Skip to main content

Novel Sources of Antimicrobials from Pristine and Poorly Explored Environments. The Patagonia Microbiota Case

  • Chapter
  • First Online:

Abstract

Antimicrobial compounds are molecules widespread in life forms to mediate competition, and their industrial production could be important for potential use as preservatives in the food, cosmetic, and pharmaceutical industries. Pathogen resistance causes high mortality rates in hospitals and important economic losses in health institutions. Pathogens such as methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, and beta-lactam-resistant Pseudomonas aeruginosa are the most common examples. This worldwide problem requires the discovery of new molecules with antibiotic activity, effective therapeutics strategies, and research of promising targets. Most antibiotics come from screening programs of natural sources, including the isolation of new microorganisms. Extremophile microorganisms are a valuable source for novel biomolecules with unusual properties, including antimicrobial activity. Because of their harsh conditions, the Patagonian, sub-Antarctic, and Antarctic environments are ideal places for bioprospecting. Patagonia is a sparsely populated region located at the southern end of South America, shared by Argentina and Chile. The overall climate is cool and dry; the east coast is warmer than the west, especially in summer, because a branch of the Southern Equatorial Current reaches its shores, whereas the west coast is washed by a cold current. Cold environments could be a suitable source of microorganisms with ability to produce cold-active antimicrobial compounds with potential use in biotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnau VG, Sánchez LA, Delgado OD (2015) Pseudomonas yamanorum sp. nov., a psychrotolerant bacterium isolated from a subantarctic environment. Int J Syst Evol Microbiol 65:424–431

    Article  CAS  PubMed  Google Scholar 

  • Asai M, Mizuta E, Izawa M, Haibara K, Kishi T (1979) Isolation, chemical characterization and structure of ansamitocin, a new antitumor ansamycin antibiotic. Tetrahedron 35:1079–1085

    Article  CAS  Google Scholar 

  • Barros J, Becerra J, González C, Martínez M (2013) Antibacterial metabolites synthesized by psychrotrophic bacteria isolated from cold-freshwater environments. Folia Microbiol 58:127–133

    Article  CAS  Google Scholar 

  • Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf 3:1–20

    Article  CAS  Google Scholar 

  • Belfiore C, Björkroth J, Vihavainen E, Raya R, Vignolo G (2010) Characterization of Leuconostoc strains isolated from fresh anchovy (Engraulis anchoita). J Gen Appl Microbiol 56:175–180

    Article  CAS  PubMed  Google Scholar 

  • Beltrán A (1997) Caracterización microclimática del Distrito Occidental de la estepa patagónica. Magister thesis, Universidad de Buenos Aires, Buenos Aires

    Google Scholar 

  • Borthwick AD (2012) 2, 5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112:3641–3716

    Article  CAS  PubMed  Google Scholar 

  • Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst 5:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown CM, Minnikin DE (1973) Effect of growth temperature on the fatty acid composition of some psychrophilic marine pseudomonads. J Gen Microbiol 75:R9

    Google Scholar 

  • Bruntner C, Binder T, Pathom-aree W, Goodfellow M, Bull AT, Potterat O, Puder C, Horer S, Schmid A, Bolek W, Wagner K, Mihm G, Fiedler H-P (2005) Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot (Tokoyo) 58:346–349

    Article  CAS  Google Scholar 

  • Cabrera GM, Seldes AM (1997) Citrinin derivatives from an intertidal marine Penicillium. Ann Asoc Quím Arg 85:193–196

    CAS  Google Scholar 

  • Cabrera GM, Roberti MJ, Wright JE, Seldes AM (2002) Cryptoporic and isocryptoporic acids from the fungal cultures of Polyporus arcularius and P. ciliatus. Phytochemistry 61:189–193

    Article  CAS  PubMed  Google Scholar 

  • Cabrera GM, Butler M, Rodriguez MA, Godeas A, Haddad R, Eberlin MN (2006) A sorbicillinoid urea from an intertidal Paecilomyces marquandii. J Nat Prod 69:1806–1808

    Article  CAS  PubMed  Google Scholar 

  • Calo-Mata P, Arlindo S, Boehme K, de Miguel T, Pascoal A, Barros-Velazquez J (2008) Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioproc Technol 1:43–63

    Article  Google Scholar 

  • Carrasco JF, Casassa G, Rivera A (2002) Meterological and climatological aspects of the Southern Patagonia Icefield. In: Casassa G, Sepulveda V, Sinclair RM (eds) The Patagonian icefields: a unique laboratory for environmental and climate change studies. Springer, New York, pp 29–41

