Vertebrate Eye Gene Regulatory Networks



The development of the eye in vertebrates entails the precise coordination of the genetic programs that control morphogenetic movements and inductive signals. The basic blueprint of the vertebrate eye is established in the developmental window comprised between the specification of the eye field at early gastrulation and the onset of neuronal differentiation (Martinez-Morales and Wittbrodt in Curr Opin Genet Dev 19(5):511–517, 2009; Fuhrmann in Curr Top Dev Biol 93:61–84, 2010; Sinn and Wittbrodt in Mech Dev 130(6–8):347–358, 2013). During this period, the precursor cells from the eye primordium get specified, and then differentiate to form three major tissue domains: the neural retina, the retinal-pigmented epithelium (RPE), and the optic stalk domains. A process that culminates with the formation of the optic cup, a highly conserved embryonic structure that represents a common arrangement for the embryonic eye in vertebrates (Tena et al. in Genome Res, 2014). This chapter will focus in the architecture of the Gene Regulatory Networks (GRNs) during early organogenesis. The structure of the GRNs involved in the initial specification and differentiation of the major non-neural component of the eye, the lens, will not be examined here. The reader is referred to the following reviews for a detailed discussion on this subject (Cvekl and Duncan in Prog Retin Eye Res 26(6): 555–597, 2007; Cvekl and Ashery-Padan in Development 141(23):4432–4447, 2014).


Eye field specification Neural retina Retinal-pigmented epithelium Optic stalk Optic cup patterning 



This work was supported by grants BFU2011-22916 and P11-CVI-7256 to JRMM.


  1. Adler, R., & Canto-Soler, M. V. (2007). Molecular mechanisms of optic vesicle development: Complexities, ambiguities and controversies. Development Biology, 305(1), 1–13.CrossRefGoogle Scholar
  2. Arnheiter, H. (2010). The discovery of the microphthalmia locus and its gene, Mitf. Pigment Cell Melanoma Research, 23(6), 729–735.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barbieri, A. M., Broccoli, V., Bovolenta, P., Alfano, G., Marchitiello, A., Mocchetti, C., et al. (2002). Vax2 inactivation in mouse determines alteration of the eye dorsal-ventral axis, misrouting of the optic fibres and eye coloboma. Development, 129(3), 805–813.PubMedGoogle Scholar
  4. Barbieri, A. M., Lupo, G., Bulfone, A., Andreazzoli, M., Mariani, M., Fougerousse, F., et al. (1999). A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis. Proceedings of the National Academy of Sciences of the United States of America, 96(19), 10729–10734.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baumer, N., Marquardt, T., Stoykova, A., Spieler, D., Treichel, D., Ashery-Padan, R., et al. (2003). Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development, 130(13), 2903–2915.PubMedCrossRefGoogle Scholar
  6. Behesti, H., Papaioannou, V. E., & Sowden, J. C. (2009). Loss of Tbx2 delays optic vesicle invagination leading to small optic cups. Developmental Biology, 333(2), 360–372.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bertuzzi, S., Hindges, R., Mui, S. H., O’Leary, D. D., & Lemke, G. (1999). The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes & Development, 13(23), 3092–3105.CrossRefGoogle Scholar
  8. Bharti, K., Gasper, M., Ou, J., Brucato, M., Clore-Gronenborn, K., Pickel, J., et al. (2012). A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development. PLoS Genetics, 8(7), e1002757.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bharti, K., Liu, W., Csermely, T., Bertuzzi, S., & Arnheiter, H. (2008). Alternative promoter use in eye development: The complex role and regulation of the transcription factor MITF. Development, 135(6), 1169–1178.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bielen, H., & Houart, C. (2012). BMP signaling protects telencephalic fate by repressing eye identity and its Cxcr4-dependent morphogenesis. Developmental Cell, 23(4), 812–822.PubMedCrossRefGoogle Scholar
  11. Bogdanovic, O., Delfino-Machin, M., Nicolas-Perez, M., Gavilan, M. P., Gago-Rodrigues, I., Fernandez-Minan, A., et al. (2012). Numb/Numbl-Opo antagonism controls retinal epithelium morphogenesis by regulating integrin endocytosis. Developmental Cell, 23(4), 782–795.PubMedCrossRefGoogle Scholar
  12. Bovolenta, P., Mallamaci, A., Briata, P., Corte, G., & Boncinelli, E. (1997). Implication of Otx2 in pigmented epithelium determination and neural retina differentiation. Journal of Neuroscience, 17, 4243–4252.PubMedGoogle Scholar
  13. Brown, K. E., Keller, P. J., Ramialison, M., Rembold, M., Stelzer, E. H., Loosli, F., et al. (2010). Nlcam modulates midline convergence during anterior neural plate morphogenesis. Developmental Biology, 339(1), 14–25.PubMedCrossRefGoogle Scholar
  14. Bumsted, K. M., & Barnstable, C. J. (2000). Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Investigative Ophthalmology & Visual Science, 41(3), 903–908.Google Scholar
  15. Cai, Z., Feng, G. S., & Zhang, X. (2010). Temporal requirement of the protein tyrosine phosphatase Shp2 in establishing the neuronal fate in early retinal development. Journal of Neuroscience, 30(11), 4110–4119.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cai, Z., Tao, C., Li, H., Ladher, R., Gotoh, N., Feng, G. S., et al. (2013). Deficient FGF signaling causes optic nerve dysgenesis and ocular coloboma. Development, 140(13), 2711–2723.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cardozo, M. J., Sanchez-Arrones, L., Sandonis, A., Sanchez-Camacho, C., Gestri, G., Wilson, S. W., et al. (2014). Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nature Communications, 5, 4272.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carl, M., Loosli, F., & Wittbrodt, J. (2002). Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development, 129(17), 4057–4063.PubMedGoogle Scholar
  19. Cavodeassi, F., Ivanovitch, K., & Wilson, S. W. (2013). Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development, 140(20), 4193–4202.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H., et al. (1996). Cyclopia and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature, 383, 407–413.PubMedCrossRefGoogle Scholar
  21. Chow, R. L., Altmann, C. R., Lang, R. A., & Hemmati-Brivanlou, A. (1999). Pax6 induces ectopic eyes in a vertebrate. Development, 126(19), 4213–4222.PubMedGoogle Scholar
  22. Coulombre, J. L., & Coulombre, A. J. (1965). Regeneration of neural retina from the pigmented epithelium in the chick embryo. Developmental Biology, 12(1), 79–92.PubMedCrossRefGoogle Scholar
  23. Cvekl, A., & Ashery-Padan, R. (2014). The cellular and molecular mechanisms of vertebrate lens development. Development, 141(23), 4432–4447.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cvekl, A., & Duncan, M. K. (2007). Genetic and epigenetic mechanisms of gene regulation during lens development. Progress in Retinal and Eye Research, 26(6), 555–597.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Davidson, E. H., & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311(5762), 796–800.PubMedCrossRefGoogle Scholar
  26. Del Rio-Tsonis, K., & Tsonis, P. A. (2003). Eye regeneration at the molecular age. Developmental Dynamics, 226(2), 211–224.PubMedCrossRefGoogle Scholar
  27. Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., et al. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472(7341), 51–56.PubMedCrossRefGoogle Scholar
  28. Ekker, S. C., Ungar, A. R., Greenstein, P., von Kessler, D., Porter, J. A., Moon, R. T., et al. (1995). Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Current Biology, 5, 944–955.Google Scholar
  29. ENCODE_Project_Consortium, Bernstein, B. E., Birney, E., Dunham, I., Green, E. D., Gunter, C., & Snyder, M. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74.Google Scholar
  30. England, S. J., Blanchard, G. B., Mahadevan, L., & Adams, R. J. (2006). A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development, 133(23), 4613–4617.PubMedCrossRefGoogle Scholar
  31. Fish, M. B., Nakayama, T., Fisher, M., Hirsch, N., Cox, A., Reeder, R., et al. (2014). Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character. Developmental Biology, 395(2), 317–330.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fuhrmann, S. (2010). Eye morphogenesis and patterning of the optic vesicle. Current Topics in Developmental Biology, 93, 61–84.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fuhrmann, S., Levine, E. M., & Reh, T. A. (2000). Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development, 127(21), 4599–4609.PubMedGoogle Scholar
  34. Fuhrmann, S., Zou, C., & Levine, E. M. (2014). Retinal pigment epithelium development, plasticity, and tissue homeostasis. Experimental Eye Research, 123, 141–150.PubMedCrossRefGoogle Scholar
  35. Fujimura, N., Taketo, M. M., Mori, M., Korinek, V., & Kozmik, Z. (2009). Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Developmental Biology, 334(1), 31–45.PubMedCrossRefGoogle Scholar
  36. Galy, A., Neron, B., Planque, N., Saule, S., & Eychene, A. (2002). Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina. Developmental Biology, 248(2), 251–264.PubMedCrossRefGoogle Scholar
  37. Goding, C. R. (2000). Mitf from neural crest to melanoma: Signal transduction and transcription in the melanocyte lineage. Genes & Development, 14(14), 1712–1728.Google Scholar
  38. Gregory-Evans, C. Y., Wallace, V. A., & Gregory-Evans, K. (2013). Gene networks: Dissecting pathways in retinal development and disease. Progress in Retinal and Eye Research, 33, 40–66.PubMedCrossRefGoogle Scholar
  39. Gregory-Evans, C. Y., Williams, M. J., Halford, S., & Gregory-Evans, K. (2004). Ocular coloboma: A reassessment in the age of molecular neuroscience. Journal of Medical Genetics, 41(12), 881–891.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Guillemot, F., & Cepko, C. L. (1992). Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development, 114(3), 743–754.PubMedGoogle Scholar
  41. Hilfer, S. R. (1983). Development of the eye of the chick embryo. Scanning Electron Microscopy, (Pt 3), 1353–1369.Google Scholar
  42. Hill, R. E., Favor, J., Hogan, B. L. M., Ton, C. C. T., Saunders, G. F., Hanson, I. M., et al. (1991). Mouse small eye results from mutations in a paired-like homeobox containing gene. Nature, 354, 522–525.PubMedCrossRefGoogle Scholar
  43. Hodgkinson, C. A., Moore, K. J., Nakayama, A., Steingrimsson, E., Copeland, N. G., Jenkins, N. A., et al. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell, 74(2), 395–404.PubMedCrossRefGoogle Scholar
  44. Holt, C. (1980). Cell movements in Xenopus eye development. Nature, 287(5785), 850–852.PubMedCrossRefGoogle Scholar
  45. Horsford, D. J., Nguyen, M. T., Sellar, G. C., Kothary, R., Arnheiter, H., & McInnes, R. R. (2005). Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development, 132(1), 177–187.PubMedCrossRefGoogle Scholar
  46. Hyer, J., Kuhlman, J., Afif, E., & Mikawa, T. (2003). Optic cup morphogenesis requires pre-lens ectoderm but not lens differentiation. Developmental Biology, 259(2), 351–363.PubMedCrossRefGoogle Scholar
  47. Hyer, J., Mima, T., & Mikawa, T. (1998). FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development, 125(5), 869–877.PubMedGoogle Scholar
  48. Ivanovitch, K., Cavodeassi, F., & Wilson, S. W. (2013). Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Developmental Cell, 27(3), 293–305.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kim, J. W., & Lemke, G. (2006). Hedgehog-regulated localization of Vax2 controls eye development. Genes & Development, 20(20), 2833–2847.CrossRefGoogle Scholar
  50. Kleinjan, D. A., Bancewicz, R. M., Gautier, P., Dahm, R., Schonthaler, H. B., Damante, G., et al. (2008). Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genetics, 4(2), e29.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kumar, J. P., & Moses, K. (2001). Eye specification in Drosophila: Perspectives and implications. Seminars in Cell & Developmental Biology, 12(6), 469–474.CrossRefGoogle Scholar
  52. Kwan, K. M., Otsuna, H., Kidokoro, H., Carney, K. R., Saijoh, Y., & Chien, C. B. (2012). A complex choreography of cell movements shapes the vertebrate eye. Development, 139(2), 359–372.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lagutin, O., Zhu, C. C., Furuta, Y., Rowitch, D. H., McMahon, A. P., & Oliver, G. (2001). Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Developmental Dynamics, 221, 342–349.PubMedCrossRefGoogle Scholar
  54. Lagutin, O. V., Zhu, C. C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., et al. (2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes & Development, 17, 368–379.CrossRefGoogle Scholar
  55. Lane, B. M., & Lister, J. A. (2012). Otx but not Mitf transcription factors are required for zebrafish retinal pigment epithelium development. PLoS ONE, 7(11), e49357.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lee, J., Willer, J. R., Willer, G. B., Smith, K., Gregg, R. G., & Gross, J. M. (2008). Zebrafish blowout provides genetic evidence for Patched1-mediated negative regulation of Hedgehog signaling within the proximal optic vesicle of the vertebrate eye. Developmental Biology, 319(1), 10–22.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Li, X., Perissi, V., Liu, F., Rose, D. W., & Rosenfeld, M. G. (2002). Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science, 297(5584), 1180–1183.PubMedGoogle Scholar
  58. Li, Z., Joseph, N. M., & Easter, S. S. J. (2000). The morphogenesis of the zebrafish eye, including a fate map of the optic vesicle. Developmental Dynamics, 218, 175–188.PubMedCrossRefGoogle Scholar
  59. Liu, I. S., Chen, J. D., Ploder, L., Vidgen, D., van der Kooy, D., Kalnins, V. I., et al. (1994). Developmental expression of a novel murine homeobox gene (Chx10): Evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron, 13(2), 377–393.PubMedCrossRefGoogle Scholar
  60. Liu, W., Lagutin, O., Swindell, E., Jamrich, M., & Oliver, G. (2010). Neuroretina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. The Journal of Clinical Investigation, 120(10), 3568–3577.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Loosli, F., Staub, W., Finger-Baier, K., Ober, E., Verkade, H., Wittbrodt, J., et al. (2003). Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Reports, 4, 894–899.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Loosli, F., Winkler, S., Burgtorf, C., Wurmbach, E., Ansorge, W., Henrich, T., et al. (2001). Medaka eyeless is the key factor linking retinal determination and eye growth. Development, 128, 4035–4044.PubMedGoogle Scholar
  63. Loosli, F., Winkler, S., & Wittbrodt, J. (1999). Six3 overexpression initiates the formation of ectopic retina. Genes & Development, 13(6), 649–654.CrossRefGoogle Scholar
  64. Lopashov, G. V., & Stroeva, O. G. (1964). Development of the eye; experimental studies. Jerusalem: Israel Program for Scientific Translation.Google Scholar
  65. Lupo, G., Liu, Y., Qiu, R., Chandraratna, R. A., Barsacchi, G., He, R. Q., et al. (2005). Dorsoventral patterning of the Xenopus eye: A collaboration of Retinoid, Hedgehog and FGF receptor signaling. Development, 132(7), 1737–1748.PubMedCrossRefGoogle Scholar
  66. Macdonald, R., Barth, K. A., Xu, Q., Holder, N., Mikkola, I., & Wilson, S. W. (1995). Midline signalling is required for Pax gene regulation and patterning of the eyes. Development, 121(10), 3267–3278.PubMedGoogle Scholar
  67. Macdonald, R., Scholes, J., Strahle, U., Brennan, C., Holder, N., Brand, M., et al. (1997). The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain. Development, 124(12), 2397–2408.PubMedGoogle Scholar
  68. Martinez-Morales, J. R., Dolez, V., Rodrigo, I., Zaccarini, R., Leconte, L., Bovolenta, P., et al. (2003). OTX2 activates the molecular network underlying retina pigment epithelium differentiation. Journal of Biological Chemistry, 278(24), 21721–21731.PubMedCrossRefGoogle Scholar
  69. Martinez-Morales, J. R., Rembold, M., Greger, K., Simpson, J. C., Brown, K. E., Quiring, R., et al. (2009). ojoplano-mediated basal constriction is essential for optic cup morphogenesis. Development, 136(13), 2165–2175.PubMedCrossRefGoogle Scholar
  70. Martinez-Morales, J. R., Rodrigo, I., & Bovolenta, P. (2004). Eye development: A view from the retina pigmented epithelium. BioEssays, 26(7), 766–777.PubMedCrossRefGoogle Scholar
  71. Martinez-Morales, J. R., Signore, M., Acampora, D., Simeone, A., & Bovolenta, P. (2001). Otx genes are required for tissue specification in the developing eye. Development, 128(11), 2019–2030.PubMedGoogle Scholar
  72. Martinez-Morales, J. R., & Wittbrodt, J. (2009). Shaping the vertebrate eye. Current Opinion in Genetics & Development, 19(5), 511–517.CrossRefGoogle Scholar
  73. Mathers, P. H., Grinberg, A., Mahon, K. A., & Jamrich, M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature, 387(6633), 603–607.PubMedCrossRefGoogle Scholar
  74. Matsuo, I., Kuratani, S., Kimura, C., Takeda, N., & Aizawa, S. (1995). Mouse Otx2 functions in the formation and patterning of rostral head. Genes & Development, 9(21), 2646–2658.CrossRefGoogle Scholar
  75. Medina-Martinez, O., Amaya-Manzanares, F., Liu, C., Mendoza, M., Shah, R., Zhang, L., et al. (2009). Cell-autonomous requirement for rx function in the mammalian retina and posterior pituitary. PLoS ONE, 4(2), e4513.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mochii, M., Ono, T., Matsubara, Y., & Eguchi, G. (1998). Spontaneous transdifferentiation of quail pigmented epithelial cell is accompanied by a mutation in the Mitf gene. Developmental Biology, 196(2), 145–159.PubMedCrossRefGoogle Scholar
  77. Mui, S. H., Kim, J. W., Lemke, G., & Bertuzzi, S. (2005). Vax genes ventralize the embryonic eye. Genes & Development, 19(10), 1249–1259.CrossRefGoogle Scholar
  78. Muller, F., Rohrer, H., & Vogel-Hopker, A. (2007). Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo. Development, 134(19), 3483–3493.PubMedCrossRefGoogle Scholar
  79. Nakayama, A., Nguyen, M. T., Chen, C. C., Opdecamp, K., Hodgkinson, C. A., & Arnheiter, H. (1998). Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mechanisms of Development, 70(1–2), 155–166.PubMedCrossRefGoogle Scholar
  80. Nakayama, T., Fish, M. B., Fisher, M., Oomen-Hajagos, J., Thomsen, G. H., & Grainger, R. M. (2013). Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis, 51(12), 835–843.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nguyen, M. T., & Arnheiter, H. (2000). Signaling and transcriptional regulation in early mammalian eye development: A link between FGF and MITF. Development, 127, 3581–3591.PubMedGoogle Scholar
  82. Peters, M. A. (2002). Patterning the neural retina. Current Opinion in Neurobiology, 12(1), 43–48.PubMedCrossRefGoogle Scholar
  83. Phillips, M. J., Perez, E. T., Martin, J. M., Reshel, S. T., Wallace, K. A., Capowski, E. E., et al. (2014). Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells, 32(6), 1480–1492.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Picker, A., Cavodeassi, F., Machate, A., Bernauer, S., Hans, S., Abe, G., et al. (2009). Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina. PLoS Biology, 7(10), e1000214.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pittack, C., Grunwald, G. B., & Reh, T. A. (1997). Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development, 124(4), 805–816.PubMedGoogle Scholar
