Skip to main content

Tefnut: An Accurate Smartphone Based Rain Detection System in Vehicles

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2016)

Abstract

Real-time and fine-grained rain information is crucial not only for climate research, weather prediction, water resources management, agricultural production, urban planning and natural disasters monitoring, but also for applications in our daily lives. However, because of the lack of rain detection systems and the high variable attribute of rain, both in time and space, the rain detection today is still not precise enough. In such context, we propose and implement Tefnut (Tefnut is the rain deity in Ancient Egyptian religion.), a novel system that exploits opportunistically crowdsourced in-vehicle audio clips from an alternative, nowadays omnipresent source, smartphones, to achieve precise detection of rain leveraging a supervised recognizer constructed from a series of refined features. We conduct extensive experiments, and evaluation results demonstrate that Tefnut can detect the rain with 96.0 % true positive rate, when deciding with a one-second-long in-vehicle audio segment only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, the superscript , or on a variable indicates that this variable is calculated in power spectrum, time domain or frequency spectrum respectively.

References

  1. United Nations Office for Disaster Reduction. https://www.unisdr.org

  2. Allamano, P., Croci, A., Laio, F.: Toward the camera rain gauge. Water Resour. Res. 51(3), 1744–1757 (2015)

    Article  Google Scholar 

  3. Aminikhanghahi, S., Wang, W., Shin, S., Son, S.H., Jeon, S.I.: Effective tumor feature extraction for smart phone based microwave tomography breast cancer screening. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 674–679. ACM (2014)

    Google Scholar 

  4. Dhondge, K., Song, S., Choi, B.Y., Park, H.: WiFiHonk: Smartphone-based beacon stuffed WiFi Car2X-communication system for vulnerable road user safety. In: IEEE 79th Vehicular Technology Conference (VTC Spring), 2014, pp. 1–5. IEEE (2014)

    Google Scholar 

  5. Gao, X., Tian, J., Liang, X., Wang, G.: ARPP: an Augmented Reality 3D ping-pong game system on Android mobile platform. In: WOCC, pp. 1–6. IEEE (2014)

    Google Scholar 

  6. Görmer, S., Kummert, A., Park, S.B., Egbert, P.: Vision-based rain sensing with an in-vehicle camera. In: Intelligent Vehicles Symposium, 2009 IEEE, pp. 279–284. IEEE (2009)

    Google Scholar 

  7. Grimes, D., Diop, M.: Satellite-based rainfall estimation for river flow forecasting in Africa. I: rainfall estimates and hydrological forecasts. Hydrol. Sci. J. 48(4), 567–584 (2003)

    Article  Google Scholar 

  8. Gutierrez, N., Belmonte, C., Hanvey, J., Espejo, R., Dong, Z.: Indoor localization for mobile devices. In: ICNSC, pp. 173–178. IEEE (2014)

    Google Scholar 

  9. Jing, T., Cui, X., Cheng, W., Zhu, S., Huo, Y.: Enabling smartphone based HD video chats by cooperative transmissions in CRNs. In: Cai, Z., Wang, C., Cheng, S., Wang, H., Gao, H. (eds.) WASA 2014. LNCS, vol. 8491, pp. 636–647. Springer, Heidelberg (2014)

    Google Scholar 

  10. Kim, H., Lee, S.K., Kim, H., Kim, H.: Implementing home energy management system with upnp and mobile applications. Comput. Commun. 36(1), 51–62 (2012)

    Article  Google Scholar 

  11. Leijnse, H., Uijlenhoet, R., Stricker, J.: Rainfall measurement using radio links from cellular communication networks. Water Resour. Res. 43(3) (2007)

    Google Scholar 

  12. Li, F., Yang, Y., Wu, J.: CPMC: an efficient proximity malware coping scheme in smartphone-based mobile networks. In: INFOCOM, pp. 1–9. IEEE (2010)

    Google Scholar 

  13. Liu, Z., Chen, Y., Liu, B., Wang, J., Fu, X.: Aerial localization with smartphone. In: Wang, X., Zheng, R., Jing, T., Xing, K. (eds.) WASA 2012. LNCS, vol. 7405, pp. 386–397. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Messer, H., Zinevich, A., Alpert, P.: Environmental monitoring by wireless communication networks. Science 312(5774), 713 (2006)

    Article  Google Scholar 

  15. Nashashibi, F., de Charrette, R., Lia, A.: Detection of unfocused raindrops on a windscreen using low level image processing. In: ICARCV, pp. 1410–1415. IEEE (2010)