    Chapter  Google Scholar 

  • Castillo UF, Browne L, Strobel G, Hess WM, Ezra S, Pacheco G, Ezra D (2007) Biologically active endophytic Streptomycetes from Nothofagus spp. and other plants in Patagonia. Microb Ecol 53:12–19

    Article  PubMed  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  • Chávez R, Fierro F, García-Rico RO, Vaca I (2015) Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front Microbiol 6:903

    Article  PubMed  PubMed Central  Google Scholar 

  • Chludil HD, Muniaín CC, Seldes AM, Maier MS (2002a) Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemoiedema spectabilis. J Nat Prod 65:860–865

    Article  CAS  PubMed  Google Scholar 

  • Chludil HD, Seldes AM, Maier MS (2002b) Antifungal steroidal glycosides from the Patagonian starfish Anasterias minuta: structure–activity correlations. J Nat Prod 65:153–157

    Article  CAS  PubMed  Google Scholar 

  • Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbæk L (1998) Antibacterial activity of marine-derived fungi. Mycopathologia 143:135–138

    Article  PubMed  Google Scholar 

  • Coventry MJ, Gordon JB, Wilcock A, Harmark K, Davidson BE, Hickey MW, Hillier AJ, Wan J (1997) Detection of bacteriocins of lactic acid bacteria isolated from foods and comparison with pediocin and nisin. J Appl Microbiol 83:248–258

    Article  CAS  PubMed  Google Scholar 

  • Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Paul AK, Bisen PS (2007) Natural bioactive compounds and biotechnological potential of marine bacteria. Curr Pharm Biotechnol 8:253–260

    Article  CAS  PubMed  Google Scholar 

  • Dib J, Motok J, Zenoff VF, Ordonez O, Farias ME (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr Microbiol 56:510–517

    Article  CAS  PubMed  Google Scholar 

  • Dionisi HM, Lozada M, Olivera NL (2012a) Bioprospection of marine microorganisms: biotechnological applications and methods. Rev Argent Microbiol 44:49–60

    CAS  PubMed  Google Scholar 

  • Dionisi HM, Lozada M, Olivera NL (2012b) Bioprospection of marine microorganisms: potential and challenges for Argentina. Rev Argent Microbiol 44:122–132

    PubMed  Google Scholar 

  • Drautz H, Zähner H, Rohr J, Zeeck A (1986) Metabolic products of microorganisms. 234. Urdamycins, new angucycline antibiotics from Streptomyces fradiae. I. Isolation, characterization and biological properties. J Antibiot (Tokyo) 39(12):1657–1669

    Article  CAS  Google Scholar 

  • D’Souza SF, Kaul R, Nadkarni GB (1982) Immobilization of microbial cells in hen egg white. Biotechnol Bioeng 24:1701–1704

    Article  PubMed  Google Scholar 

  • Edwards C (1990) Thermophiles. In: Microbiology of extreme environments. Open University Press, Milton Keynes, pp 1–32

    Google Scholar 

  • Elkahoui S, Abdel Rahim H, Tabbene O, Shaaban M, Limam F, Laatsch H (2013) Cyclo-(His, Leu): a new microbial diketopiperazine from a terrestrial Bacillus subtilis strain B38. Nat Prod Res 27:108–116

    Article  CAS  PubMed  Google Scholar 

  • Encheva-Malinova M, Stoyanova M, Avramova H, Pavlova Y, Gocheva B, Ivanova I, Moncheva P (2014) Antibacterial potential of streptomycete strains from Antarctic soils. Biotechnol Biotec Eq 28:721–727

    Article  CAS  Google Scholar 

  • Falabella V, Campagna C, Croxall J (eds) (2009) Atlas del Mar Patagónico. Especies y Espacios. Wildlife Conservation Society, Buenos Aires

    Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Fiedler HP, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones A, Maldonado L, Pathom-aree W, Beil W, Schneider K, Keller S, Sussmuth RD (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot (Tokyo) 61:158–163

    Article  CAS  Google Scholar 

  • Franzmann PD (1996) Examination of Antarctic prokaryotic diversity through molecular comparisons. Biodivers Conserv 5:1295–1305

    Article  Google Scholar 

  • Gallardo GL, Butler M, Gallo ML, Rodríguez MA, Eberlin MN, Cabrera GM (2006) Antimicrobial metabolites produced by an intertidal Acremonium furcatum. Phytochemistry 67:2403–2410

    Article  CAS  PubMed  Google Scholar 

  • Gallo ML, Seldes AM, Cabrera GM (2004) Antibiotic long-chain and α, β-unsaturated aldehydes from the culture of the marine fungus Cladosporium sp. Biochem Syst Ecol 32:545–551

    Article  CAS  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  PubMed  CAS  Google Scholar 

  • Garcés ME, Sequeiros C, Olivera NL (2015) Marine Lactobacillus pentosus H16 protects Artemia franciscana from Vibrio alginolyticus pathogenic effects. Dis Aquat Organ 113:41–50

    Article  PubMed  Google Scholar 

  • Giddings LA, Newman DJ (2015a) Bioactive compounds from terrestrial Extremophiles. In: Tiquia-Arashiro SM, Mormile M (eds) Extremophilic bacteria. Springer briefs in microbiology. Springer, New York, pp 1–75

    Google Scholar 

  • Giddings LA, Newman DJ (2015b) Bioactive compounds from marine Extremophiles. In: Tiquia-Arashiro SM, Mormile M (eds) Extremophilic bacteria. Springer briefs in microbiology. Springer, New York, pp 1–124

    Google Scholar 

  • Gootz TD (1990) Discovery and development of new antimicrobial agents. Clin Microbiol Rev 3:13–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossart HP, Kiørboe T, Tang K, Ploug H (2003) Bacterial colonization of particles: growth and interactions. Appl Environ Microbiol 69:3500–3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  CAS  PubMed  Google Scholar 

  • Higashide E, Asai M, Ootsu K, Tanida S, Kozai Y, Hasegawa T, Kishi T, Sugino Y, Yoneda M (1977) Ansamitocin, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia. Nature (Lond) 270:721–722

    Article  CAS  Google Scholar 

  • Hopkins DW, MacNaughton SJ, O’Donnell AG (1991) A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 23:217–225

    Article  Google Scholar 

  • Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L, Galgoci AM, Malinverni JC, Mayhood T, Villafania A, Nahvi A, Murgolo N, Barbieri CM, Mann PA, Carr D, Xia E, Zuck P, Riley D, Painter RE, Walker SS, Sherborne B, de Jesus R, Pan W, Plotkin MA, Wu J, Rindgen D, Cummings J, Garlisi CG, Zhang R, Sheth PR, Gill CJ, Tang H, Roemer T (2015) Selective small-molecule inhibition of an RNA structural element. Nature (Lond) 526:672–677

    Article  CAS  Google Scholar 

  • Huang R, Zhou X, Xu T, Yang X, Liu Y (2010) Diketopiperazines from marine organisms. Chem Biodivers 7:2809–2829

    Article  CAS  PubMed  Google Scholar 

  • Isnansetyo A, Kamei Y (2003) MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:480–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria—an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Karchmer AW (2004) Increased antibiotic resistance in respiratory tract pathogens: PROTEKT US—an update. Clin Infect Dis 39:142–150

    Article  Google Scholar 

  • Keller S, Nicholson G, Drahl C, Sorensen E, Fiedler HP, Süssmuth RD (2007) Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032. J Antibiot (Tokyo) 60:391–394

    Article  CAS  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson AD (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 7:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi H (1989) Liquid leather cleaners. Jpn Patent 1:225–700

    Google Scholar 

  • Levy LM, Cabrera GM, Wright JE, Seldes AM (2000) Indole alkaloids from a culture of the fungus Aporpium caryae. Phytochemistry 54:941–943

    Article  CAS  PubMed  Google Scholar 

  • Levy LM, Cabrera GM, Wright JE, Seldes AM (2003) 5H-Furan-2-ones from fungal cultures of Aporpium caryae. Phytochemistry 62:239–243

    Article  CAS  PubMed  Google Scholar 

  • Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot (Tokyo) 63:468–476

    Article  CAS  Google Scholar 

  • Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H, Che Y (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71:1643–1646

    Article  CAS  PubMed  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature (Lond) 517:455–459

    Article  CAS  Google Scholar 

  • Liu J-T, Lu X-L, Liu X-Y, Gao Y, Hu B, Jiao B-H, Zheng H (2013) Bioactive natural products from the Antarctic and Arctic organisms. Mini Rev Med Chem 13:617–626

    Article  PubMed  Google Scholar 

  • Lo Giudice A, Bruni V, Michaud L (2007) Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol 47:496–505

    Article  CAS  PubMed  Google Scholar 

  • López-Martínez J (2009) Antártida. Introducción a un continente remote. Rodolfo Sánchez Albatros. Buenos Aires, p 96

    Google Scholar 

  • Maldonado LA, Stach JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie Van Leeuwenhoek 87:11–18

    Article  PubMed  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Marguet ER, Vallejo M, Sierralta Chichisola V, Quispe JL (2011) Actividad antagonista de bacterias lácticas aisladas del medio marino contra cepas de Listeria. Acta Bioquim Clin Latinoam 45:305–310

    Google Scholar 

  • Mastronicolis SK, German JB, Megoulas N, Petrou E, Foka P, Smith GM (1998) Influence of cold shock on the fatty-acid composition of different lipid classes of the food-borne pathogen Listeria monocytogenes. Food Microbiol 15:299–306

    Article  CAS  Google Scholar 

  • Mateo N, Nader W, Tamayo G (2001) Bioprospecting. Encyclopedia of biodiversity, vol 1. Academic Press, Cambridge, pp 471–488

    Book  Google Scholar 

  • Miyamoto T, Togawa K, Higuchi R, Komori T, Sasaki T (1990) Six newly identified biologically active triterpenoid glycoside sulfates from the sea cucumber Cucumaria echinata. Liebigs Ann Chem 1990:453–460

    Article  Google Scholar 

  • Murray AP, Muniaı́n C, Seldes AM, Maier MS (2001) Patagonicoside A: a novel antifungal disulfated triterpene glycoside from the sea cucumber Psolus patagonicus. Tetrahedron 57:9563–9568

    Article  CAS  Google Scholar 

  • Needham J, Kelly MT, Ishige M, Andersen RJ (1994) Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescens: structure elucidation and biosynthesis. J Org Chem 59:2058–2063

    Article  CAS  Google Scholar 

  • Nichols D, Lewis K, Orjala J, Mo S, Ortenberg R, O’Connor P, Zhao C, Vouros P, Kaeberlein P, Epstein SS (2008) Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl Environ Microbiol 74:4889–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Epstein SS (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niederberger TD, McDonald IR, Hacker AL, Soo RM, Barrett JE, Wall DH, Cary SC (2008) Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ Microbiol 10:1713–1724

    Article  CAS  PubMed  Google Scholar 

  • O’Brien A, Sharp R, Russell NJ, Roller S (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48:157–167

    Article  PubMed  CAS  Google Scholar 

  • Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austr 8:85–101

    Google Scholar 

  • Paterson DL (2006) The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 43:43–48

    Article  Google Scholar 

  • Ponce JF, Fernández M (2014) Climatic and environmental history of Isla de los Estados, Argentina. In: Lohmann G, Rabassa J, Notholt J, Mysak LA, Unnithan V (eds) South America and the Southern Hemisphere. Springer briefs in Earth system sciences. Springer, New York

    Google Scholar 

  • Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. Clim Cent South Am 22:13–112

    Google Scholar 

  • Reynolds R, Potz N, Colman M, Williams A, Livermore D, MacGowan A (2004) Antimicrobial susceptibility of the pathogens of bacteraemia in the UK and Ireland 2001–2002: the BSAC Bacteraemia Resistance Surveillance Programme. J Antimicrob Chemother 53:1018–1032

    Article  CAS  PubMed  Google Scholar 

  • Riedlinger J, Reicke A, Zähner H, Krismer B, Bull AT, Maldonado LA, Ward AC, Goodfellow M, Bister B, Bischoff D, Süssmuth RD, Fiedler HP (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot (Tokyo) 57:271–279

    Article  CAS  Google Scholar 

  • Rivas FP, Castro MP, Vallejo M, Marguet E, Campos CA (2012) Antibacterial potential of Enterococcus faecium strains isolated from ewes’ milk and cheese. LWT Food Sci Technol 46:428–436

    Article  CAS  Google Scholar 

  • Rojas JL, Martín J, Tormo JR, Vicente F, Brunati M, Ciciliato I, Losib D, Van Trappenc S, Mergaertc J, Swingsc J, Marinellid F, Genilloud O (2009) Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genomics 2:33–41

    Article  PubMed  Google Scholar 

  • Russell NJ (1984) Mechanisms of thermal adaption in bacteria: blueprints for survival. Trends Biochem Sci 9:108–112

    Article  CAS  Google Scholar 

  • Russell NJ, Evans RI, Ter Steeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaption. Int J Food Microbiol 28:255–261

    Article  CAS  PubMed  Google Scholar 

  • Sahoo TK, Jena PK, Patel AK, Seshadri S (2014) Bacteriocins and their applications for the treatment of bacterial diseases in aquaculture: a review. Aquaculture research. Wiley, New York

    Google Scholar 

  • Sánchez LA, Gómez FF, Delgado OD (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13:111–120

    Article  PubMed  CAS  Google Scholar 

  • Sánchez LA, Hedström M, Delgado MA, Delgado OD (2010) Production, purification and characterization of serraticin A, a novel cold-active antimicrobial produced by Serratia proteamaculans 136. J Appl Microbiol 109:936–945

    Article  PubMed  CAS  Google Scholar 

  • Sánchez LA, Sierra MG, Siñeriz F, Delgado OD (2013) Andrimid production at low temperature by a psychrotolerant Serratia proteamaculans strain. World J Microbiol Biotechnol 29:1773–1781

    Article  PubMed  CAS  Google Scholar 

  • Schelegueda LI, Vallejo M, Gliemmo MF, Marguet ER, Campos CA (2015) Synergistic antimicrobial action and potential application for fish preservation of a bacteriocin produced by Enterococcus mundtii isolated from Odontesthes platensis. LWT Food Sci Technol 64:794–801

    Article  CAS  Google Scholar 

  • Sequeiros C, Vallejo M, Marguet ER, Olivera NL (2010) Inhibitory activity against the fish pathogen Lactococcus garvieae produced by Lactococcus lactis TW34, a lactic acid bacterium isolated from the intestinal tract of a Patagonian fish. Arch Microbiol 192:237–245

    Article  CAS  PubMed  Google Scholar 

  • Sequeiros C, Garcés ME, Vallejo M, Marguet ER, Olivera NL (2015) Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae. Arch Microbiol 197:449–458

    Article  CAS  PubMed  Google Scholar 

  • Shehane SD, Sizemore RK (2002) Isolation and preliminary characterization of bacteriocins produced by Vibrio vulnificus. J Appl Microbiol 92:322–328

    Article  CAS  PubMed  Google Scholar 

  • Sica MG, Olivera NL, Brugnoni LI, Marucci PL, López-Cazorla AC, Cubitto MA (2010) Isolation, identification and antimicrobial activity of lactic acid bacteria from the Bahía Blanca Estuary. Rev Biol Mar Oceanogr 45:389–397

    Article  Google Scholar 

  • Sica MG, Brugnoni LI, Marucci PL, Cubitto MA (2012) Characterization of probiotic properties of lactic acid bacteria isolated from an estuarine environment for application in rainbow trout (Oncorhynchus mykiss, Walbaum) farming. Antonie Van Leeuwenhoek 101:869–879

    Article  PubMed  Google Scholar 

  • Singh SB, Barrett JF (2006) Empirical antibacterial drug discovery: foundation in natural products. Biochem Pharmacol 71:1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Spížek J, Novotná J, Řezanka T, Demain AL (2010) Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 37:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Tindall BJ (2004) Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microb Ecol 47:271–283

    Article  CAS  PubMed  Google Scholar 

  • Tomova I, Stoilova-Disheva M, Lazarkevich I, Vasileva-Tonkova E (2015) Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front Life Sci 8(4):348–357

    Article  CAS  Google Scholar 

  • Tsuchiya H, Sato M, Kanematsu N, Kato M, Hoshino Y, Takagi N, Namikawa I (1987) Temperature-dependent changes in phospholipid and fatty acid composition and membrane lipid fluidity of Yersinia enterocolitica. Lett Appl Microbiol 5:15–18

    Article  CAS  Google Scholar 

  • Vallejo M, Olivera N, Sequeiros C, Marguet E (2009) Actividad antilisteria de bacterias ácido lácticas aisladas de peces marinos. Analecta Vet 29:19–23

    Google Scholar 

  • Wenzel RP (2004) The antibiotic pipeline: challenges, costs, and values. N Engl J Med 351:523–526

    Article  CAS  PubMed  Google Scholar 

  • Wilson ZE, Brimble MA (2009) Molecules derived from the extremes of life. Nat Prod Rep 26:44–71

    Article  CAS  PubMed  Google Scholar 

  • Wratschko K (2009) Empirical setting: the pharmaceutical industry. In: Strategic orientation and alliance portfolio configuration. Gabler, Wissenchaft, pp 87–96

    Chapter  Google Scholar 

  • Wynn-Williams DD (1996) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271–1293

    Article  Google Scholar 

  • Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short JM, Keller M (2005) High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arnau, G.V., Danilovich, M.E., Sánchez, L.A., Acosta, F., Delgado, O. (2016). Novel Sources of Antimicrobials from Pristine and Poorly Explored Environments. The Patagonia Microbiota Case. In: Olivera, N., Libkind, D., Donati, E. (eds) Biology and Biotechnology of Patagonian Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-42801-7_8

Download citation

Publish with us

Policies and ethics