Fungi in Composting

  • Christopher Wright
  • Andrii P. Gryganskyi
  • Gregory BonitoEmail author
Part of the Fungal Biology book series (FUNGBIO)


Fungi are well adapted for decomposition processes due to their filamentous growth, extracellular nutrition, and enzymatic capacities. As such, fungi are essential to composting for degrading recalcitrant compounds, stabilizing organic matter, as well as releasing nutrients and essential elements that are beneficial for plant growth and fertility. Here we discuss different composting processes and their associated fungi. We first discuss current research on municipal composting and vermicomposting, and then the history and science of composting for cultivating mushrooms, particularly Agaricus bisporus. At the conclusion of this chapter, we discuss mycoaugmented composts and their use in remediating soils contaminated with a variety of organopollutants and xenobiotic compounds, an area of growing interest and investigation.


Fungi Compost Agaricus bisporus Decomposition Peroxidases Eisenia Vermicomposting Mycoaugmentation Mycoremediation Xenobiotics Carbon:Nitrogen 


  1. Abbasi SA, Nayeem-Shah M, Abbasi T (2015) Vermicomposting of phytomass: limitations of the past approaches and the emerging directions. J Clean Prod 93:103–114CrossRefGoogle Scholar
  2. Agrawal PK (2014) Microbial ecology of compost ecosystem: with special reference to mushroom compost. J Biol Sci Opin 2:45–50CrossRefGoogle Scholar
  3. Aira M, Monroy F, Domínguez J (2006) Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microb Ecol 52:738–747PubMedCrossRefGoogle Scholar
  4. Aira M, Monroy F, Domínguez J (2007) Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb Ecol 54:662–671PubMedCrossRefGoogle Scholar
  5. Alexander M (1995) How toxic are toxic chemicals in soil? Environ Sci Technol 29:2713–2717PubMedCrossRefGoogle Scholar
  6. Alfreider A, Peters S, Tebbe CC, Rangger A, Insam H (2002) Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci Util 10:303–312CrossRefGoogle Scholar
  7. Anastasi A, Varese GC, Voyron S, Scannerini S, Marchisio VF (2004) Characterization of fungal biodiversity In compost and vermicompost. Compost Sci Util 12:185–191CrossRefGoogle Scholar
  8. Anastasi A, Varese GC, Marchisio VF (2005) Isolation and identification of fungal communities in compost and vermicompost. Mycologia 97:33–44PubMedCrossRefGoogle Scholar
  9. Anastasi A, Varese GC, Bosco F, Chimirri F, Marchisio VF (2008) Bioremediation potential of basidiomycetes isolated from compost. Bioresour Technol 99:6626–6630PubMedCrossRefGoogle Scholar
  10. Anastasi A, Coppola T, Prigione V, Varese GC (2009) Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J Hazard Mater 165:1229–1233PubMedCrossRefGoogle Scholar
  11. Andaluri G, Suri RPS, Kumar K (2012) Occurrence of estrogen hormones in biosolids, animal manure and mushroom compost. Environ Monit Assess 184:1197–1205PubMedCrossRefGoogle Scholar
  12. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91CrossRefGoogle Scholar
  13. Barr DP, Aust SD (1994) Effect of superoxide and superoxide dismutase on lignin peroxidase-catalyzed veratryl alcohol oxidation. Arch Biochem Biophys 311:378–382PubMedCrossRefGoogle Scholar
  14. Barrett TJ (1948) Harnessing the earthworm. A practical inquiry into soil-building, soil-conditioning, and plant nutrition through the action of earthworms, with instructions for intensive propagation and use of domesticated earthworms in biological soil-building. Q Rev Biol 23:361–361Google Scholar
  15. Batelle CD (2000) Mushrooms: higher macrofungi to clean up the environment. Environmental Issues, FallGoogle Scholar
  16. Beffa T, Staib F, Lott Fischer J, Lyon PF, Gumowski P, Marfenina OE et al (1998) Mycological control and surveillance of biological waste and compost. Med Mycol 36(Suppl 1):137–145PubMedGoogle Scholar
  17. Bennett JW (1994) Prospects for fungal bioremediation of TNT munition waste. Int Biodeterior Biodegradation 34:21–34CrossRefGoogle Scholar
  18. Bhatt M, Cajthaml T, Sasek V (2002) Mycoremediation of PAH-contaminated soil. Folia Microbiol 47:255–258CrossRefGoogle Scholar
  19. Boileau J, Fauquignon C, Hueber B. (2000). Explosives. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  20. Bonito G, Isikhuemhen OS, Vilgalys R (2010) Identification of fungi associated with municipal compost using DNA-based techniques. Bioresour Technol 101:1021–1027PubMedCrossRefGoogle Scholar
  21. Boominathan K, Reddy CA (1992) Fungal degradation of lignin: biotechnological applications. In: Arora DK, Elander RP & Mukerji KG (eds), Handbook of applied mycology, vol 4. Fungal biotechnology. Marcel Dekker, Inc., New York, N.Y, p 763–822Google Scholar
  22. Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K (2002) Functional consequences of nutrient translocation in mycelial fungi. J Theor Biol 217:459–477PubMedCrossRefGoogle Scholar
  23. Bouché MB (1987) Emergence and development of vermiculture and vermicomposting from a hobby to an industry, from marketing to a biotechnology from irrational to credible practices. In: Selected Symposia and Monographs UZI, pp. 519–531Google Scholar
  24. Bouwman H (1998) Evaluation of a technique to obtain development-stage-synchronised earthworms (Eisenia fetida). Biol Fertil Soils 27:368–373CrossRefGoogle Scholar
  25. Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? The significance and regulation of soil biodiversity. Springer, Netherlands, pp 247–269CrossRefGoogle Scholar
  26. Brown GC, Doube BM (2004) Functional interactions between earthworms, microorganisms, organic matter, and plants. Earthworm ecology. In: Ewards CA (ed) Earthworm ecology. CRC Press LLC, Boca Raton, FL, USA, pp 213–239Google Scholar
  27. Bumpus JA (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158PubMedPubMedCentralGoogle Scholar
  28. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436PubMedCrossRefGoogle Scholar
  29. Cahyani VR, Matsuya K, Asakawa S, Kimura M (2004) Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated by PCR-DGGE analysis. Biol Fertil Soils 40:334–344CrossRefGoogle Scholar
  30. Chang S-T (2006) Development of the culinary—medicinal mushrooms industry in China: Past, present, and future. Int J Med Mush. 8, doi: 10.1615/IntJMedMushr.v8.i1.10
  31. Chang S-T, Miles PG (1989) Edible mushrooms and their cultivation. CRC Press LLC, Boca Raton, FL, USAGoogle Scholar
  32. Chen Y, Chefetz B, Rosario R, van Heemst JDH, Romaine CP, Hatcher PG (2000) Chemical nature and composition of compost during mushroom Growth. Compost Sci Util 8:347–359CrossRefGoogle Scholar
  33. Chiu SW, Chan YH, Law SC, Cheung KT, Moore D (1998) Cadmium and manganese in contrast to calcium reduce yield and nutritional values of the edible mushroom Pleurotus pulmonarius. Mycol Res 102:449–457CrossRefGoogle Scholar
  34. Cooke J (1983) The effects of fungi on food selection by Lumbricus terrestris L. Earthworm ecology. Springer, Netherlands, pp 365–373CrossRefGoogle Scholar
  35. Craig HD, Sisk WE, Nelson MD, Dana WH (1995) Bioremediation of explosives-contaminated soils: A status review. 10th annual conference on hazardous waste research. Manhattan, Kans, pp 168–179Google Scholar
  36. Darwin C (1892) The formation of vegetable mould, through the action of worms, with observations on their habits. London: John Murray. 7th thousand. Corrected by Francis DarwinGoogle Scholar
  37. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50PubMedPubMedCentralGoogle Scholar
  38. Day M, Shaw K, Stofella P, Kahn B (2001) Biological, chemical and physical processes of composting. Compost utilization in horticultural cropping systems, Lewis Publishers, Boca Raton, FL, USA, pp 17–50Google Scholar
  39. De Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manag Res 1:157–176CrossRefGoogle Scholar
  40. De Gannes V, Eudoxie G, Hickey WJ (2013) Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety. Front Microbiol 4:164PubMedPubMedCentralCrossRefGoogle Scholar
  41. Doube BM, Brown GG (1998) Life in a complex community: functional interactions between earthworms, organic matter, microorganisms, and plants. In: Edwards CA (ed) Earthworm Ecology. CRC Press, Boca Raton, FL, pp 179–211Google Scholar
  42. Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Springer Science and Business MediaGoogle Scholar
  43. Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agric Ecosyst Environ 24:235–247CrossRefGoogle Scholar
  44. Edwards CA, Arancon NQ, Sherman RL (2010) Vermiculture technology: earthworms, organic wastes, and environmental management. CRC pressGoogle Scholar
  45. Eggen T (1999) Application of fungal substrate from commercial mushroom production—Pleuorotus ostrearus—for bioremediation of creosote contaminated soil. Int Biodeterior Biodegradation 44:117–126CrossRefGoogle Scholar
  46. Fernando T, Aust SD (1994) Biodegradation of toxic chemicals by white rot fungi. In: Chaudhry GR (ed) Biological degradation and bioremediation of toxic chemicals London. Chapman and Hall, London, pp 386–402Google Scholar
  47. Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671PubMedPubMedCentralGoogle Scholar
  48. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B et al (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719PubMedCrossRefGoogle Scholar
  49. Gbolagade JS, Fasidi IO, Ajayi EJ, Sobowale AA (2006) Effect of physico-chemical factors and semi-synthetic media on vegetative growth of Lentinus subnudus (Berk.), an edible mushroom from Nigeria. Food Chem 99:742–747CrossRefGoogle Scholar
  50. Ghazifard A, Kasra-Kermanshahi R, Far ZE (2001) Identification of thermophilic and mesophilic bacteria and fungi in Esfahan (Iran) municipal solid waste compost. Waste Manag Res 19:257–261PubMedCrossRefGoogle Scholar
  51. Gibbons WR, Maher AA, Todd RL (1991) Button mushroom production in synthetic compost derived from agricultural wastes. Bioresour Technol 38:65–77CrossRefGoogle Scholar
  52. Guinberteau J, Olivier JM, Tanne MN (1991) Improvement of Lepista species cultivation, technical factors and selection of strains. Mushroom Sci 2:615–621Google Scholar
  53. Guo R, Li G, Jiang T, Schuchardt F, Chen T, Zhao Y, Shen Y (2012) Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour Technol 112:171–178PubMedCrossRefGoogle Scholar
  54. Hadar Y, Papadopoulou KK (2012) Suppressive composts: microbial ecology links between abiotic environments and healthy plants. Annu Rev Phytopathol 50(50):133–153PubMedCrossRefGoogle Scholar
  55. Halet D, Boon N, Verstraete W (2006) Community dynamics of methanotrophic bacteria during composting of organic matter. J Biosci Bioeng 101:297–302PubMedCrossRefGoogle Scholar
  56. Hampton ML, Sisk WE (1997) Environmental stability of windrow composting of explosives-contaminated soils. In: Tedder DW (ed) Emerging technologies in hazardous waste management IX, division of industrial and engineering chemistry. American Society of Chemistry, Washington DC, pp 252–257Google Scholar
  57. Hattemer-Frey HA, Travis CC (1989) Pentachlorophenol: environmental partitioning and human exposure. Arch Environ Contam Toxicol 18:482–489PubMedCrossRefGoogle Scholar
  58. Head IM (1998) Bioremediation: towards a credible technology. Microbiology 144:599–608CrossRefGoogle Scholar
  59. Heinfling A, Ruiz-Dueñas FJ, Martínez MJ, Bergbauer M, Szewzyk U, Martínez AT (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–146PubMedCrossRefGoogle Scholar
  60. Hein I (1930) Straw compost for mushroom culture. Mycologia 22:39–43CrossRefGoogle Scholar
  61. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466CrossRefGoogle Scholar
  62. Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284PubMedPubMedCentralCrossRefGoogle Scholar
  63. Huang K, Li F, Wei Y, Chen X, Fu X (2013) Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresour Technol 150:235–241PubMedCrossRefGoogle Scholar
  64. Ivors KL, Collopy PD, Beyer DM, Kang S (2000) Identification of bacteria in mushroom compost using ribosomal RNA sequence. Compost Sci Util 8:247–253CrossRefGoogle Scholar
  65. Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H (2015) Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost. PLoS ONE 10:e0138909PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kaplan DL (1992) Biological degradation of explosives and chemical agents. Curr Opin Biotechnol 3:253–260CrossRefGoogle Scholar
  67. Kilbane JJ II (1998) Extractability and subsequent biodegradation of PAHs from contaminated soil. Water Air Soil Pollut Focus 104:285–304CrossRefGoogle Scholar
  68. Kostecka J, Blazej JB, Kolodziej M (1996) Investigations on application of vermicompost in potatoes farming in second year of experiment. Zeszyty Naukowe Akademii Rolniczej W Krakowie 310:69–77Google Scholar
  69. Koster IW, Brons HJ (1984) Respirometric testing method for biodegradability of xenobiotics using compost. J Environ Sci Health B 19:785–792CrossRefGoogle Scholar
  70. Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase—a versatile enzyme for biotechnological applications. Commun Curr Res Educ Top Trends Appl Microbiol 1:233–245Google Scholar
  71. Lambert EB (1929) The production of normal sporophores in monosporous cultures of Agaricus campestris. Mycologia 21:333–335CrossRefGoogle Scholar
  72. Lambert EB (1941) Studies on the preparation of mushroom compost. J Agric Res 415–422Google Scholar
  73. Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546PubMedCrossRefGoogle Scholar
  74. Lavelle P, Spain AV (2001) Soil ecology. Kluwer Scientific, AmsterdamCrossRefGoogle Scholar
  75. López-González JA, Vargas-García MDC, López MJ, Suárez-Estrella F, Jurado MDM, Moreno J (2015) Biodiversity and succession of mycobiota associated to agricultural lignocellulosic waste-based composting. Bioresour Technol 187:305–313PubMedCrossRefGoogle Scholar
  76. Lo SC, Ho YS, Buswell JA (2001) Effect of phenolic monomers on the production of laccases by the edible mushroom pleurotus sajor-caju, and partial characterization of a major laccase component. Mycologia 93:413–421CrossRefGoogle Scholar
  77. Malandraki I, Tjamos SE, Pantelides IS, Paplomatas EJ (2008) Thermal inactivation of compost suppressiveness implicates possible biological factors in disease management. Biol Control 44:180–187CrossRefGoogle Scholar
  78. Marshall MN, Cocolin L, Mills DA, VanderGheynst JS (2003) Evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of fungal communities in compost. J Appl Microbiol 95:934–948PubMedCrossRefGoogle Scholar
  79. Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2014) Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag 34:607–622PubMedCrossRefGoogle Scholar
  80. Miller FC (1992) Composting as a process based on the control of ecologically selective factors. In: Metting FB Jr (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker Inc, New York, pp 515–544Google Scholar
  81. Miller FC, Harper ER, Macauley BJ, Gulliver A (1990) Composting based on moderately thermophilic and aerobic conditions for the production of commercial mushroom growing compost. Aust J Exp Agric 30:287–296CrossRefGoogle Scholar
  82. Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG et al (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci USA 109:17501–17506PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mortimer PE, Karunarathna SC, Li QH, Gui H, Yang XQ, Yang XF et al (2012) Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Divers 56:31–47CrossRefGoogle Scholar
  84. Nada WM (2015) Stability and maturity of maize stalks compost as affected by aeration rate, C/N ratio and moisture content. J Soil Sci Plant Nutr 15(3):751–764Google Scholar
  85. Natvig DO, Taylor JW, Tsang A, Hutchinson MI, Powell AJ (2015) Mycothermus thermophilus gen. et comb. nov., a new home for the itinerant thermophile Scytalidium thermophilum (Torula thermophila). Mycologia 107:319–327PubMedCrossRefGoogle Scholar
  86. Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS ONE 8:e79512PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nicholas LG, Ogame K (2006) Psilocybin mushroom handbook: easy indoor and outdoor cultivation. Ed RosenthalGoogle Scholar
  88. Noble R, Gaze RH (1994) Controlled environment composting for mushroom cultivation: substrates based on wheat and barley straw and deep litter poultry manure. J Agric Sci 123:71–79CrossRefGoogle Scholar
  89. Noble R, Hobbs PJ, Mead A, Dobrovin-Pennington A (2002) Influence of straw types and nitrogen sources on mushroom composting emissions and compost productivity. J Ind Microbiol Biotechnol 29:99–110PubMedCrossRefGoogle Scholar
  90. Okeke BC, Smith JE, Paterson A, Watson-Craik IA (1993) Aerobic metabolism of pentachlorophenol by spent sawdust culture of “Shiitake” mushroom (Lentinus edodes) in soil. Biotechnol Lett 15:1077–1080Google Scholar
  91. Okparanma RN, Ayotamuno JM, Davis DD, Allagoa M (2013) Mycoremediation of polycyclic aromatic hydrocarbons (PAH)-contaminated oil-based drill-cuttings. Afr J Biotechnol 10:5149–5156Google Scholar
  92. Oliver GS (1949) Our friend, the earthworm. Organic GardeningGoogle Scholar
  93. Pennington JC, Hayes CA, Myers KF, Ochman M, Gunnison D, Felt DR et al (1995) Fate of 2, 4, 6-trinitrotoluene in a simulated compost system. Chemosphere 30:429–438CrossRefGoogle Scholar
  94. Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66:930–936PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pižl V, Nováková A (2003) Interactions between microfungi and Eisenia andrei (Oligochaeta) during cattle manure vermicomposting: the 7th international symposium on earthworm ecology. Pedobiologia 47:895–899Google Scholar
  96. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedCrossRefGoogle Scholar
  97. Pramanik P (2010) Changes in microbial properties and nutrient dynamics in bagasse and coir during vermicomposting: quantification of fungal biomass through ergosterol estimation in vermicompost. Waste Manag 30:787–791PubMedCrossRefGoogle Scholar
  98. Rajapakse JC, Rubasingha P, Dissanayake NN (2010) The potential of using cost-effective compost mixtures for oyster mushroom (Pleurotus spp) cultivation in Sri Lanka. Trop Agric Res Ext 10, doi: 10.4038/tare.v10i0.1868
  99. Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328CrossRefGoogle Scholar
  100. Rettew FG, Thompson GR (1948) Manual of mushroom culture. Mushroom Supply CompanyGoogle Scholar
  101. Richard TL, Hamelers (bert) HVM, Veeken A, Silva T (2002) Moisture relationships in composting processes. Compost Sci Util 10:286–302CrossRefGoogle Scholar
  102. Royse DJ, Chalupa W (2009) Effects of spawn, supplement and phase II compost additions and time of re-casing second break compost on mushroom (Agaricus bisporus) yield and biological efficiency. Bioresour Technol 100:5277–5282PubMedCrossRefGoogle Scholar
  103. Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J et al (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53:349–410Google Scholar
  104. Said-Pullicino D, Erriquens FG, Gigliotti G (2007) Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour Technol 98:1822–1831PubMedCrossRefGoogle Scholar
  105. Saraswathy A, Hallberg R (2005) Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiol Res 160:375–383PubMedCrossRefGoogle Scholar
  106. Šašek V, Volfová O, Erbanová P, Vyas BRM, Matucha M (1993) Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria. Biotechnol Lett 15:521–526CrossRefGoogle Scholar
