Skip to main content

Identifying Discrepant Tags in RFID-enabled Supply Chains

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9798))

Abstract

Radio Frequency Identification (RFID) technology is becoming a revolutionary element in supply chain management by providing real-time visibility of goods flows. Across supply chains, one-for-one checking is required at each handover point to discover discrepancies between the physical shipped inventory and receiver’s order. This operation is so ubiquitous throughout the product life cycle that its efficiency improvement can prominently optimize the whole supply chain. There are several main challenges, however, in designing efficient solutions for it: inconsistent tag information, high-volume and high-speed RFID data, and high latency in EPCglobal Network. Based on the characteristic polynomial, we propose a tag identification protocol that achieves better almost minimal latency. The most salient feature of our protocol is that its communication complexities scales well with the size of discrepant tags, instead of the size of overall number of tags in traditional methods. Through experimental comparisons, we show that our protocol significantly outperforms previous methods in terms of communication latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benedetti, D., Maselli, G., Petrioli, C.: Fast identification of mobile RFID tags. In: Proceedings of IEEE MASS (2012)

    Google Scholar 

  2. Wal-Mart’s RFID Refresh. RFID Journal (2007)

    Google Scholar 

  3. Lunn, D.: Employee Theft: Eliminate The Opportunity Guest Series Part 1

    Google Scholar 

  4. Liu, J., Xiao, B., Kai, B., Chen, L.: Efficient distributed query processing in large rfid-enabled supply chains. In: Proceedings of IEEE INFOCOM (2014)

    Google Scholar 

  5. Ziekow, H., Fabian, B., Müller, C.: High-speed access to RFID data: meeting real-time requirements in distributed value chains. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 142–151. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM (JACM) 42(1), 269–291 (1995)

    Article  MATH  Google Scholar 

  7. Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal communication complexity. IEEE Trans. Inf. Theor. 49(9), 2213–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  9. Zippel, R.E.: Effective Polynomial Computation. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  10. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for database applications. J. Comput. Syst. Sci. 31(2), 182–209 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. http://www.csim.com/

  12. http://www.shoup.net/ntl/

  13. Kodialam, M., Nandagopal, T.: Fast and reliable estimation schemes in RFID systems. In: Proceedings of ACM MobiCom (2006)

    Google Scholar 

  14. Zheng, Y., Li, M., Qian, C.: PET: Probabilistic estimating tree for large-scale RFID estimation. In: Proceedings of IEEE ICDCS (2011)

    Google Scholar 

  15. Shahzad, M., Liu, A.X.: Every bit counts: fast and scalable RFID estimation. In: Proceedings of ACM MobiCom (2012)

    Google Scholar 

  16. Zhang, R., Liu, Y., Zhang, Y., Sun, J.: Fast identification of the missing tags in a large RFID system. In: Proceedings of IEEE SECON (2011)

    Google Scholar 

  17. Li, T., Chen, S., Ling, Y.: Identifying the missing tags in a large RFID system. In: Proceedings of ACM MOBIHOC (2010)

    Google Scholar 

  18. Tan, C., Sheng, B., Li, Q.: How to monitor for missing RFID tags. In: Proceedings of IEEE ICDCS, pp. 295–302 (2008)

    Google Scholar 

  19. Bolotnyy, L., Robins, G.: Physically unclonable function-based security and privacy in RFID systems. In: Proceedings of IEEE PERCOM (2007)

    Google Scholar 

  20. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 50–59. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Lu, L., Liu, Y., Li, X.: Refresh: weak privacy model for RFID systems. In: Proceedings of IEEE INFOCOM (2010)

    Google Scholar 

  22. Yang, L., Han, J., Qi, Y., Liu, Y.: Identification-free batch authentication for RFID tags. In: Proceedings of IEEE ICNP (2010)

    Google Scholar 

  23. Lee, C.H., Chung, C.W.: Efficient storage scheme and query processing for supply chain management using RFID. In: Proceedings of ACM SIGMOD (2008)

    Google Scholar 

  24. Cao, Z., Sutton, C., Diao, Y., Shenoy, P.: Distributed inference and query processing for rfid tracking and monitoring. Proc. VLDB Endowment 4(5), 326–337 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NSFC under Grant No. 61472268 and Natural Sciences and Engineering Research Council (NSERC) of Canada grant no. CRDPJ-476659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caidong Gu .

Editor information

Editors and Affiliations

Appendix:

Appendix:

Lemma 1

Given a level i and a constant \(c>1\), the relative error of estimated cardinality of the union of level j or greater is at most \(\mathcal {O}(\sqrt{\frac{c2^i}{M}})\) with probability \((1-2^{-c})\), where \(j<i\) and M is the size of all tags.

Proof

In hierarchical estimator, we use \(Z_j\) to denote the size of union of level j or greater, and \(\mu _j\) be its expectation. Thus, we know that

$$\mu _j=\mathrm {E}(Z_j)=\frac{M}{2^j}.$$

Also by chernoff bound, we can get

$$\mathrm {Pr}(Z_j>(1+\varepsilon ))<e^{\frac{-\mu _j\varepsilon ^2}{4}},\mathrm {Pr}(Z_j<(1-\varepsilon ))<e^{\frac{-\mu _j\varepsilon ^2}{4}}.$$

Therefore, if we let \(\varepsilon =\sqrt{4(c+2)\frac{2^i}{M}\ln 2}\sim \mathcal {O}(\sqrt{\frac{c2^i}{M}}),\) we can know that the probability that relative error of \(Z_j\) is at most \(\varepsilon \) is at most \(2e^{\frac{-\mu _j\varepsilon ^2}{4}}.\) Then by a union bound, the probability that the relative error of any \(Z_j\) is out of \(\varepsilon \) is at most

$$\sum _{j=0}^{i}2e^{\frac{-\mu _j\varepsilon ^2}{4}}\le \sum _{j=0}^{i}2^{-(c+1)2^{i-j}}\le 2^{-c}$$

Theorem 1

Given \(0<\varepsilon ,\delta <1\), the hierarchical estimator is able to estimate the discrepant tag size with relative error \(\varepsilon \) and failure probability \(\delta \).

Proof

Let \(\alpha \) be the constant in the big-O notation in Lemma 1.

If \(d^2\le \alpha ^2\varepsilon ^{-2}\log \delta ^{-1}\), then the level-0 of hierarchical estimator will decode all discrepant tags with probability at least \(1-\frac{\delta }{2}.\)

Otherwise, we use i to be \(\frac{d}{2^i}\approx \alpha ^2\varepsilon ^{-2}\log \delta ^{-1}\). Thus, by Lemma 1, the relative error of the number of tags in the i-th and higher level is at most \(\varepsilon \) with probability \(1-\frac{\delta }{2}\), if we let \(c=\lceil \log \delta ^{-1}\rceil +1\).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gu, C., Gong, W., Nayak, A. (2016). Identifying Discrepant Tags in RFID-enabled Supply Chains. In: Yang, Q., Yu, W., Challal, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2016. Lecture Notes in Computer Science(), vol 9798. Springer, Cham. https://doi.org/10.1007/978-3-319-42836-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42836-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42835-2

  • Online ISBN: 978-3-319-42836-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics