Skip to main content

Alkaline Proteases from Patagonian Bacteria

  • Chapter
  • First Online:
Biology and Biotechnology of Patagonian Microorganisms

Abstract

In addition to their ecological importance in the acquisition of nitrogen-rich organic compounds, extracellular proteases also have interesting biotechnological applications. Particularly, alkaline proteases represent one of the most important groups of commercial enzymes. First, we introduce the classification and catalytic mechanisms of proteases. Then, this chapter reviews the advances in the bioprospection of alkaline proteases produced by bacteria adapted to selective conditions from different environments of Patagonia (Argentina). Among them, the arid soils of the Patagonian Monte are propitious for the development of alkaliphilic microorganisms. Thus, we focus on the description of the species Bacillus patagoniensis and the biochemical and catalytic properties of its alkaline protease. Then, we discuss investigations about alkaline protease-producing bacteria from the southern Patagonian coast, the prevalence of psychrophilic and psychrotolerant strains, and the response of their extracellular proteases to temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkorta I, Aizpurua A, Riga P, Albizu I, Amezaga I, Garbisu C (2003) Soil enzyme activities as biological indicators of soil health. Rev Environ Health 18:65–73

    PubMed  Google Scholar 

  • Atlas RM, Bartha R (1981) Microbial ecology: fundamentals and applications. Addison-Wesley, Reading, Boston

    Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia (Berl) 141:221–235

    Article  Google Scholar 

  • Barrett AJ, Rawlings ND, Woessner JF (eds) (2004) Handbook of proteolytic enzymes, 2nd edn. Elsevier-Academic Press, London

    Google Scholar 

  • Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57

    Article  CAS  PubMed  Google Scholar 

  • Betzel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS (1992) Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 Ã… resolution. J Mol Biol 223:427–445

    Article  CAS  PubMed  Google Scholar 

  • Bhargavi PL, Prakasham RS (2013) A fibrinolytic, alkaline and thermostable metalloprotease from the newly isolated Serratia sp RSPB11. Int J Biol Macromol 61:479–486

    Article  Google Scholar 

  • Bhunia B, Basak B, Dey A (2012) A review on production of serine alkaline protease by Bacillus spp. J Biochem Tech 3:448–457

    CAS  Google Scholar 

  • Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in Northern Patagonia. J Arid Environ 36:639–653

    Article  Google Scholar 

  • Blanco M, Sotelo CG, Chapela MJ, Pérez-Martín RI (2007) Towards sustainable and efficient use of fishery resources: present and future trends. Trends Food Sci Technol 18:29–36

    Article  CAS  Google Scholar 

  • Brown AC, McLachlan A (1990) Ecology of sandy shores. Elsevier, Amsterdam

    Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Buschle-Diller G (2003) Substrates and their structure. In: Cavaco-Paulo A, Gübitz GM (eds) Textile processing with enzymes. Woodhead, Cambridge, pp 42–82

    Chapter  Google Scholar 

  • Cristóbal HA, López MA, Kothe E, Abate CM (2011) Diversity of protease-producing marine bacteria from sub-Antarctic environments. J Basic Microbiol 51:590–600

    Article  PubMed  Google Scholar 

  • Deng A, Wua J, Zhang Y, Zhang G, Wen T (2010) Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresour Technol 101:7100–7106

    Article  CAS  Google Scholar 

  • Denizci AA, Kazan D, Abeln ECA, Erarslan A (2004) Newly isolated Bacillus clausii GMBAE 42: an alkaline protease producer capable to grow under highly alkaline conditions. J Appl Microbiol 96:320–327

    Article  CAS  PubMed  Google Scholar 

  • Denizci AA, Kazan D, Erarslan A (2010) Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 60:1590–1594

    Article  CAS  PubMed  Google Scholar 

  • Dionisi H, Lozada M, Olivera NL (2012) Bioprospection of marine microorganisms. Part II: Potential and challenges for Argentina. Rev Argent Microbiol 44:122–132

    PubMed  Google Scholar 

  • Dunn BM (2001) Determination of protease mechanism. In: Beynon R, Bond JS (eds) Proteolytic enzymes. A practical approach, 2nd edn. Oxford University Press, New York, pp 77–104

    Google Scholar 

  • Ellaiah P, Srinivasulu B, Adinarayana K (2002) A review on microbial alkaline proteases. J Sci Ind Res 61:690–704

    CAS  Google Scholar 

  • Estevao Belchior SG, Vacca G (2006) Fish protein hydrolysis by a psychrotropic marine bacterium isolated from the gut of hake (Merluccius hubbsi). Can J Microbiol 52:1266–1271

    Article  Google Scholar 

  • Farhadian S, Asoodeh A, Lagzian M (2015) Purification, biochemical characterization and structural modeling of a potential htrA-like serine protease from Bacillus subtilis DR8806. J Mol Catal B-Enzym 115:51–58

    Article  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Folse HJ 3rd, Allison SD (2012) Cooperation, competition, and coalitions in enzyme-producing microbes: social evolution and nutrient depolymerization rates. Front Microbiol 3:338

    Google Scholar 

  • Fujinaga M, Cherney MM, Oyama H, Oda K, James MN (2004) The molecular structure and catalytic mechanism of a novel carboxyl peptidase from Scytalidium lignicolum. Proc Natl Acad Sci USA 101:3364–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes: past, present and future. Environ Technol 31:845–856

    Article  CAS  PubMed  Google Scholar 

  • Gerday C (2013) Psychrophily and catalysis. Biology 2:719–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis M, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. TiBTech 18:103–107

    Article  CAS  Google Scholar 

  • Gupta A, Roy I, Khare SK, Gupta MN (2005) Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. J Chromatogr A 1069:155–161

    Article  CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Fromin N, Barantal S (2011) Functional diversity of terrestrial microbial decomposers and their substrates. CR Biol 334:393–402

    Article  Google Scholar 

  • Horikoshi K (2004) Alkaliphiles. Proc Jpn Acad Ser B 80:166–178

    Article  CAS  Google Scholar 

  • Ibrahim NA, El-Shafei HA, Abdel-Aziz MS, Ghaly MF, Eid BM, Hamed AA (2012) The potential use of alkaline protease from Streptomyces albidoflavus as an ecofriendly wool modifier. J Textile Inst 103:490–498

    Article  CAS  Google Scholar 

  • Iglesias M, Sequeiros C, García S, Olivera NL (2014) Screening of keratinolytic bacteria from patagonian Merino wool with potential for textile processes. Biocell 38:87

    Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2:185–190

    Article  CAS  PubMed  Google Scholar 

  • Jacobs M, Eliasson M, Uhlen M, Flock JI (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13:8913–8926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jisha NB, Smitha RB, Pradeep S, Sreedevi S, Unni KN, Sajith S, Priji P, Josh MS, Benjamin S (2013) Versatility of microbial proteases. Adv Enz Res 1:39–51

    Article  Google Scholar 

  • Joo HS, Kumar CG, Park GC, Paik SR, Chang CS (2003) Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J Appl Microbiol 95:267–272

    Article  CAS  PubMed  Google Scholar 

  • Kasana RC (2010) Proteases from psychrotrophs: an overview. Crit Rev Microbiol 36:134–145

    Article  CAS  PubMed  Google Scholar 

  • Kazan D, Denizci AA, Kerimak Öner MN, Erarslan A (2005) Purification and characterization of a serine alkaline protease from Bacillus clausii GMBAE 42. J Ind Microbiol Biotechnol 32:335–344

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481

    Article  CAS  PubMed  Google Scholar 

  • KotliÅ„ska A, Lipp-Symonowicz B (2011) Research on the enzymatic treatment of wool fibres and changes in selected properties of wool. Fibres Text East Eur 19:88–93

    Google Scholar 

  • Lassoued I, Mora L, Nasri R, Jridi M, Toldrá F, Aristoy MC, Barkia A, Nasri M (2015) Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. J Funct Foods 13:225–238

    Article  CAS  Google Scholar 

  • León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de la vegetación de la Patagonia extra andina. Ecol Aust 8:125–144

    Google Scholar 

  • Lopes C, Antelo LT, Franco-Uría A, Alonso AA, Pérez-Martín R (2015) Valorisation of fish by-products against waste management treatments: comparison of environmental impacts. Waste Manag 46:103–112

