Skip to main content

Morphogenetic Mechanisms of Inner Ear Development

  • Chapter
  • First Online:
Organogenetic Gene Networks
  • 740 Accesses

Abstract

The vertebrate inner ear is one of the most complex three-dimensional sense organs of our head. This anatomical complexity reflects its different functions as the organ responsible for the senses of hearing and balance: it detects the direction and speed of head rotation and the wide range of sound wave frequencies. During embryonic development, specialized cells (hair cells ) originate in distinct domains of the inner ear , the sensory patches, whose topological organisation and orientation is fundamental for proper sensory function. Hair cells have the ability to convert mechanical stimuli into electrical activity that is then transmitted to the brain by sensory neurons. The major sensory patches comprise the three cristae (for angular movement detection), the saccule and utricule (for gravity detection) and the auditory sensory patch, the organ of Corti in mammals or basilar papilla in birds (for auditory detection). For sensory cells to be born in appropriate locations, inner ear patterning and cell fate specification must be coupled with morphogenesis of the entire organ. While excellent reviews have summarized the pathways involved in inner ear patterning (Fekete in Curr Opin Neurobiol 6(4):533–541, 1996; Whitfield et al. in Off Publ Am Assoc Anat 223(4):427–458, 2002; Torres and Giráldez in Mech Dev 71(1–2):5–21, 1998; Fekete and Wu in Curr Opin Neurobiol 12(1):35–42, 2002; Barald and Kelley in Development (Cambridge, England), 131(17):4119–4130, 2004; Alsina et al. in Int J Dev Biol 53(8–10):1503–1513, 2009) morphogenetic events have received little attention and in particular the cross-talk between patterning and morphogenetic cues is poorly understood. In this chapter we will review the morphogenetic mechanisms regulating inner ear shape, size and sensory organization. A wide array of cell behaviours contributes to the final size and shape of all organs. These include cell migration, modulation of cell division or cell death, oriented cell division, epithelial to mesenchymal transition, cell intercalation and remodelling and convergent extension movements. Many of these operate in the inner ear and we will review how each contributes to sculpting the inner ear into its final form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abello, G., & Alsina, B. (2007). Establishment of a proneural field in the inner ear. The International Journal of Developmental Biology, 51(6–7), 483–493.

    Article  CAS  PubMed  Google Scholar 

  • Alsina, B., Giraldez, F., & Pujades, C. (2009). Patterning and cell fate in ear development. The International Journal of Developmental Biology, 53(8–10), 1503–1513.

    Article  PubMed  Google Scholar 

  • Alvarez, I. S., & Navascués, J. (1990). Shaping, invagination, and closure of the chick embryo otic vesicle: Scanning electron microscopic and quantitative study. The Anatomical Record, 228(3), 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez, I. S., et al. (1989). Cell proliferation during early development of the chick embryo otic anlage: Quantitative comparison of migratory and nonmigratory regions of the otic epithelium. The Journal of Comparative Neurology, 290(2), 278–288.

    Article  CAS  PubMed  Google Scholar 

  • Andreeva, A., et al. (2014). PTK7-Src signaling at epithelial cell contacts mediates spatial organization of actomyosin and planar cell polarity. Developmental Cell, 29(1), 20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashery-Padan, R., & Gruss, P. (2001). Pax6 lights-up the way for eye development. Current Opinion in Cell Biology, 13(6), 706–714.

    Article  CAS  PubMed  Google Scholar 

  • Ashery-Padan, R., et al. (2000). Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes & Development, 14(21), 2701–2711.

    Article  CAS  Google Scholar 

  • Babb-Clendenon, S., et al. (2006). Cadherin-2 participates in the morphogenesis of the zebrafish inner ear. Journal of Cell Science, 119(Pt 24), 5169–5177.

    Article  CAS  PubMed  Google Scholar 

  • Bancroft, M., & Bellairs, R. (1977). Placodes of the chick embryo studied by SEM. Anatomy and Embryology, 151(1), 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Barald, K. F., & Kelley, M. W. (2004). From placode to polarization: New tunes in inner ear development. Development (Cambridge, England), 131(17), 4119–4130.