  86. Pittack, C., Jones, M., & Reh, T. A. (1991). Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development, 113, 577–588.PubMedGoogle Scholar
  87. Planque, N., Turque, N., Opdecamp, K., Bailly, M., Martin, P., & Saule, S. (1999). Expression of the microphthalmia-associated basic helix-loop-helix leucine zipper transcription factor Mi in avian neuroretina cells induces a pigmented phenotype. Cell Growth & Differentiation, 10(7), 525–536.Google Scholar
  88. Porges, Y., Gershoni-Baruch, R., Leibu, R., Goldscher, D., Zonis, S., Shapira, I., et al. (1992). Hereditary microphthalmia with colobomatous cyst. American Journal of Ophthalmology, 114(1), 30–34.PubMedCrossRefGoogle Scholar
  89. Porter, F. D., Drago, J., Xu, Y., Cheema, S. S., Wassif, C., Huang, S. P., et al. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development, 124(15), 2935–2944.PubMedGoogle Scholar
  90. Raymond, S. M., & Jackson, I. J. (1995). The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina. Current Biology, 5(11), 1286–1295.PubMedCrossRefGoogle Scholar
  91. Rebagliati, M. R., Toyama, R., Haffter, P., & Dawid, I. B. (1998). Cyclops encodes a nodal-related factor involved in midline signaling. Proceedings of the National Academy of Sciences, 95(17), 9932–9937.CrossRefGoogle Scholar
  92. Rembold, M., Loosli, F., Adams, R. J., & Wittbrodt, J. (2006). Individual cell migration serves as the driving force for optic vesicle evagination. Science, 313(5790), 1130–1134.PubMedCrossRefGoogle Scholar
  93. Rohr, K. B., Barth, K. A., Varga, Z. M., & Wilson, S. W. (2001). The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. Neuron, 29(2), 341–351.PubMedCrossRefGoogle Scholar
  94. Rowan, S., & Cepko, C. L. (2004). Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Developmental Biology, 271(2), 388–402.PubMedCrossRefGoogle Scholar
  95. Sampath, K., Rubinstein, A. L., Cheng, A. M., Liang, J. O., Fekany, K., Solnica-Krezel, L., et al. (1998). Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature, 395(6698), 185–189.PubMedCrossRefGoogle Scholar
  96. Samuel, A., Housset, M., Fant, B., & Lamonerie, T. (2014). Otx2 ChIP-seq reveals unique and redundant functions in the mature mouse retina. PLoS ONE, 9(2), e89110.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Schwarz, M., Cecconi, F., Bernier, G., Andrejewski, N., Kammandel, B., Wagner, M., et al. (2000). Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development, 127(20), 4325–4334.PubMedGoogle Scholar
  98. Seth, A., Culverwell, J., Walkowicz, M., Toro, S., Rick, J. M., Neuhauss, S. C., et al. (2006). belladonna/(Ihx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain. Development, 133(4), 725–735.PubMedCrossRefGoogle Scholar
  99. Sinn, R., & Wittbrodt, J. (2013). An eye on eye development. Mechanisms of Development, 130(6–8), 347–358.PubMedCrossRefGoogle Scholar
  100. Steinfeld, J., Steinfeld, I., Coronato, N., Hampel, M. L., Layer, P. G., Araki, M., et al. (2013). RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling. Development, 140(24), 4959–4969.PubMedCrossRefGoogle Scholar
  101. Steingrimsson, E., Copeland, N. G., & Jenkins, N. A. (2004). Melanocytes and the microphthalmia transcription factor network. Annual Review of Genetics, 38, 365–411.PubMedCrossRefGoogle Scholar
  102. Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiological Reviews, 85(3), 845–881.PubMedCrossRefGoogle Scholar
  103. Suzuki, K. T., Isoyama, Y., Kashiwagi, K., Sakuma, T., Ochiai, H., Sakamoto, N., et al. (2013). High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biology Open, 2(5), 448–452.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Svoboda, K. K., & O’Shea, K. S. (1987). An analysis of cell shape and the neuroepithelial basal lamina during optic vesicle formation in the mouse embryo. Development, 100(2), 185–200.PubMedGoogle Scholar