    Article  CAS  PubMed  Google Scholar 

  • Manjusha K, Jayesh P, Divya J, Sreelakshmi B, Priyaja P, Gopinath P, Saramma AV, Bright Singh IS (2013) Alkaline protease from a non-toxigenic mangrove isolate of Vibrio sp. V26 with potential application in animal cell culture. Cytotechnology 65:199–212

    Article  CAS  PubMed  Google Scholar 

  • Manni L, Jellouli K, Agrebi R, Bayoudh A, Nasri M (2008) Biochemical and molecular characterization of a novel calcium-dependent metalloprotease from Bacillus cereus SV1. Proc Biochem 43:522–530

    Article  CAS  Google Scholar 

  • Margesin R, Palma N, Knauseder F, Schinner F (1992) Purification and characterization of an alkaline serine protease produced by a psychrotrophic Bacillus sp. J Biotechnol 24:203–206

    Article  CAS  Google Scholar 

  • Mazzarino MJ, Bertiller MB, Sain CL, Laos F, Coronato FR (1996) Spatial patterns of nitrogen availability, mineralization, and immobilization in northern Patagonia, Argentina. Arid Soil Res Rehabil 10:295–309

    Article  CAS  Google Scholar 

  • Mazzarino MJ, Bertiller MB, Sain C, Satti P, Coronato F (1998) Soil nitrogen dynamics in northeastern Patagonia Steppe under different precipitation regimes. Plant Soil 202:125–131

    Article  CAS  Google Scholar 

  • Molière N, Turgay K (2013) General and regulatory proteolysis in Bacillus subtilis. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Dordrecht, pp 73–103

    Chapter  Google Scholar 

  • Moran AJ, Hills M, Gunton J, Nano FE (2001) Heat-labile proteases in molecular biology applications. FEMS Microbiol Lett 197:59–63

    Article  CAS  PubMed  Google Scholar 

  • Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761

    Article  CAS  Google Scholar 

  • Enzyme Nomenclature (1992) Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. Academic Press, Orlando

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Olivera N, Siñeriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., isolated from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447

    Article  CAS  PubMed  Google Scholar 

  • Olivera N, Sequeiros C, Siñeriz F, Breccia JD (2006) Characterization of alkaline proteases from a novel alkalitolerant bacterium Bacillus patagoniensis. World J Microbiol Biotechnol 22:737–743

    Article  CAS  Google Scholar 

  • Olivera N, Sequeiros C, Nievas ML (2007) Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de los Estados, Argentina. Extremophiles 11:517–526

    Article  CAS  PubMed  Google Scholar 

  • Olivera NL, Prieto L, Carrera AL, Saraví Cisneros H, Bertiller MB (2014) Do soil enzymes respond to long-term grazing in an arid ecosystem? Plant Soil 378:35–48

    Article  CAS  Google Scholar 

  • Polgàr L (2005) The catalytic triad of serine peptidases. Cell Mol Life Sci 62:2161–2172

    Article  PubMed  Google Scholar 

  • Prakash P, Jayalakshmi SK, Sreeramulu K (2010) Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl Microbiol Biotechnol 87:625–633

    Article  CAS  PubMed  Google Scholar 

  • Prieto LH, Bertiller MB, Carrera AL, Olivera NL (2011) Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina. Geoderma 162:281–287

    Article  CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raval VH, Pillai S, Rawal CM, Singh SP (2014) Biochemical and structural characterization of a detergent-stableserine alkaline protease from seawater haloalkaliphilic bacteria. Proc Biochem 49:955–962

    Article  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290:205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:D503–D509

    Article  CAS  PubMed  Google Scholar 

  • Russell RJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B 326:595–611

    Article  CAS  Google Scholar 

  • Saeki K, Hitomi J, Okuda M, Hatada Y, Kageyama Y, Takaiwa M, Kubota H, Hagihara H, Kobayashi T, Kawai S, Ito S (2002) A novel species of alkaliphilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles 6:65–72

    Article  CAS  PubMed  Google Scholar 

  • Shen J (2010) Enzymatic treatment of wool and silk fibres. In: Nierstrasz VA, Cavaco-Paulo A (eds) Advances in textile biotechnology. Woodhead, Cambridge, pp 171–192

    Chapter  Google Scholar 

  • Shrinivas D, Naik GR (2011) Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Int Biodet Biodegrad 65:29–35

    Article  CAS  Google Scholar 

  • Siegert P, Wieland S, Engelskirchen J, Merkel M, Maurer K-H, Bessler C, Henkel AG, et al. (2009) Novel alkaline protease from Bacillus gibsonii and washing and cleaning agents containing said novel alkaline protease. Patent US 20090275493

    Google Scholar 

  • Singh SK, Singh SK, Tripathi VR, Garg SK, Khare SK (2013) Downstream processing, characterization, and structure–function relationship of solvent-, detergent-, psychro-, thermo-, alkalistable metalloprotease from metal-, solvent-tolerant psychrotrophic Pseudomonas putida SKG-1 Isolate. Biotechnol Prog 29:99–108

    Article  CAS  PubMed  Google Scholar 

  • Singhal P, Nigam VK, Vidyarthi AS (2012) Studies on production, characterization and applications of microbial alkaline proteases. Int J Adv Biotechnol Res 3:653–669

    CAS  Google Scholar 

  • Sookkheo B, Sinchaikul S, Phutrakul S, Chen S-T (2000) Purification and characterization of the highly thermostable proteases from Bacillus stearothermophilus TLS33. Protein Express Purif 20:142–151

    Article  CAS  Google Scholar 

  • Souissi N, Ellouz-Triki Y, Bougatef A, Blibech M, Nasri M (2008) Preparation and use of media for protease producing bacterial strains based on by-products from cuttlefish (Sepia officinalis) and wastewaters from marine-product processing factories. Microbiol Res 163:473–480

    Article  CAS  PubMed  Google Scholar 

  • Tatineni R, Doddapaneni KK, Potumarthi RC, Vellanki RN, Kandathil MT, Kolli N, Mangamoori LN (2008) Purification and characterization of an alkaline keratinase from Streptomyces sp. Bioresour Technol 99:1596–1602

    Article  CAS  PubMed  Google Scholar 

  • Theron W, Divol B (2014) Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol 98:8853–8868

    Article  CAS  PubMed  Google Scholar 

  • Touioui SB, Jaouadi NZ, Boudjella H, Ferradji FZ, Belhoul M, Rekik H, Badis A, Bejar S, Jaouadi B (2015) Purification and biochemical characterization of two detergent-stable serine alkaline proteases from Streptomyces sp. strain AH4. World J Microbiol Biotechnol 31:1079–1092

    Article  PubMed  Google Scholar 

  • Tropeano M, Vázquez S, Coria S, Turjanski A, Cicero D, Bercovich A, Mac Cormack W (2013) Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic. Pol Polar Res 34:253–267

    Google Scholar 

  • Vranova V, Rejsek K, Formanek P (2013) Proteolytic activity in soil: a review. Appl Soil Ecol 70:23–32

    Article  Google Scholar 

  • Waghmare SR, Gurav AA, Mali AS, Nadaf NH, Jadhav DB, Sonawane KD (2015) Purification and characterization of novel organic solvent tolerant 98 kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK. Prot Expr Purif 107:1–6

    Article  CAS  Google Scholar 

  • Wang S-L, Chão C-H, Liang T-W, Chen C-C (2009) Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Mar Biotechnol 11:334–344

    Article  CAS  PubMed  Google Scholar 

  • Wu J-W, Chen X-L (2011) Extracellular metalloproteases from bacteria. Appl Microbiol Biotechnol 92:253–262

    Article  CAS  PubMed  Google Scholar 

  • Yum D-Y, Chung H-C, Bai D-H, Oh D-H, Yu J-H (1994) Purification and characterization of alkaline serine protease from an alkalophilic Streptomyces sp. Biosci Biotechnol Biochem 58:470–474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from ANPCyT (PICT Start Up 2012–2004) and CONICET (PIP 11220120100050CO), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelda Lila Olivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olivera, N.L., Iglesias, M.S., Sequeiros, C. (2016). Alkaline Proteases from Patagonian Bacteria. In: Olivera, N., Libkind, D., Donati, E. (eds) Biology and Biotechnology of Patagonian Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-42801-7_11

Download citation

Publish with us

Policies and ethics