    Article  CAS  Google Scholar 

  • Barembaum, M., & Bronner-Fraser, M. (2007). Spalt4 mediates invagination and otic placode gene expression in cranial ectoderm. Development (Cambridge, England), 134(21), 3805–3814.

    Article  CAS  Google Scholar 

  • Barembaum, M., & Bronner-Fraser, M. (2010). Pax2 and Pea3 synergize to activate a novel regulatory enhancer for spalt4 in the developing ear. Developmental Biology, 340(2), 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Barrionuevo, F., et al. (2008). Sox9 is required for invagination of the otic placode in mice. Developmental Biology, 317(1), 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, N., & Riley, B. B. (2011). Integrin-α5 coordinates assembly of posterior cranial placodes in zebrafish and enhances Fgf-dependent regulation of otic/epibranchial cells. PLoS ONE, 6(12), e27778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya, S., & Bronner, M. E. (2013). Clonal analyses in the anterior pre-placodal region: Implications for the early lineage bias of placodal progenitors. The International Journal of Developmental Biology, 57(9–10), 753–757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bissonnette, J. P., & Fekete, D. M. (1996). Standard atlas of the gross anatomy of the developing inner ear of the chicken. The Journal of Comparative Neurology, 368(4), 620–630.

    Article  CAS  PubMed  Google Scholar 

  • Bok, J., et al. (2013). Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13869–13874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges, R. M., et al. (2011). Rho signaling pathway and apical constriction in the early lens placode. Genesis (New York, N.Y.: 2000), 49(5), 368–379.

    Article  CAS  Google Scholar 

  • Breau, M. A., & Schneider-Maunoury, S. (2014). Cranial placodes: Models for exploring the multi-facets of cell adhesion in epithelial rearrangement, collective migration and neuronal movements. Developmental Biology.

    Google Scholar 

  • Castanon, I., & González-Gaitán, M. (2011). Oriented cell division in vertebrate embryogenesis. Current Opinion in Cell Biology, 23(6), 697–704.

    Article  CAS  PubMed  Google Scholar 

  • Chacon-Heszele, M. F., et al. (2012). Regulation of cochlear convergent extension by the vertebrate planar cell polarity pathway is dependent on p120-catenin. Development (Cambridge, England), 139(5), 968–978.

    Article  CAS  Google Scholar 

  • Chang, W., ten Dijke, P., & Wu, D. K. (2002). BMP pathways are involved in otic capsule formation and epithelial-mesenchymal signaling in the developing chicken inner ear. Developmental Biology, 251(2), 380–394.

    Article  CAS  PubMed  Google Scholar 

  • Chang, W., et al. (2004). The development of semicircular canals in the inner ear: Role of FGFs in sensory cristae. Development (Cambridge, England), 131(17), 4201–4211.

    Article  CAS  Google Scholar 

  • Chauhan, B. K., et al. (2011). Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. Proceedings of the National Academy of Sciences of the United States of America, 108(45), 18289–18294.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, J., & Streit, A. (2013). Induction of the inner ear: Stepwise specification of otic fate from multipotent progenitors. Hearing Research, 297, 3–12.

    Article  PubMed  Google Scholar 

  • Chen, P., et al. (2002). The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development (Cambridge, England), 129(10), 2495–2505.

    CAS  Google Scholar 

  • Chen, W.-S., et al. (2008). Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell, 133(6), 1093–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choo, D., et al. (2006). Molecular mechanisms underlying inner ear patterning defects in kreisler mutants. Developmental Biology, 289(2), 308–317.

    Article  CAS  PubMed  Google Scholar 

  • Christophorou, N. A. D., et al. (2010). Pax2 coordinates epithelial morphogenesis and cell fate in the inner ear. Developmental Biology, 345(2), 180–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Concha, M. L., & Adams, R. J. (1998). Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: A time-lapse analysis. Development (Cambridge, England), 125(6), 983–994.

    CAS  Google Scholar 

  • Cotanche, D. A., & Corwin, J. T. (1991). Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hearing Research, 52(2), 379–402.

    Article  CAS  PubMed  Google Scholar 

  • Curtin, J. A., et al. (2003). Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Current Biology: CB, 13(13), 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  • Dabdoub, A., et al. (2003). Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development (Cambridge, England), 130(11), 2375–2384.

    Article  CAS  Google Scholar 

  • Das, D., et al. (2014). The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice. Biology Open, 3(9), 850–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deans, M. R., et al. (2007). Asymmetric distribution of prickle-like 2 reveals an early underlying polarization of vestibular sensory epithelia in the inner ear. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(12), 3139–3147.

    Article  CAS  Google Scholar 

  • Etheridge, S. L., et al. (2008). Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genetics, 4(11), e1000259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fekete, D. M. (1996). Cell fate specification in the inner ear. Current Opinion in Neurobiology, 6(4), 533–541.

    Article  CAS  PubMed  Google Scholar 

  • Fekete, D. M., & Wu, D. K. (2002). Revisiting cell fate specification in the inner ear. Current Opinion in Neurobiology, 12(1), 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Fekete, D. M., et al. (1997). Involvement of programmed cell death in morphogenesis of the vertebrate inner ear. Development (Cambridge, England), 124(12), 2451–2461.

    CAS  Google Scholar 

  • Freter, S., et al. (2008). Progressive restriction of otic fate: The role of FGF and Wnt in resolving inner ear potential. Development (Cambridge, England), 135(20), 3415–3424.

    Article  CAS  Google Scholar 

  • Freter, S., et al. (2012). Pax2 modulates proliferation during specification of the otic and epibranchial placodes. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 241(11), 1716–1728.

    Article  CAS  Google Scholar 

  • Geng, F.-S., et al. (2013). Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene. Development (Cambridge, England), 140(21), 4362–4374.

    Article  CAS  Google Scholar 

  • Gong, Y., Mo, C., & Fraser, S. E. (2004). Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature, 430(7000), 689–693.

    Article  CAS  PubMed  Google Scholar 

  • Goodrich, L. V., & Strutt, D. (2011). Principles of planar polarity in animal development. Development (Cambridge, England), 138(10), 1877–1892.

    Article  CAS  Google Scholar 

  • Goto, T., & Keller, R. (2002). The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Developmental Biology, 247(1), 165–181.

    Article  CAS  PubMed  Google Scholar 

  • Gubb, D., & García-Bellido, A. (1982). A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. Journal of Embryology and Experimental Morphology, 68, 37–57.

    CAS  PubMed  Google Scholar 

  • Haddon, C., & Lewis, J. (1996). Early ear development in the embryo of the zebrafish, Danio rerio. The Journal of Comparative Neurology, 365(1), 113–128.

    Article  CAS  PubMed  Google Scholar 

  • Haigo, S. L., et al. (2003). Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Current Biology: CB, 13(24), 2125–2137.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, K. L., et al. (2009). A late role for bmp2b in the morphogenesis of semicircular canal ducts in the zebrafish inner ear. PLoS ONE, 4(2), e4368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hans, S., Liu, D., & Westerfield, M. (2004). Pax8 and Pax2a function synergistically in otic specification, downstream of the Foxi1 and Dlx3b transcription factors. Development (Cambridge, England), 131(20), 5091–5102.

    Article  CAS  Google Scholar 

  • Hatch, E. P., et al. (2007). Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development (Cambridge, England), 134(20), 3615–3625.

    Article  CAS  Google Scholar 

  • Haugas, M., et al. (2010). Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 239(9), 2452–2469.

    Article  CAS  Google Scholar 

  • Heisenberg, C. P., et al. (2000). Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature, 405(6782), 76–81.

    Article  CAS  PubMed  Google Scholar 

  • Hendrix, R. W., & Zwaan, J. (1974a). Cell shape regulation and cell cycle in embryonic lens cells. Nature, 247(5437), 145–147.