    Google Scholar 

  16. Novak, E., Li, Q.: Near-pri: private, proximity based location sharing. In: INFOCOM, pp. 37–45. IEEE (2014)

    Google Scholar 

  17. Overeem, A., Leijnse, H., Uijlenhoet, R.: Country-wide rainfall maps from cellular communication networks. Proc. Nat. Acad. Sci. 110(8), 2741–2745 (2013)

    Article  Google Scholar 

  18. Rayitsfeld, A., Samuels, R., Zinevich, A., Hadar, U., Alpert, P.: Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system. Atmos. Res. 104, 119–127 (2012)

    Article  Google Scholar 

  19. Roser, M., Geiger, A.: Video-based raindrop detection for improved image registration. In: ICCV Workshops, pp. 570–577. IEEE (2009)

    Google Scholar 

  20. Tan, G., Lu, M., Jiang, F., Chen, K., Huang, X., Wu, J.: Bumping: a bump-aided inertial navigation method for indoor vehicles using smartphones. IEEE Trans. Parallel Distrib. Syst. 25(7), 1670–1680 (2014)

    Article  Google Scholar 

  21. Tang, Z., Guo, S., Li, P., Miyazaki, T., Jin, H., Liao, X.: Energy-efficient transmission scheduling in mobile phones using machine learning and participatory sensing. IEEE Trans. Veh. Technol. 64(7), 3167–3176 (2015)

    Google Scholar 

  22. Tian, J., Wang, G., Gao, X., Shi, K.: User behavior based automatical navigation system on Android platform. In: WOCC, pp. 1–6. IEEE (2014)

    Google Scholar 

  23. Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B., Sadeh, N.: A framework of energy efficient mobile sensing for automatic user state recognition. In: MobiSys, pp. 179–192. ACM (2009)

    Google Scholar 

  24. Wardah, T., Bakar, S.A., Bardossy, A., Maznorizan, M.: Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting. J. Hydrol. 356(3), 283–298 (2008)

    Article  Google Scholar 

  25. Wen, Y., Shi, J., Zhang, Q., Tian, X., Huang, Z., Yu, H., Cheng, Y., Shen, X.: Quality-driven auction-based incentive mechanism for mobile crowd sensing. IEEE Trans. Veh. Technol. 64(9), 4203–4214 (2015)

    Article  Google Scholar 

  26. Wu, L., Du, X., Wang, L., Fu, X., Mbouna, R.O., Kong, S.G.: Analyzing mobile phone vulnerabilities caused by camera. In: GLOBECOM, pp. 4126–4130. IEEE (2014)

    Google Scholar 

  27. Wu, L., Du, X., Wu, J.: MobiFish: a lightweight anti-phishing scheme for mobile phones. In: ICCCN, pp. 1–8. IEEE (2014)

    Google Scholar 

  28. Yang, S., Thormann, J.: Poster: crowdsourcing to smartphones: social network based human collaboration. In: MobiHoc, pp. 439–440. ACM (2014)

    Google Scholar 

  29. Yoo, S., Kim, E., Kim, H.: Exploiting user movement direction and hidden access point for smartphone localization. Wireless Pers. Commun. 78(4), 1863–1878 (2014)

    Article  Google Scholar 

  30. Yue, Q., Ling, Z., Fu, X., Liu, B., Ren, K., Zhao, W.: Blind recognition of touched keys on mobile devices. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1403–1414. ACM (2014)

    Google Scholar 

  31. Zhang, Z., Wang, H., Wang, C., Fang, H.: Cluster-based epidemic control through smartphone-based body area networks. IEEE Trans. Parallel Distrib. Syst. 26(3), 681–690 (2015)

    Article  Google Scholar 

  32. Zinevich, A., Messer, H., Alpert, P.: Frontal rainfall observation by a commercial microwave communication network. J. Appl. Meteorol. Climatol. 48(7), 1317–1334 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This paper was supported by National Natural Science Foundation of China under Grant No. 61572342, 61303206 and 61472384, Natural Science Foundation of Jiangsu Province under Grant No. BK20151240 and BK20140395, China Postdoctoral Science Foundation under Grant No. 2015M580470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Guo, H. et al. (2016). Tefnut: An Accurate Smartphone Based Rain Detection System in Vehicles. In: Yang, Q., Yu, W., Challal, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2016. Lecture Notes in Computer Science(), vol 9798. Springer, Cham. https://doi.org/10.1007/978-3-319-42836-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42836-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42835-2

  • Online ISBN: 978-3-319-42836-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics