Skip to main content

Geomatics and Water Policy

  • Chapter
  • First Online:
Book cover Water Policy and Governance in Canada

Part of the book series: Global Issues in Water Policy ((GLOB,volume 17))

Abstract

Geomatics including remote sensing and geographic information system (GIS) is the geospatial technology for gathering, management, analysis, and dissemination of spatially referenced information. Water policy is the governance framework including legislation/regulation, standard, planning and management of water resources. Water policy involves complex physical, biological, economic, social, and political processes, and manifests at location, subbasin, watershed, regional, national, and international scales. Water policy has an inherently spatial dimension which offers opportunities for Geomatics support. The applications of Geomatics for supporting water management and policy can be classified into three categories: Firstly, Geomatics supports acquisition, storage, management, visualization, and distribution of water and related datasets. Secondly, Geomatics supports spatial analysis of water resources including GIS and water modelling integration. Lastly, Geomatics supports decision making in water policy including the development of water related spatial decision support systems. While Geomatics has a great potential to support water management and policy in Canada, several strategic issues needs to be addressed. A Geomatics framework needs to be developed for water data gathering, analyzing and visualizing. Technology standards need to be developed for integrating Geomatics with water models. Particularly, Geomatics visualization technologies needs to be further developed to improve accessibility of water information for non-technical users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anmala, J., Meier, O., Meier, A., & Grubbs, S. (2015). GIS and artificial neural network–based water quality model for a stream network in the Upper Green River Basin, Kentucky, USA. Journal of Environmental Engineering, 141(5), 04014082.

    Article  Google Scholar 

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.

    Article  Google Scholar 

  • Assaf, H., & Saadeh, M. (2008). Assessing water quality management options in the Upper Litani Basin, Lebanon, using an integrated GIS-based decision support system. Environmental Modelling & Software, 23, 1327–1337.

    Article  Google Scholar 

  • Beven, K. (1995). Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models. Hydrological Processes, 9, 507–525.

    Article  Google Scholar 

  • Binding, C. E., Greenberg, T. A., & Bukata, R. P. (2012). An analysis of MODIS-derived algal and mineral turbidity in Lake Erie. Journal of Great Lakes Research, 38(1), 107–116.

    Article  CAS  Google Scholar 

  • Bocaniov, S. A., Smith, R. E. H., Spillman, C. M., Hipsey, M. R., & Leon, L. F. (2014). The nearshore shunt and the decline of the phytoplankton spring bloom in the Laurentian Great Lakes: Insights from a three-dimensional lake model. Hydrobiologia, 731, 151–172.

    Article  CAS  Google Scholar 

  • Brown, G. (2012). Public Participation GIS (PPGIS) for regional and environmental planning: Reflections on a decade of empirical research. URISA Journal, 24(2), 7–18.

    Google Scholar 

  • Bugs, G., Granell, C., Fonts, O., Huerta, J., & Painho, M. (2010). An assessment of Public Participation GIS and Web 2.0 technologies in urban planning practice in Canela, Brazil. Cities, 27(3), 172–181.

    Article  Google Scholar 

  • Cai, X., McKinney, D., & Lasdon, L. (2003). Integrated hydrologic-agronomic-economic model for river basin management. Journal of Water Resources Planning and Management, 129(1), 4–17.

    Article  Google Scholar 

  • Chen, Q., Zhang, Y., Ekroos, A., & Hallikainen, M. (2004). The role of remote sensing technology in the EU water framework directive (WFD). Environmental Science & Policy, 7, 267–276.

    Article  Google Scholar 

  • Chen, Q., Zhang, Y., & Hallikainen, M. (2007). Water quality monitoring using remote sensing in support of the EU water framework directive (WFD): A case study in the Gulf of Finland. Environmental Monitoring and Assessment, 124, 157–166.

    Article  CAS  Google Scholar 

  • Devillers, R., Stein, A., Bédard, Y., Chrisman, N., Fisher, P., & Shi, W. (2010). Thirty years of research on spatial data quality: Achievements, failures, and opportunities. Transactions in GIS, 14, 387–400. doi:10.1111/j.1467-9671.2010.01212.x.

    Article  Google Scholar 

  • DHI. (2012). MIKE SHE user manual. Hørsholm: Danish Hydrologic Institute. http://dssplanning.dhigroup.com/links/MIKE_SHE_Printed_V1.pdf.

    Google Scholar 

  • Dinar, A. (1998). Water policy reforms: Information needs and implementation obstacles. Water Policy, 1(4), 367–382.

    Article  Google Scholar 

  • Dworak, T., Gonzalez, C., Laaser, C., & Interwies, E. (2005). The need for new monitoring tools to implement the WFD. Environmental Science & Policy, 8, 301–306.

    Article  Google Scholar 

  • Faramarzi, M., Abbaspour, K. C., Vaghefi, S. A., Farzaneh, M. R., Zehnder, A. J. B., Srinivasan, R., & Yang, H. (2013). Modeling impacts of climate change on freshwater availability in Africa. Journal of Hydrology, 480, 85–101.

    Article  Google Scholar 

  • Faramarzi, M., Srinivasan, R., Iravani, M., Bladon, K. D., Abbaspour, K. C., Zehnder, A. J. B., & Goss, G. G. (2015). Setting up a hydrological model of Alberta: Data discrimination analyses prior to calibration. Environmental Modelling & Software, 74, 48–65.

    Article  Google Scholar 

  • Flanagan, D. C., Frankenberger, J. R., Cochrane, T. A., Renschler, C. S., & Elliot, W. J. (2013). Geospatial application of the Water Erosion Prediction Project (WEPP) model. Transactions of the ASABE, 56(2), 591–601.

    Article  Google Scholar 

  • Fotakis, D., & Sidiropoulos, E. (2014). Combined land-use and water allocation planning. Annals of Operations Research, 219, 169–185.

    Article  Google Scholar 

  • Gassman, P. W., Williams, J. R., Wang, X., Saleh, A., Osei, E., Hauck, L. M., Izaurralde, R. C., & Flowers, J. D. (2010). The agricultural policy/environmental eXtender (APEX) model: An emerging tool for landscape and watershed environmental analyses. Transactions of the ASABE, 53(3), 711–740.

    Article  Google Scholar 

  • George, C., & Leon, L. F. (2008). WaterBase: SWAT in an open source GIS. The Open Hydrology Journal, 2, 1–6.

    Article  Google Scholar 

  • Ghebremichael, L. T., Veith, T. L., & Hamlett, J. M. (2013). Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability. Journal of Environmental Management, 114, 381–394.

    Google Scholar 

  • Heineman, M. C. (2001). An Arc View GIS tool for SWMM. Journal of Water Management Modeling R207–R211. doi:10.14796/JWMM .R207-11

    Google Scholar 

  • Heywood, I., Cornelius, S., & Carver, S. (2012). An introduction to geographical information systems. Harlow: Pearson Education Limited.

    Google Scholar 

  • Jaber, F. H. & Shukla, S. (2012). MIKE SHE: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1479–1489.

    Google Scholar 

  • Johnson, M.-V. V., Norfleet, M. L., Atwood, J. D., Behrman, K. D., Kiniry, J. R., Arnold, J. G., White, M. J., & Williams, J. (2015). The Conservation Effects Assessment Project (CEAP): A national scale natural resources and conservation needs assessment and decision support tool. IOP Conference Series: Earth and Environmental Science, 25, 012012.

    Article  Google Scholar 

  • Jones, D., Jones, N., Greer, J., & Nelson, J. (2015). A cloud based MODFLOW service for aquifer management decision support. Computers & Geosciences, 78, 81–87.

    Article  Google Scholar 

  • Jonkman, S. N., Bočkarjova, M., Kok, M., & Bernardini, P. (2008). Integrated hydrodynamic and economic modelling of flood damage in the Netherlands. Ecological Economics, 66(1), 77–90.

    Article  Google Scholar 

  • Kragt, M. E., Newham, L. T. H., Bennett, J., & Jakeman, A. L. (2011). An integrated approach to linking economic valuation and catchment modelling. Environmental Modelling & Software, 26, 92–102.

    Article  Google Scholar 

  • Kubíčeka, P., & Šašinkaa, Č. (2011). Hematic uncertainty visualization usability – Comparison of basic methods. Annals of GIS, 17(4), 253–263.

    Google Scholar 

  • Kulkarni, A. T., Mohanty, J., Eldho, T. I., Rao, E. P., & Mohan, B. K. (2014). A web GIS based integrated flood assessment modeling tool for coastal urban watersheds. Computers & Geosciences, 64, 7–14.

    Article  Google Scholar 

  • Maidment, D. R. (2002). Arc Hydro: GIS for water resources. Redlands: ESRI Press.

    Google Scholar 

  • Maloney, K. O., Talbert, C. B., Cole, J. C., Galbraith, H. S., Blakeslee, C. J., Hanson, L., & Holmquist-Johnson, C. L. (2015). An integrated Riverine Environmental Flow Decision Support System (REFDSS) to evaluate the ecological effects of alternative flow scenarios on river ecosystems. Fundamental and Applied Limnology, 186(1–2), 171–192.

    Article  Google Scholar 

  • Martin, P. H., LeBoeuf, E. J., Dobbins, J. P., Daniel, E. B., & Abkowitz, M. D. (2005). Interfacing GIS with water resource models: A state- of-the-art review. Journal of the American Water Resources Association, 41(6), 1471–1487.

    Article  Google Scholar 

  • Natural Resources Canada. (2013). Geomatics. http://www.nrcan.gc.ca/earth-sciences/geomatics/10776

  • Ormsby, T., Napoleon, E., Burke, R., Groessl, C., & Bowden, L. (2010). Getting to know ArcGIS desktop. Redlands: ESRI Press.

    Google Scholar 

  • Pease, M., & Murray, J. (2014). Making water resource decisions more “Informationally” efficient: Development of a geospatial water rights decision support system for Kittitas County, Washington. International Journal of Geospatial and Environmental Research, 1(2), 1–12.

    Google Scholar 

  • Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., & Pulido-Velazquez, D. (2008). Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecological Economics, 66(1), 51–66.

    Article  Google Scholar 

  • Qi, H., & Altinakar, M. S. (2011). A GIS-based decision support system for integrated flood management under uncertainty with two dimensional numerical simulations. Environmental Modelling & Software, 26, 817–821.

    Article  Google Scholar 

  • Quevauviller, P., Balabanis, P., Fragakis, C., Weydert, M., Oliver, M., Kaschl, A., Arnold, G., Kroll, A., Galbiati, L., Zaldivar, J. M., & Bidoglio, G. (2005). Science-policy integration needs in support of the implementation of the EU Water Framework Directive. Environmental Science & Policy, 8, 203–211.

    Article  Google Scholar 

  • Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., & Vanrolleghem, P. A. (2007). Uncertainty in the environmental modelling processes – A framework and guidance. Environmental Modelling & Software, 22, 1543–1556.

    Article  Google Scholar 

  • Rousseau, K., & Lawrence, P. L. (2013). The application of GIS in watershed planning: The case of the western Lake Erie Basin. In J. D. Gatrell & R. R. Jensen (Eds.), Geospatial tools for urban water resources (Geotechnologies and the environment, Vol. 7, pp. 145–159). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Shamsi, U. M., Smith, P. (2005). ArcGIS and SWMM integration. Journal of Water Management Modeling, 296–307. doi: 10.14796/JWMM. R223–15

    Google Scholar 

  • Torgersen, C. E., Faux, R. N., McIntosh, B. A., Poage, N. J., & Norton, D. J. (2001). Airborne thermal remote sensing for water temperature assessment in rivers and streams. Remote Sensing of the Environment, 76, 386–398.

    Article  Google Scholar 

  • Triana, E., & Labadie, J. W. (2012). GIS-based decision support system for improved operations and efficiency conservation in large-scale irrigation systems. Journal of Irrigation and Drainage Engineering, 138(10), 857–867.