    Article  CAS  PubMed  Google Scholar 

  • Hendrix, R. W., & Zwaan, J. (1974b). Changes in the glycoprotein concentration of the extracellular matrix between lens and optic vesicle associated with early lens differentiation. Differentiation; Research in Biological Diversity, 2(6), 357–362. Available at: http://www.ncbi.nlm.nih.gov/pubmed/4442680. Accessed March 29, 2015.

  • Hilfer, S. R., Esteves, R. A., & Sanzo, J. F. (1989). Invagination of the otic placode: Normal development and experimental manipulation. Journal of Experimental Zoology, 251(2), 253–264.

    Article  CAS  PubMed  Google Scholar 

  • Hilfer, S. R., & Randolph, G. J. (1993). Immunolocalization of basal lamina components during development of chick otic and optic primordia. The Anatomical Record, 235(3), 443–452.

    Article  CAS  PubMed  Google Scholar 

  • Höckendorf, B., Thumberger, T., & Wittbrodt, J. (2012). Quantitative analysis of embryogenesis: A perspective for light sheet microscopy. Developmental Cell, 23(6), 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Hoijman, E., et al. (2015). Mitotic cell rounding and epithelial thinning regulate lumen growth and shape. Nature Communications, 6, 7355–7367.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., et al. (2011). The mechanism of lens placode formation: A case of matrix-mediated morphogenesis. Developmental Biology, 355(1), 32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisken, J., & Stainier, D. Y. R. (2009). Selective plane illumination microscopy techniques in developmental biology. Development (Cambridge, England), 136(12), 1963–1975.

    Article  CAS  Google Scholar 

  • Hultcrantz, M., Bagger-Sjöbäck, D., & Rask-Andersen, H. (1987). The development of the endolymphatic duct and sac. A light microscopical study. Acta Oto-laryngologica, 104(5–6), 406–416.

    Article  CAS  PubMed  Google Scholar 

  • Iruela-Arispe, M. L., & Beitel, G. J. (2013). Tubulogenesis. Development, 140(14), 2851–2855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen, J. R., et al. (2002). Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nature Cell Biology, 4(8), 610–615.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, C., & Chen, P. (2007). Planar cell polarity signaling in vertebrates. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 29(2), 120–132.

    Article  CAS  Google Scholar 

  • Jones, C., et al. (2008). Ciliary proteins link basal body polarization to planar cell polarity regulation. Nature Genetics, 40(1), 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Jones, C., et al. (2014). Ankrd6 is a mammalian functional homolog of Drosophila planar cell polarity gene diego and regulates coordinated cellular orientation in the mouse inner ear. Developmental Biology, 395(1), 62–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley, M. W. (2006). Regulation of cell fate in the sensory epithelia of the inner ear. Nature Reviews Neuroscience, 7(11), 837–849.

    Article  CAS  PubMed  Google Scholar 

  • Kibar, Z., et al. (2011). Contribution of VANGL2 mutations to isolated neural tube defects. Clinical Genetics, 80(1), 76–82.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. Y., & Davidson, L. A. (2011). Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway. Journal of Cell Science, 124(Pt 4), 635–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler, K. R., & Hashino, E. (2014). 3D mouse embryonic stem cell culture for generating inner ear organoids. Nature Protocols, 9(6), 1229–1244.

    Article  CAS  PubMed  Google Scholar 

  • Lang, H., Bever, M. M., & Fekete, D. M. (2000). Cell proliferation and cell death in the developing chick inner ear: Spatial and temporal patterns. The Journal of Comparative Neurology, 417(2), 205–220.

    Article  CAS  PubMed  Google Scholar 

  • Lang, R. A., et al. (2014). p120-catenin-dependent junctional recruitment of Shroom3 is required for apical constriction during lens pit morphogenesis. Development (Cambridge, England), 141(16), 3177–3187.

    Article  CAS  Google Scholar 

  • Lecuit, T., & Lenne, P. F. (2007). Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Review Molecular Cell Biology, 8(8), 633–44.

    Google Scholar 

  • Lilleväli, K., et al. (2006). Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mechanisms of Development, 123(6), 415–429.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Z., et al. (2005). Gbx2 is required for the morphogenesis of the mouse inner ear: A downstream candidate of hindbrain signaling. Development (Cambridge, England), 132(10), 2309–2318.

    Article  CAS  Google Scholar 

  • López-Schier, H., & Hudspeth, A. J. (2006). A two-step mechanism underlies the planar polarization of regenerating sensory hair cells. Proceedings of the National Academy of Sciences of the United States of America, 103(49), 18615–18620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, X., et al. (2004). PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature, 430(6995), 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Mansour, S. L., Goddard, J. M., & Capecchi, M. R. (1993). Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development (Cambridge, England), 117(1), 13–28.

    CAS  Google Scholar 

  • Mansour, S., & Schoenwolf, G. (2005). Morphogenesis of the inner ear. In R. R. M. W. Wu (Ed.), The Springer handbook of auditory research (pp. 43–84). New York: Springer.

    Google Scholar 

  • Martin, P., & Swanson, G. J. (1993). Descriptive and experimental analysis of the epithelial remodellings that control semicircular canal formation in the developing mouse inner ear. Developmental Biology, 159(2), 549–558.

    Article  CAS  PubMed  Google Scholar 

  • Matsumata, M., et al. (2005). Multiple N-cadherin enhancers identified by systematic functional screening indicate its Group B1 SOX-dependent regulation in neural and placodal development. Developmental Biology, 286(2), 601–617.

    Article  CAS  PubMed  Google Scholar 

  • May-Simera, H. L., et al. (2010). Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish. Developmental Biology, 345(2), 215–225.

    Article  CAS  PubMed  Google Scholar 

  • May-Simera, H. L., et al. (2015). Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea. Development, 142(3), 555–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarroll, M. N., et al. (2012). Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development (Cambridge, England), 139(15), 2740–2750.

    Article  CAS  Google Scholar 

  • McGreevy, E. M., et al. (2015). Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure. Biology Open, 4(2), 186–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier, S. (1978a). Development of the embryonic chick otic placode. I. Light microscopic analysis. The Anatomical Record, 191(4), 447–458.

    Article  CAS  PubMed  Google Scholar 

  • Meier, S. (1978b). Development of the embryonic chick otic placode. II. Electron microscopic analysis. The Anatomical Record, 191(4), 459–477.

    Article  CAS  PubMed  Google Scholar 

  • Montcouquiol, M., et al. (2003). Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature, 423(6936), 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Montcouquiol, M., et al. (2006). Asymmetric localization of Vangl2 and Fz3 indicate novel mechanisms for planar cell polarity in mammals. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(19), 5265–5275.

    Article  CAS  Google Scholar 

  • Moro-Balbás, J. A., et al. (2000). Basal lamina heparan sulphate proteoglycan is involved in otic placode invagination in chick embryos. Anatomy and Embryology, 202(4), 333–343.

    Article  PubMed  Google Scholar 

  • Morsli, H., et al. (1998). Development of the mouse inner ear and origin of its sensory organs. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(9), 3327–3335.

    CAS  Google Scholar 

  • Muñoz-Espín, D., et al. (2013). Programmed cell senescence during mammalian embryonic development. Cell, 155(5), 1104–1118.

    Article  PubMed  CAS  Google Scholar 

  • Nayak, G. D., et al. (2007). Development of the hair bundle and mechanotransduction. The International Journal of Developmental Biology, 51(6–7), 597–608.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, D. H., et al. (2008). Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell and Tissue Research, 334(3), 339–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikori, T., et al. (1999). Apoptosis during inner ear development in human and mouse embryos: An analysis by computer-assisted three-dimensional reconstruction. Anatomy and Embryology, 200(1), 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, T., Honda, H., & Takeichi, M. (2012). Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell, 149(5), 1084–1097.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, T., & Takeichi, M. (2008). Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development (Cambridge, England), 135(8), 1493–1502.

    Article  CAS  Google Scholar 

  • Nishizaki, K., et al. (1998). Programmed cell death in the developing epithelium of the mouse inner ear. Acta Oto-Laryngologica, 118(1), 96–100.

    Article  CAS  PubMed  Google Scholar 

  • Noda, T., et al. (2012). Restriction of Wnt signaling in the dorsal otocyst determines semicircular canal formation in the mouse embryo. Developmental Biology, 362(1), 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Ohta, S., Mansour, S. L., & Schoenwolf, G. C. (2010). BMP/SMAD signaling regulates the cell behaviors that drive the initial dorsal-specific regional morphogenesis of the otocyst. Developmental Biology, 347(2), 369–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama, T. (2006). Wnt signals mediate a fate decision between otic placode and epidermis. Development, 133(5), 865–875.

    Article  CAS  PubMed  Google Scholar 

  • Ohyama, T., Groves, A. K., & Martin, K. (2007). The first steps towards hearing: Mechanisms of otic placode induction. The International Journal of Developmental Biology, 51(6–7), 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Ohyama, T., et al. (2010). BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(45), 15044–15051.

    Article  CAS  Google Scholar 

  • Padanad, M. S., & Riley, B. B. (2011). Pax2/8 proteins coordinate sequential induction of otic and epibranchial placodes through differential regulation of foxi1, sox3 and fgf24. Developmental Biology, 351(1), 90–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasqualetti, M., et al. (2001). Retinoic acid rescues inner ear defects in Hoxa1 deficient mice. Nature Genetics, 29(1), 34–39.

    Article  CAS  PubMed  Google Scholar 

  • Pauley, S., et al. (2003). Expression and function of FGF10 in mammalian inner ear development. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 227(2), 203–215.

    Article  CAS  Google Scholar 

  • Petit, C., Levilliers, J., & Hardelin, J. P. (2001). Molecular genetics of hearing loss. Annual Review of Genetics, 35, 589–646. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11700295. Accessed March 29, 2015.

  • Pieper, M., et al. (2011). Origin and segregation of cranial placodes in Xenopus laevis. Developmental Biology, 360(2), 257–275.

    Article  CAS  PubMed  Google Scholar 

  • Pirvola, U., et al. (2000). FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(16), 6125–6134.

    CAS  Google Scholar 

  • Plageman, T. F., et al. (2010). Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development (Cambridge, England), 137(3), 405–415.

    Article  CAS  Google Scholar 

  • Plageman, T. F., et al. (2011). A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination. Development (Cambridge, England), 138(23), 5177–5188.

    Article  CAS  PubMed Central  Google Scholar 

  • Qian, D., et al. (2007). Wnt5a functions in planar cell polarity regulation in mice. Developmental Biology, 306(1), 121–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakowiecki, S., & Epstein, D. J. (2013). Divergent roles for Wnt/β-catenin signaling in epithelial maintenance and breakdown during semicircular canal formation. Development (Cambridge, England), 140(8), 1730–1739.

    Article  CAS  Google Scholar 

  • Ramialison, M., et al. (2008). Rapid identification of PAX2/5/8 direct downstream targets in the otic vesicle by combinatorial use of bioinformatics tools. Genome Biology, 9(10), R145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Represa, J. J., et al. (1990). Patterns of epithelial cell death during early development of the human inner ear. The Annals of Otology, Rhinology, and Laryngology, 99(6 Pt 1), 482–488.

    Article  CAS  PubMed  Google Scholar 

  • Riccomagno, M. M., Takada, S., & Epstein, D. J. (2005). Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes & Development, 19(13), 1612–1623.

    Article  CAS  Google Scholar 

  • Saburi, S., et al. (2008). Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nature Genetics, 40(8), 1010–1015.

    Article  CAS  PubMed  Google Scholar 

  • Sai, X., & Ladher, R. K. (2008). FGF signaling regulates cytoskeletal remodeling during epithelial morphogenesis. Current Biology: CB, 18(13), 976–981.

    Article  CAS  PubMed  Google Scholar 

  • Sai, X., & Ladher, R. K. (2015). Early steps in inner ear development: Induction and morphogenesis of the otic placode. Frontiers in pharmacology, 6, 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sai, X., Yonemura, S., & Ladher, R. K. (2014). Junctionally restricted RhoA activity is necessary for apical constriction during phase 2 inner ear placode invagination. Developmental Biology, 394(2), 206–216.

    Article  CAS  PubMed  Google Scholar 

  • Sajan, S. A., et al. (2011). Identification of direct downstream targets of Dlx5 during early inner ear development. Human Molecular Genetics, 20(7), 1262–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen, M., et al. (2000). Netrin 1 is required for semicircular canal formation in the mouse inner ear. Development (Cambridge, England), 127(1), 13–22.

    CAS  Google Scholar 

  • Schlosser, G., & Northcutt, R. G. (2000). Development of neurogenic placodes in Xenopus laevis. The Journal of Comparative Neurology, 418(2), 121–146.

    Article  CAS  PubMed  Google Scholar 

  • Shidea, H., et al. (2015). Otic placode cell specification and proliferation are regulated by Notch signaling in avian development. Developmental Dynamics, 244(7), 839–851.

    Article  CAS  Google Scholar 

  • Sipe, C. W., & Lu, X. (2011). Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms. Development (Cambridge, England), 138(16), 3441–3449.

    Article  CAS  Google Scholar 

  • Smith, A. N., et al. (2009). Stage-dependent modes of Pax6-Sox2 epistasis regulate lens development and eye morphogenesis. Development (Cambridge, England), 136(17), 2977–2985.

    Article  CAS  Google Scholar 

  • Streit, A. (2002). Extensive cell movements accompany formation of the otic placode. Developmental Biology, 249(2), 237–254.

    Article  CAS  PubMed  Google Scholar 

  • Strutt, H., & Strutt, D. (2008). Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Current Biology: CB, 18(20), 1555–1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawk, M., et al. (2007). A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature, 446(7137), 797–800.

    Article  CAS  PubMed  Google Scholar 

  • Theveneau, E., et al. (2013). Chase-and-run between adjacent cell populations promotes directional collective migration. Nature Cell Biology, 15(7), 763–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiede, B. R., et al. (2014). Retinoic acid signalling regulates the development of tonotopically patterned hair cells in the chicken cochlea. Nature communications, 5, 3840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres, M., & Giráldez, F. (1998). The development of the vertebrate inner ear. Mechanisms of Development, 71(1–2), 5–21.

    Article  CAS  PubMed  Google Scholar 

  • Vinson, C. R., & Adler, P. N. (1987). Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature, 329(6139), 549–551.

    Article  CAS  PubMed  Google Scholar 

  • Wallingford, J. B. (2012). Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annual Review of Cell and Developmental Biology, 28, 627–653.

    Article  CAS  PubMed  Google Scholar 

  • Wallingford, J. B., et al. (2000). Dishevelled controls cell polarity during Xenopus gastrulation. Nature, 405(6782), 81–85.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Guo, N., & Nathans, J. (2006). The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(8), 2147–2156.

    Article  CAS  Google Scholar 

  • Wang, J., et al. (2005). Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nature Genetics, 37(9), 980–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield, T. T., et al. (2002). Development of the zebrafish inner ear. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 223(4), 427–458.

    Article  Google Scholar 

  • Wolf, L. V., et al. (2009). Identification of pax6-dependent gene regulatory networks in the mouse lens. PLoS ONE, 4(1), e4159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong, L. L., & Adler, P. N. (1993). Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells. The Journal of Cell Biology, 123(1), 209–221.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Dude, C. M., & Baker, C. V. H. (2008). Fine-grained fate maps for the ophthalmic and maxillomandibular trigeminal placodes in the chick embryo. Developmental Biology, 317(1), 174–186.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, N., et al. (2009). Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development (Cambridge, England), 136(12), 1977–1986.

    Article  CAS  Google Scholar 

  • Zheng, L., Zhang, J., & Carthew, R. W. (1995). Frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development (Cambridge, England), 121(9), 3045–3055.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berta Alsina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alsina, B., Streit, A. (2016). Morphogenetic Mechanisms of Inner Ear Development. In: Castelli-Gair Hombría, J., Bovolenta, P. (eds) Organogenetic Gene Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-42767-6_8

Download citation

Publish with us

Policies and ethics