.1021/tx960139g

    Article  CAS  PubMed  Google Scholar 

  • Su S, Zeng X, Bai L, Jiang X, Li L (2010) Bioaccumulation and biovolatilisation of pentavalent arsenic by Penicillin janthinellum, Fusarium oxysporum and Trichoderma asperellum under laboratory conditions. Curr Microbiol 61(4):261–266. doi:10.1007/s00284-010-9605-6

    Article  CAS  PubMed  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    CAS  PubMed  Google Scholar 

  • Tamás MJ, Labarre J, Toledano MB, Wysocki R (2005) Mechanisms of toxic metal tolerance in yeast. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, Heidelberg, pp 395–454

    Chapter  Google Scholar 

  • Tan Q, Chen G, Zeng G, Chen A, Guan S, Li Z et al (2015) Physiological fluxes and antioxidative enzymes activities of immobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles after exposure to toxic pollutants in solution. Chemosphere 2015(128):21–27. doi:10.1016/j.chemosphere.2014.12.088

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. doi:10.1007/978-3-7643-8340-4_6

    PubMed  PubMed Central  Google Scholar 

  • Tereshina VM, Mar’in AP, Kosyakov VN, Kozlov VP, Feofilova EP (1999) Different metal sorption capacities of cell wall polysaccharides of Aspergillus niger. Appl Biochem Micorbiol 35:389–392

    Google Scholar 

  • Tetsch L, Bend J, Hölker U (2006) Molecular and enzymatic characterisation of extra- and intracellular laccases from the acidophilic ascomycete Hortaea acidophila. Antonie Van Leeuwenhoek 90(2):183–194

    Article  CAS  PubMed  Google Scholar 

  • Todorova TT, Kujumdzieva AV, Vuilleumier S (2010) Non-enzymatic roles for the URE2 glutathione S-transferase in the response of Saccharomyces cerevisiae to arsenic. Arch Microbiol 192(11):909–918. doi:10.1007/s00203-010-0614-4

    Article  CAS  PubMed  Google Scholar 

  • Trasande L, Landrigan PJ, Schechter C (2005) Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect 113:590–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT et al (2013) Tricoderma: a potential bioremediator for environmental clean up. Clean Technol Environ Policy 15:541–550. doi:10.1007/s10098-012-0553-7

    Article  CAS  Google Scholar 

  • Tripathi V, Fraceto LF, Abhilash PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-micorb-pollutant and climate nexus. Ecol Eng 82:330–335. doi:10.1016/j.ecoleng.2015.05.027

    Article  Google Scholar 

  • Tschan M, Robinson B, Schulin R (2008) Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environ Geochem Health 30:187–191

    Article  CAS  PubMed  Google Scholar 

  • Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH et al (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659

    Article  CAS  PubMed  Google Scholar 

  • Urik M, Littera P, Kolen M (2009) Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies): kinetics and isotherm studies. Int J Environ Sci Technol 6(3):451–456

    Article  CAS  Google Scholar 

  • Urik M, Hlodak M, Mikusova P, Matus P (2014) Potential of microscopic fungi isolated from mercury contaminated soils to accumulate and volatilize mercury(II). Water Air Soil Pollut 225:2219–2229. doi:10.1007/s11270-014-2219-z

    Article  CAS  Google Scholar 

  • Vázquez-Campos X, Kinsela AS, Collins RN, Neilan BA, Aoyagi N, Waite TD (2015) Uranium binding mechanisms of the acid-tolerant fungus Coniochaeta fodinicola. Environ Sci Technol 49(14):8487–8496. doi:10.1021/acs.est.5b01342

    Article  PubMed  CAS  Google Scholar 

  • Velmurugan P, Shim J, You Y, Choi S, Kamala-Kannan S, Lee KJ, Kim HJ, Oh BT (2010) Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. J Hazard Mater 182(1–3):317–324. doi:10.1016/j.jhazmat.2010.06.032

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133(1–3):304–308

    Article  CAS  PubMed  Google Scholar 

  • Vodyanitskii YN (2013) Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Sci 46(7):793–801

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141. doi:10.1016/j.biortech.2013.12.110

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotech Adv 27:195–226. doi:10.1016/j.biotechadv.2008.11.002

    Article  CAS  Google Scholar 

  • Wang Q, He M, Wang Y (2011) Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities. Ecotoxicology 20(1):9–19

    Article  PubMed  CAS  Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A (2004) Water arsenic exposure and children’s intellectual function in Araihazar. Bangladesh Environ Health Perspect. 112:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Liang X, Pendlowski H, Hillier S, Suntornvongsagul K, Sihanonth P et al (2013) Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol 15(8):2173–2186. doi:10.1111/1462-2920.12089

    Article  CAS  PubMed  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20(3–4):503–516

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G (2007) Ecologyof siderophores with special reference to the fungi. Biometals 20:379–392. doi:10.1007/s10534-006-9076-1

    Article  CAS  PubMed  Google Scholar 

  • Wysocki R, Bobrowicz P, Ułaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272(48):30061–30066

    Article  CAS  PubMed  Google Scholar 

  • Wysocki R, Fortier PK, Maciaszczyk E, Thorsen M, Leduc A, Odhagen A, Owsianik G, Ulaszewski S, Ramotar D, Tamás MJ (2004) Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Mol Biol Cell 15:2049–2060

    Google Scholar 

  • Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Xia L, Huang Q, Gu JD, Chen W (2012) Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environ Technol 33(14):1661–1670

    Article  CAS  PubMed  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98(13):2557–2561

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Cai Y (2003) Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure. Anal Chem 15, 75(24):7030–7035

    Google Scholar 

  • Zhang YJ, Zhang Y, Liu MJ, Shi XD, Zhao ZW (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46(6):624–632. doi:10.1007/s12275-008-0163-6

    Article  PubMed  Google Scholar 

  • Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51:686–693

    Article  CAS  Google Scholar 

  • Zuo Y, Chen G, Zeng G, Li Z, Yan M, Chen A, Guo Z, Huang Z, Tan Q (2015) Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions. J Hazard Mater 285:236–244. doi:10.1016/j.jhazmat.2014.12.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Purchase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chan, W.K., Wildeboer, D., Garelick, H., Purchase, D. (2016). Mycoremediation of Heavy Metal/Metalloid-Contaminated Soil: Current Understanding and Future Prospects. In: Purchase, D. (eds) Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42852-9_10

Download citation

Publish with us

Policies and ethics