Skip to main content

Hemodynamic Monitoring in the ICU

  • Chapter
  • First Online:
Common Problems in Acute Care Surgery
  • 1611 Accesses

Abstract

Management of the unstable patient is one of the greatest challenges in medicine. At stake is the very life of the patient: treat wisely and your patient will benefit; choose poorly and your patient may suffer. Ultimately, the management of any critically ill patient returns to a single, central question: “What is making my patient unstable?” Unfortunately, this very question is one of the most difficult to answer. In part, it is a difficult question because our patients may be unstable for a variety of competing reasons. Even more challenging, a few patients are unstable for a combination of these reasons. Understanding the vectors of the forces that affect a patient’s hemodynamics is the key to selecting the management strategy that will provide the most benefit (and do the least harm). In order to make the most intelligent choices possible, a clinician must always seek to better understand the forces at work inside the body. The delicate interplay between intravascular volume, cardiac function, and vasomotor tone can be difficult to assess. Scientists and engineers have been working for decades to develop a device that can accurately and easily measure a patient’s hemodynamic profile. Unfortunately, as of the publication of this textbook, that technology does not exist. Each device or technique is victim to its own specific set of strengths, weaknesses, and complications of use. Critical measurements are often made indirectly or with some degree of estimation. It is imperative that the clinician understands the capabilities of each instrument and when to apply it to a particular patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with the use of a flow-directed balloon-tipped catheter. NEJM. 1970;283:447–51.

    Article  CAS  PubMed  Google Scholar 

  2. Swan HJ. Pulmonary artery catheterization: development. In: Tobin MJ, editor. Principles and practice of intensive care monitoring. New York: McGraw-Hill Health Professions Division; 1998.

    Google Scholar 

  3. Mihm FG, Gettinger A, Hanson 3rd CW, et al. A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med. 1998;26(8):1346–50.

    Article  CAS  PubMed  Google Scholar 

  4. Reuter DA, Huang C, Edrich T, et al. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811.

    Article  PubMed  Google Scholar 

  5. Harvey S, Harrison DA, Singer M, PAC-Man Study Collaboration, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366(9484):472–7.

    Article  PubMed  Google Scholar 

  6. Shah MR, Hasselblad V, Stevenson LW, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294(13):1664–70.

    Article  CAS  PubMed  Google Scholar 

  7. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2, CD003408.

    Google Scholar 

  8. Connors Jr AF, Speroff T, Dawson NV, SUPPORT Investigators, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA. 1996;276:889–97.

    Article  PubMed  Google Scholar 

  9. Erlanger J, Hooker DR. An experimental study of blood pressure and of pulse pressure in man. Johns Hopkins Hosp Rec. 1904;12:145–378.

    Google Scholar 

  10. Sagawa K, Lie RK, Schafer J. Translation of Otto Frank’s paper “Wie Grundform des Arteriellen Pulses” Zeitschrift fGr Biologie 37: 483–526 (1899). J Mol Cell Cardiol. 1990;22:253–4.

    Article  CAS  PubMed  Google Scholar 

  11. Frank O. The basic shape of the arterial pulse. First treatise: mathematical analysis. J Mol Cell Cardiol. 1990;22:255–77.

    Article  CAS  PubMed  Google Scholar 

  12. Hales S. Statical essays: containing haemastaticks. 1733 (reprinted No. 22, History of Medicine Series, Library of New York Academy of Medicine. New York: Hafner Publishing; 1964).

    Google Scholar 

  13. Kouchoukos NT, Sheppard LC, McDonald DA. Estimation of stroke volume in the dog by a pulse contour method. Circ Res. 1970;26:611–23.

    Article  CAS  PubMed  Google Scholar 

  14. Westerhof N, Bosman F, DeVries CJ, Noordergraaf A. Analogue studies of the human systemic arterial tree. J Biomech. 1969;2:121–43.

    Article  CAS  PubMed  Google Scholar 

  15. Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Physiol. 1999;276:H81–8.

    CAS  PubMed  Google Scholar 

  16. Naik BI, Durieux ME. Hemodynamic monitoring devices: putting it all together. Best Pract Res Clin Anaesthesiol. 2014;28:477–88.

    Article  PubMed  Google Scholar 

  17. Monnet X, Anguel N, Jozwiak M, et al. Third-generation FloTrac/Vigileo does not reliably track changes in cardiac output induced by norepinephrine in critically ill patients. Br J Anaesth. 2012;108:615–22.

    Article  CAS  PubMed  Google Scholar 

  18. Monnet X, Anguel N, Naudin B, et al. Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Crit Care. 2010;14:R109.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Petzoldt M, Riedel C, Braeunig J, et al. Stroke volume determination using transcardiopulmonary thermodilution and arterial pulse contour analysis in severe aortic valve disease. Intensive Care Med. 2013;39:601–11.

    Article  PubMed  Google Scholar 

  20. Marik PE. Noninvasive cardiac output monitors: a state-of the-art review. J Cardiothorac Vasc Anesth. 2013;27(1):121–34.

    Article  PubMed  Google Scholar 

  21. Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126:1001–4.

    CAS  PubMed  Google Scholar 

  22. Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.

    Article  PubMed  Google Scholar 

  23. Hadian M, Kim HK, Severyn DA, Pinsky RM. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care. 2010;14:R212.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cheung AT, Savino JS, Weiss SJ, et al. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology. 1994;81:376–87.

    Article  CAS  PubMed  Google Scholar 

  25. Burns JM, Sing RF, Mostafa G, Huynh TT, Jacobs DG, Miles WS, et al. The role of transesophageal echocardiography in optimizing resuscitation in acutely injured patients. J Trauma. 2005;59:36–40.

    Article  PubMed  Google Scholar 

  26. Heidenreich PA, Stainback RF, Redberg RF, Schiller NB, Cohen NH, Foster E. Transesophageal echocardiography predicts mortality in critically ill patients with unexplained hypotension. J Am Coll Cardiol. 1995;26:152–8.

    Article  CAS  PubMed  Google Scholar 

  27. Colreavy FB, Donovan K, Lee KY, Weekes J. Transesophageal echocardiography in critically ill patients. Crit Care Med. 2002;30:989–96.

    Article  PubMed  Google Scholar 

  28. Hilberath JN, Oakes DA, Shernan SK, Bulwer BE, D’Ambra MN, Eltzschig HK. Safety of transesophageal echocardiography. J Am Soc Echocardiogr. 2010;23:1115–27.

    Article  PubMed  Google Scholar 

  29. Cioccari L, Baur HR, Berger D, Wiegand J, Merz TM. Hemodynamic assessment of critically ill patients using a miniaturized transesophageal echocardiography probe. Crit Care. 2013;17:R121.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hofer CK, Ganter MT, Zollinger A. What technique should I use to measure cardiac output? Curr Opin Crit Care. 2007;13:308–17.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Evan Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meyer, D.E. (2017). Hemodynamic Monitoring in the ICU. In: Moore, L., Todd, S. (eds) Common Problems in Acute Care Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-42792-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42792-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42790-4

  • Online ISBN: 978-3-319-42792-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics