Skip to main content

Anti-infective Therapy for Ocular Infection

  • Chapter
  • First Online:
  • 762 Accesses

Abstract

Ocular infections must be treated with an appropriate antibiotic in a timely manner. Antibiotics can be administered via different modes of application: topical, intravitreal, subconjunctival, and systemic. Topical agents can be used to treat superficial infections such as conjunctivitis, keratitis, or blepharitis. Intravitreal, subconjunctival, and systemic injections are used for intraocular infections to achieve high concentration at the site. Ocular penetration can be impacted by charge of the drug, corneal epithelium status, drug formulation, drug concentration, and dosage regimen. Tissue toxicity can occur due to antibiotics, preservatives, and modes of administration. Intravitreal, subconjunctival, and intracameral antibiotic injections can cause retinal toxicity, whereas certain systemic antibiotics have been reported with ocular toxicity (oral fluoroquinolones with retinal detachment and linezolid with optic neuropathy). Reaching a balance between therapeutic antibiotic concentrations at the site of infection and avoiding undesired toxicity is the optimal treatment goal when treating ocular infections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Snyder RW, Glasser DB. Antibiotic therapy for ocular infection. West J Med. 1994;161:579–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. McCloskey R. Topical antimicrobial agents and antibiotics for the eye. Med Clin North Am. 1988;72:717–22.

    Article  CAS  PubMed  Google Scholar 

  3. Baum J. Infections of the eye. Clin Infect Dis. 1995;21:479–86.

    Article  CAS  PubMed  Google Scholar 

  4. Stein HA, Stein RM, Freeman MI. Pharmacology. In: The ophthalmic assistant. A text for allied and associated ophthalmic personnel. 9th ed. Philadelphia: Saunders; 2012. p. 49–66.

    Google Scholar 

  5. Besivance®. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=a3e6d688-7e5e-4ca3-b27e-79756c322a32&audience=consumer. Accessed 30 Aug 2015.

  6. Ciloxan® ointment. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=1c292706-a900-4d6f-979e-9c42d6ff2fb2&audience=consumer. Accessed 30 Aug 2015.

  7. Ciloxan® solution. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=614af481-f9ef-44ac-9cb8-f421660d9cdd&audience=consumer. Accessed 30 Aug 2015.

  8. Gatifloxacin. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=1160b16c-929a-4e85-9c0b-1d8c96a7678b&audience=consumer. Accessed 30 Aug 2015.

  9. Quixin®. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=09b3a912-97f9-45ae-a162-9f45c860dc22&audience=consumer. Accessed 30 Aug 2015.

  10. Iquix®. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=067ea8ec-99a3-4a0b-9116-4ffd6160b24b&audience=consumer. Accessed 30 Aug 2015.

  11. Vigamox®. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=0e6ab6ba-5eeb-4faf-ba80-4bf21a74228a&audience=consumer. Accessed 30 Aug 2015.

  12. Ocuflox®. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=7aab4449-3dda-4e2c-8e40-b3244a548bf5&audience=consumer. Accessed 30 Aug 2015.

  13. Hooper D, Strahilevitz J. Quinolones. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 419–39.

    Google Scholar 

  14. Hass W, Pillar CM, Torres M, Morris TW, Sahm DF. Monitoring antibiotic resistance in ocular microorganisms: results from the Antibiotic Resistance Monitoring in Ocular micRorganisms (ARMOR) 2009 surveillance study. Am J Ophthalmol. 2011;152:567–74.e3. doi:10.1016/j.ajo.2011.03.010. Epub 2011 Jun 8.

    Article  CAS  Google Scholar 

  15. Sivapalasingam S, Steigbigel NH. Macrolides, clindamycin, and ketolides. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 358–76.e6.

    Google Scholar 

  16. Azasite™. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=5dc0f75a-1e14-469f-af4f-c668a32f2328&audience=consumer. Accessed 30 Aug 2015.

  17. Erythromycin ointment. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f4b57b8a-089e-4bbc-bcc7-3a9b9b600930&audience=consumer. Accessed 30 Aug 2015.

  18. Neu HC. Clinical microbiology of azithromycin. Am J Med. 1991;91:12S–8.

    Article  CAS  PubMed  Google Scholar 

  19. Thornsberry C, Sahm DF, Kelly LJ, Critchley IA, Jones ME, Evangelista AT, et al. Regional trends in antimicrobial resistance among clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States: results from the TRUST Surveillance Program, 1999–2000. Clin Infect Dis. 2002;34 Suppl 1:S4–16.