  107. Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2, 4, 6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457PubMedCrossRefGoogle Scholar
  108. Scheuerell S, Mahaffee W (2002) Compost tea: principles and prospects for plant disease control. Compost Sci Util 10:313–338CrossRefGoogle Scholar
  109. Schönholzer F, Hahn D, Zeyer J (1999) Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. FEMS Microbiol Ecol 28:235–248CrossRefGoogle Scholar
  110. Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112:269–283PubMedCrossRefGoogle Scholar
  111. Singh D, Suthar S (2012) Vermicomposting of herbal pharmaceutical industry waste: earthworm growth, plant-available nutrient and microbial quality of end materials. Bioresour Technol 112:179–185PubMedCrossRefGoogle Scholar
  112. Singh H (2006) Fungal degradation of polychlorinated biphenyls and dioxins. In: Mycoremediation. John Wiley & Sons, Inc. pp 149–180Google Scholar
  113. Sinsabaugh RL (2005) Fungal enzymes at the community scale. Mycology Ser 23:349CrossRefGoogle Scholar
  114. Straatsma G, Olijnsma TW, Gerrits JPG, Griensven LJLDV, Samson RA, Camp HJMOD (1995) Bioconversion of cereal straw into mushroom compost. Can J Bot 73:1019–1024CrossRefGoogle Scholar
  115. Szczech MM (1999) Suppressiveness of vermicompost against Fusarium wilt of tomato. J Phytopathol 147:155–161CrossRefGoogle Scholar
  116. Szczech M, Rondomański W, Brzeski MW, Smolińska U, Kotowski JF (1993) Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biol Agric Hortic 10:47–52CrossRefGoogle Scholar
  117. Tiunov AV, Scheu S (2000) Microfungal communities in soil, litter and casts of Lumbricus terrestris L. (Lumbricidae): a laboratory experiment. Appl Soil Ecol 14:17–26CrossRefGoogle Scholar
  118. Vijay B, Sharma SR, Lakhanpal TN (2002) Role of thermophilic fungi in compost production for Agaricus bisporus. J Mycol Plant Pathol 32:204–210Google Scholar
  119. Viti C, Tatti E, Decorosi F, Lista E, Rea E, Tullio M et al (2010) Compost effect on plant growth-promoting rhizobacteria and mycorrhizal fungi population in maize cultivations. Compost Sci Util 18:273–281CrossRefGoogle Scholar
  120. Waksman SA (1932) Mushroom nutrition: a group of problems in microbiology. J Bacteriol 23:81Google Scholar
  121. Waksman SA, Nissen W (1932) On the nutrition of the cultivated mushroom, Agaricus campestris, and the chemical changes brought about by this organism in the manure compost. Am J Bot 19:514–537CrossRefGoogle Scholar
  122. Waksman SA, Reneger CA (1934) Artificial manure for mushroom production. Mycologia 26:38–45CrossRefGoogle Scholar
  123. Waksman SA, Umbreit WW, Cordon TC (1939) Thermophilic actinomycetes and fungi in soils and in composts. Soil Sci 47:37–61CrossRefGoogle Scholar
  124. Wiegant WM, Wery J, Buitenhuis ET, de Bont JA (1992) Growth-promoting effect of thermophilic fungi on the mycelium of the edible mushroom Agaricus bisporus. Appl Environ Microbiol 58:2654–2659PubMedPubMedCentralGoogle Scholar
  125. Yuan SY, Chang JS, Yen JH, Chang BV (2001) Biodegradation of phenanthrene in river sediment. Chemosphere 43:273–278PubMedCrossRefGoogle Scholar
  126. Zeng G, Huang D, Huang G, Hu T, Jiang X, Feng C et al (2007) Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresour Technol 98:320–326PubMedCrossRefGoogle Scholar
  127. Zhang B-G, Li G-T, Shen T-S, Wang J-K, Sun Z (2000) Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol Biochem 32:2055–2062CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christopher Wright
    • 1
    • 2
  • Andrii P. Gryganskyi
    • 3
  • Gregory Bonito
    • 1
    Email author
  1. 1.Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingUSA
  2. 2.Easygrow Mushrooms and Composting LLCFarmington HillsUSA
  3. 3.L F Lambert Spawn Co.CoatesvilleUSA

Personalised recommendations