    Article  Google Scholar 

  • US Army Corps of Engineers (USACE). (2011). HEC-GeoRAS – GIS tools for support of HEC-RAS using ArcGIS: User’s manual.

    Google Scholar 

  • Verma, S., Verma, R. K., Singh, A., & Naik, N. S. (2012). Web-based GIS and desktop open source GIS software: An emerging innovative approach for water resources management. In D. C. Wyld et al. (Eds.), Advances in computer science, engineering & applications, AISC 167 (pp. 1061–1074). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Ward, F. A., & Pulido-Velázquez, M. (2008). Efficiency, equity, and sustainability in a water quantity–quality optimization model in the Rio Grande basin. Ecological Economics, 66(1), 23–37.

    Article  Google Scholar 

  • Watanabe, M., Adams, R. M., & Wu, J. (2006). Economics of environmental management in a spatially heterogeneous River Basin. American Journal of Agricultural Economics, 88(3), 617–631.

    Article  Google Scholar 

  • Wilson, J. P., Mitasova, H., & Wright, D. J. (2000). Water resource applications of geographic information systems. URISA Journal, 12(2), 61–79.

    Google Scholar 

  • Wing, M. G. & Godwin, D. (2011). SWAMP GIS: A spatial decision support system for predicting and treating stormwater runoff. Journal of Spatial Hydrology, 11(2), 21–32.

    Google Scholar 

  • Xiao, H. (2003). An integrated GIS-AnnAGNPS modeling interface for non-point source pollution assessment. Twenty-third annual ESRI International User Conference proceedings: GIS serving our world. ESRI, Redlands, California.

    Google Scholar 

  • Yang, W. (2011). Developing open access in conservation research. Journal of Soil and Water Conservation, 66(1), 6A–8A.

    Article  Google Scholar 

  • Yang, W., Khanna, M., Farnsworth, R., & Onal, H. (2003). Integrating economic, environmental and GIS modeling to determine cost effective land retirement in multiple watersheds. Ecological Economics, 46, 249–267.

    Article  Google Scholar 

  • Yang, W., Sheng, C., & Voroney, P. (2005). Spatial targeting of conservation tillage to improve water quality and carbon retention benefits. Canadian Journal of Agricultural Economics, 53, 477–500.

    Article  Google Scholar 

  • Yang, W., Rousseau, A. N., & Boxall, P. (2007). An integrated economic-hydrologic modeling framework for the watershed evaluation of beneficial management practices. Journal of Soil and Water Conservation, 62(6), 423–432.

    Google Scholar 

  • Yang, W., Wang, X., Liu, Y. B., Gabor, S., Boychuk, L., & Badiou, P. (2010). Simulated environmental effects of wetland restoration scenarios in a typical Canadian prairie watershed. Wetlands Ecology and Management, 18(3), 269–279.

    Article  CAS  Google Scholar 

  • Yang, W., Liu, W., Liu, Y. B., Corry, R. C., & Kreutzwiser, R. D. (2014). Cost-effective targeting of riparian buffers to achieve water quality and wildlife habitat benefits. International Journal of River Basin Management, 12(1), 43–55.

    Article  Google Scholar 

  • Zeng, Y., Cai, Y., Jia, P., & Jee, H. (2012). Development of a web-based decision support system for supporting integrated water resources management in Daegu city, South Korea. Expert Systems with Applications, 39, 10091–10102.

    Article  Google Scholar 

  • Zhang, J. X., Wu, J. Q., Chang, K., Elliot, W. J., & Dun, S. (2009). Effects of DEM source and resolution on WEPP hydrologic and erosion simulation: A case study of two forest watersheds in northern Idaho. Transactions of the ASABE, 52(2), 447–457.

    Article  Google Scholar 

  • Zhang, D., Chen, X., & Yao, H. (2015). Development of a prototype web-based decision support system for watershed management. Water, 7, 780–793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanhong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, W. (2017). Geomatics and Water Policy. In: Renzetti, S., Dupont, D. (eds) Water Policy and Governance in Canada. Global Issues in Water Policy, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-42806-2_23

Download citation

Publish with us

Policies and ethics