  105. Take-uchi, M., Clarke, J. D., & Wilson, S. W. (2003). Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development, 130(5), 955–968.PubMedCrossRefGoogle Scholar
  106. Tena, J. J., Gonzalez-Aguilera, C., Fernandez-Minan, A., Vazquez-Marin, J., Parra-Acero, H., Cross, J. W., et al. (2014). Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Research. Google Scholar
  107. Tetreault, N., Champagne, M. P., & Bernier, G. (2009). The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation. Developmental Biology, 327(2), 541–550.PubMedCrossRefGoogle Scholar
  108. Torres, M., Gómez-Pardo, E., & Gruss, P. (1996). Pax2 contributes to inner ear patterning and optic nerve trajectory. Development, 122, 3381–3391.PubMedGoogle Scholar
  109. Treisman, J. E. (1999). A conserved blueprint for the eye? BioEssays, 21(10), 843–850.PubMedCrossRefGoogle Scholar
  110. Turque, N., Denhez, F., Martin, P., Planque, N., Bailly, M., Begue, A., et al. (1996). Characterization of a new melanocyte-specific gene (QNR-71) expressed in v-myc-transformed quail neuroretina. EMBO Journal, 15(13), 3338–3350.PubMedPubMedCentralGoogle Scholar
  111. Viczian, A. S., Solessio, E. C., Lyou, Y., & Zuber, M. E. (2009). Generation of functional eyes from pluripotent cells. PLoS Biology, 7(8), e1000174.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Vogel-Hopker, A., Momose, T., Rohrer, H., Yasuda, K., Ishihara, L., & Rapaport, D. H. (2000). Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development. Mechanisms of Development, 94(1–2), 25–36.PubMedCrossRefGoogle Scholar
  113. Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews Genetics, 8(6), 473–479.PubMedCrossRefGoogle Scholar
  114. Wallis, D. E., Roessler, E., Hehr, U., Nanni, L., Wiltshire, T., Richieri-Costa, A., et al. (1999). Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genetics, 22(2), 196–198.PubMedCrossRefGoogle Scholar
  115. Westenskow, P., Piccolo, S., & Fuhrmann, S. (2009). Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development, 136(15), 2505–2510.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wilson, S. W., & Houart, C. (2004). Early steps in the development of the forebrain. Developmental Cell, 6(2), 167–181.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yasuoka, Y., Suzuki, Y., Takahashi, S., Someya, H., Sudou, N., Haramoto, Y., et al. (2014). Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. Nature Communications, 5, 4322.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yin, J., Morrissey, M. E., Shine, L., Kennedy, C., Higgins, D. G., & Kennedy, B. N. (2014). Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis. BMC Genomics, 15, 825.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhang, L., Mathers, P. H., & Jamrich, M. (2000). Function of Rx, but not Pax6, is essential for the formation of retinal progenitor cells in mice. Genesis, 28(3–4), 135–142.PubMedCrossRefGoogle Scholar
  120. Zhao, S., Hung, F. C., Colvin, J. S., White, A., Dai, W., Lovicu, F. J., et al. (2001). Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development, 128(24), 5051–5060.PubMedGoogle Scholar
  121. Zou, C., & Levine, E. M. (2012). Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding. PLoS Genetics, 8(9), e1002924.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G., & Harris, W. A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development, 130(21), 5155–5167.PubMedCrossRefGoogle Scholar
  123. Zuber, M. E., Perron, M., Philpott, A., Bang, A., & Harris, W. A. (1999). Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell, 98(3), 341–352.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA)SevilleSpain

Personalised recommendations