    Article  PubMed  Google Scholar 

  20. Hsueh PR, Liu CY, Luh KT. Current status of antimicrobial resistance in Taiwan. Emerg Infect Dis. 2002;8:132–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Farrell DJ, File TM, Jenkins SG. Prevalence and antibacterial susceptibility of mef(A)-positive macrolide-resistant Streptococcus pneumoniae over 4 years (2000–2004) of the PROTEKT US Study. J Clin Microbiol. 2007;45:290–3.

    Article  CAS  PubMed  Google Scholar 

  22. Green MD, Beall B, Marcon MJ, Allen CH, Bradley JS, Dashefsky B, et al. Multicentre surveillance of the prevalence and molecular epidemiology of macrolide resistance among pharyngeal isolates of group A streptococci in the USA. J Antimicrob Chemother. 2006;57:1240–3.

    Article  CAS  PubMed  Google Scholar 

  23. Villaseñor-Sierra A, Katahira E, Jaramillo-Valdivia AN, de los Angeles Barajas-Garćia M, Bryant A, Morfin-Otero R, et al. Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains isolated from invasive and non-invasive infections from Mexico and the USA during 1999–2010. Int J Infect Dis. 2012;16:e178–81.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gordon KA, Beach ML, Biedenbach DJ, Jones RN, Rhomberg PR, Mutnick AH. Antimicrobial susceptibility patterns of beta-hemolytic and viridans group streptococci: report from the SENTRY Antimicrobial Surveillance Program (1997–2000). Diagn Microbiol Infect Dis. 2002;43:157–62.

    Article  CAS  PubMed  Google Scholar 

  25. Gentak®. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=561cf436-74b8-452c-9fd2-e42f859c87dd&audience=consumer. Accessed 30 Aug 2015.

  26. Tobrex®. DailyMed, Bethesda.2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=cdd423c5-a231-47d4-bf51-00b5c29e6a60&audience=consumer. Accessed 30 Aug 2015.

  27. Egger SF, Ruckhofer J, Alzner E, Hell W, Hitzl W, Huber-Spitzy V, et al. In vitro susceptibilities to topical antibiotics of bacteria isolated from the surface of clinically symptomatic eyes. Ophthalmic Res. 2001;33:117–20.

    Article  CAS  PubMed  Google Scholar 

  28. Leggett JE. Aminoglycosides. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 310–21.e7.

    Google Scholar 

  29. Robert PY, Adenis JP. Comparative review of topical ophthalmic antibacterial preparations. Drugs. 2001;61:175–85.

    Article  CAS  PubMed  Google Scholar 

  30. Kaye KS, Pogue JM, Kaye D. Polymyxins (polymyxin B and colistin). In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 401–405.e1.

    Google Scholar 

  31. Bacitracin. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=6ed2f2bd-9d2f-46af-a44c-95a02ca034de&audience=consumer. Accessed 30 Aug 2015.

  32. Polycin®. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=3abbfb58-26d1-460d-a60f-db63c0193a0d. Accessed 29 Aug 2015.

  33. Polytrim®. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=5ce95658-d2eb-4d35-b387-ded0d7e4a122. Accessed 29 Aug 2015.

  34. Neosporin®. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=33e9b6d3-2b2b-4036-dd89-47177e23fcfe. Accessed 30 Aug 2015.

  35. Zinner S, Myer KH. Sulfonamides and trimethoprim. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 410–8.e2.

    Google Scholar 

  36. Bleph®-10. DailyMed, Bethesda. 2013. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=27c8bd30-89ec-464c-b7ac-ca2dbe27e861. Accessed 29 Aug 2015.

  37. Natamycin®. DailyMed, Bethesda. 2013. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=d262661c-860d-482e-aa8d-3cf1f252b32a. Accessed 13 Mar 2016.

  38. Behrens-Baumann W. Topical antimycotics in ophthalmology. Ophthalmolgica. 1997;211 Suppl 1:33–8.

    Article  CAS  Google Scholar 

  39. Klotz SA, Penn CC, Negvesky GJ, Butrus SI. Fungal and parasitic infections of the eye. Clin Microbiol Rev. 2000;13:662–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aoki FY. Antivirals against herpes viruses. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 546–62.e7.

    Google Scholar 

  41. Zirgan (ganciclovir ophthalmic gel 0.15%) [prescribing information]. Tampa: Bausch & Lomb Inc; 2014.

    Google Scholar 

  42. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016. doi:10.1093/cid/civ933.

    Google Scholar 

  43. Lopez-Carbezas C, Muner DS, Massa MR, Mensa Puevo JM. Antibiotics in endophthalmitis: microbiological and pharmacokinetic considerations. Curr Clin Pharmacol. 2010;5:47–54.

    Article  Google Scholar 

  44. Riddell 4th J, Comer GM, Kauffman CA. Treatment of endogenous fungal endophthalmitis: focus on new antifungal agents. Clin Infect Dis. 2011;52:648–53.

    Article  CAS  PubMed  Google Scholar 

  45. Thielen TL, Castle SS, Terry JE. Anterior ocular infections: an overview of pathophysiology and treatment. Ann Pharmacother. 2000;34:235–46.

    Article  CAS  PubMed  Google Scholar 

  46. Doi Y, Chambers HF. Penicillins and beta lactamase inhibitors. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 263–77.e3.

    Google Scholar 

  47. Murray BE, Arias CA, Nannini EC. Glycopeptides (vancomycin and teicoplanin), streptogramins (quinupristin-dalfopristin), lipopeptides (daptomycin), and lipoglycopeptides (telavancin). In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 377–400.e4.

    Google Scholar 

  48. Cox HL, Donowitz GR. Linezolid and other oxazolidinones. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 406–9.e2.

    Google Scholar 

  49. Rex JH, Stevens DA. Drugs active against fungi, pneumocystis, and microsporidia. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 479–94.e4.

    Google Scholar 

  50. Nett JE, Andes DR. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin North Am. 2016. doi:10.1016/j.idc.2015.10.012.

    PubMed  Google Scholar 

  51. Chhablani J. Fungal endophthalmitis. Expert Rev Anti Infect Ther. 2011;9:1991–201.

    Article  Google Scholar 

  52. Smith J, Safdar N, Knasinski V, Simmons W, Bhavnani SM, Ambrose PG, et al. Voriconazole therapeutic drug monitoring. Antimicrob Agents Chemother. 2006;50:1570–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46:201–11.

    Article  CAS  PubMed  Google Scholar 

  54. Cresemba (isavuconazonium) [prescribing information]. Northbrook: Astellas Pharma US Inc; 2015.

    Google Scholar 

  55. Azari AA, Barney NP. Conjunctivitis: a systemic review of diagnosis and treatment. JAMA. 2013;310:1721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jager RD, Aiello LP, Patel SC, Cunningham Jr ET. Risks of intravitreous injection: a comprehensive review. Retina. 2004;24:676–98.

    Article  PubMed  Google Scholar 

  57. Intravitreal Injections. In: American academy of ophthalmology. 2015. http://www.aao.org/clinical-statement/intravitreal-injections--november-2008. Accessed 20 Aug 2015.

  58. Sosa AB, Epstein SP, Asbell PA. Evaluation of toxicity of commercial ophthalmic fluoroquinolone antibiotics as assessed on immortalized corneal and conjunctival epithelial cells. Cornea. 2008;27:930–4. doi:10.1097/ICO.0b013e31816f27ab.

    Article  PubMed  Google Scholar 

  59. Tsai T-H, Chen WL, Hu FR. Comparison of fluoroquinolones: cytotoxicity on human corneal epithelial cells. Eye (Lond). 2010;24:909–17. doi:10.1038/eye.2009.179. Epub 2009 Jul 24.

    Article  CAS  Google Scholar 

  60. Kim SY, Lim JA, Choi JS, Choi EC, Joo CK. Comparison of antibiotic effect and corneal epithelial toxicity of levofloxacin and moxifloxacin in vitro. Cornea. 2007;26:720–5.

    Article  PubMed  Google Scholar 

  61. Alfonso E, Crider J. Ophthalmic infections and their anti-infective challenges. Surv Ophthalmol. 2005;50 Suppl 1:S1–6.

    Article  PubMed  Google Scholar 

  62. Campochiaro PA, Lim JI. Aminoglycoside toxicity in the treatment of endophthalmitis. The Aminoglycoside Toxicity Study Group. Arch Ophthalmol. 1994;112:48–53.

    Article  CAS  PubMed  Google Scholar 

  63. Seawright AA, Bourke RD, Cooling RJ. Macula toxicity after intravitreal amikacin. Aust N Z J Ophthalmol. 1996;24:143–6.

    Article  CAS  PubMed  Google Scholar 

  64. Braga-Mele R, Chang DF, Henderson BA, Mamalis N, Talley-Rostov A, Vasavada A. Intracameral antibiotics: safety, efficacy, and preparation. J Cataract Refract Surg. 2014;40:2134–42.

    Article  PubMed  Google Scholar 

  65. Faure C, Perreira D, Audo I. Retinal toxicity after intracameral use of a standard dose of cefuroxime during cataract surgery. Doc Ophthalmol. 2015;130:57–63. doi:10.1007/s10633-014-9465-7. Epub 2014 Oct 16.

    Article  PubMed  Google Scholar 

  66. Ciftci S, Ciftci L, Daq U. Hemorrhagic retinal infarction due to inadvertent overdose of cefuroxime in cases of complicated cataract surgery: retrospective case series. Am J Ophthalmol. 2014;157:421–5.e2. doi:10.1016/j.ajo.2013.10.018. Epub 2013 Nov 6.

    Article  PubMed  Google Scholar 

  67. Craig W, Andes DR. Cephalosporins. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 278–292.e4.

    Google Scholar 

  68. Heim-Duthoy KL, Caperton EM, Pollock R, Matzke GR, Enthoven D, Peterson PK. Apparent biliary pseudolithiasis during ceftriaxone therapy. Antimicrob Agents Chemother. 1990;34:1146–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park HZ, Lee SP, Schy AL. Ceftriaxone-associated gallbladder sludge. Identification of calcium-ceftriaxone salt as a major component of gallbladder precipitate. Gastroenterology. 1991;100:1665–70.

    CAS  PubMed  Google Scholar 

  70. Letellier G, Desjarlais F. Analytical interference of drugs in clinical chemistry: II. The interference of three cephalosporins with the determination of serum creatinine concentration by the Jaffe reaction. Clin Biochem. 1985;18:352–6.

    Article  CAS  PubMed  Google Scholar 

  71. Grill MF, Maganti R. Cephalosporin-induced neurotoxicity: clinical manifestations, potential pathogenic mechanisms, and the role of electroencephalographic monitoring. Ann Pharmacol. 2008;42:1843–50.

    Article  CAS  Google Scholar 

  72. Martinez-Rodriguez JE, Barriga FJ, Santamaria J, Iranzo A, Pareja JA, Revilla M, et al. Nonconvulsive status epilepticus associated with cephalosporins in patients with renal failure. Am J Med. 2001;111:115–9.

    Article  CAS  PubMed  Google Scholar 

  73. Lamoth F, Buclin T, Pascual A, Vora S, Bolay S, Decosterd LA, et al. High cefepime plasma concentrations and neurological toxicity in febrile neutropenic patients with mild impairment of renal function. Antimicrob Agents Chemother. 2010;54:4360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miller AD, Ball AM, Bookstaver PB, Dornblaser EK, Bennett CL. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31:408–23.

    Article  CAS  PubMed  Google Scholar 

  75. Doi Y, Chambers HF. Other beta-lactam antibiotics. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 293–7.e2.

    Google Scholar 

  76. Noel GJ, Natarajan J, Chien S, Hunt TL, Goodman DB, Abels R. Effects of three fluoroquinolones on QT interval in healthy adults after single doses. Clin Pharmacol Ther. 2003;73:292–303.

    Article  CAS  PubMed  Google Scholar 

  77. Morganroth J, Dimarco JP, Anzueto A, Niederman MS, Choudhri S, CAPRIE Study Group. A randomized trial comparing the cardiac rhythm safety of moxifloxacin vs levofloxacin in elderly patients hospitalized with community-acquired pneumonia. Chest. 2005;128:3398–406.

    Article  CAS  PubMed  Google Scholar 

  78. Briasoulis A, Agarwal V, Pierce WJ. QT prolongation and torsade de pointes induced by fluoroquinolones: infrequent side effects from commonly used medications. Cardiology. 2011;120:103–10.

    Article  PubMed  Google Scholar 

  79. Etminan M, Forooghian F, Brophy JM, Bird ST, Maberley D. Oral fluoroquinolones and the risk of retinal detachment. JAMA. 2012;307:1414–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kuo SC, Chen YT, Lee YT, Fan NW, Chen SJ, Li SY, et al. Association between recent use of fluoroquinolones and rhegmatogenous retinal detachment: a population-based cohort study. Clin Infect Dis. 2014;58:197–203.

    Article  CAS  PubMed  Google Scholar 

  81. Pasternak B, Svanström H, Melbye M, Hviid A. Association between oral fluoroquinolone use and retinal detachment. JAMA. 2013;310:2184–90.

    Article  CAS  PubMed  Google Scholar 

  82. Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52:1330–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med. 2006;166:2138–44.

    Article  PubMed  Google Scholar 

  84. Jeffres MN, Isakow W, Doherty JA, McKinnon PS, Ritchie DJ, Micek ST, et al. Predictors of mortality for methicillin-resistant Staphylococcus aureus health-care-associated pneumonia: specific evaluation of vancomycin pharmacokinetic indices. Chest. 2006;130:947–55.

    Article  PubMed  Google Scholar 

  85. Zyvox® (linezolid) [package insert]. New York: Pharmacia and Upjohn Company; 2012.

    Google Scholar 

  86. Narita M, Tsuji BT, Yu VL. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy. 2007;27:1189–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihye Kim PharmD, BCPS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, J. (2016). Anti-infective Therapy for Ocular Infection. In: Laver, N., Specht, C. (eds) The Infected Eye. Springer, Cham. https://doi.org/10.1007/978-3-319-42840-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42840-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42838-3

  • Online ISBN: 978-3-319-42840-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics