Organogenesis of the Zebrafish Kidney



The nephron is the conserved functional unit of vertebrate kidneys and is composed of a glomerular blood filter attached to a segmented tubule. The gene regulatory networks governing nephron formation during embryonic development are poorly understood and are challenging to study in complex kidney types such as the mammalian adult (metanephric) kidney. By contrast, the zebrafish embryonic (pronephric) kidney offers a number of advantages including its linearly arranged, simple two-nephron structure, and ease of genetic manipulation. As the genes involved in nephrogenesis are largely conserved, the zebrafish model can provide valuable insights into the core gene networks involved in mammalian nephron formation, with relevance to birth defects and disease. In this chapter we review the structure and function of the zebrafish pronephric nephron and summarize our current understanding of the gene regulatory networks and signaling pathways that control the formation of glomerular and tubule cell types.


Zebrafish kidney Pronephros Mesonephros Embryonic kidney Renal development Kidney development 


  1. Abu-Abed, S., Dollé, P., Metzger, D., Beckett, B., Chambon, P., & Petkovich, M. (2001). The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes & Development, 15(2), 226–240.CrossRefGoogle Scholar
  2. Bedell, V. M., Person, A. D., Larson, J. D., et al. (2012). The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development, 139(4), 793–804.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bingemann, S. C., Konrad, T. A., & Wieser, R. (2009). Zinc finger transcription factor ecotropic viral integration site 1 is induced by all-trans retinoic acid (ATRA) and acts as a dual modulator of the ATRA response. The FEBS Journal, 276(22), 6810–6822.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bollig, F., Perner, B., Besenbeck, B., et al. (2009). A highly conserved retinoic acid responsive element controls wt1a expression in the zebrafish pronephros. Development, 136(17), 2883–2892.CrossRefPubMedGoogle Scholar
  5. Boualia, S. K., Gaitan, Y., Tremblay, M., Sharma, R., Cardin, J., Kania, A., et al. (2013). A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Developmental Biology, 382(2), 555–566.CrossRefPubMedGoogle Scholar
  6. Bouchard, M., Souabni, A., Mandler, M., Neubüser, A., & Busslinger, M. (2002). Nephric lineage specification by Pax2 and Pax8. Genes & Development, 16(22), 2958–2970.CrossRefGoogle Scholar
  7. Brunskill, E. W., Aronow, B. J., Georgas, K., et al. (2008). Atlas of gene expression in the developing kidney at microanatomic resolution. Developmental Cell, 15(5), 781–791.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Call, K. M., Glaser, T., Ito, C. Y., et al. (1990). Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell, 60(3), 509–520.CrossRefPubMedGoogle Scholar
  9. Cheng, C. N., & Wingert, R. A. (2015). Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish. Developmental Biology, 399(1), 100–116.CrossRefPubMedGoogle Scholar
  10. Cheng, H.-T., Kim, M., Valerius, M. T., et al. (2007). Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development, 134(4), 801–811.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cheng, H.-T., & Kopan, R. (2005). The role of Notch signaling in specification of podocyte and proximal tubules within the developing mouse kidney. Kidney International, 68(5), 1951–1952.CrossRefPubMedGoogle Scholar
  12. Davidson, A. J. (2011). Uncharted waters: Nephrogenesis and renal regeneration in fish and mammals. Pediatric Nephrology, 26(9), 1435–1443.CrossRefPubMedGoogle Scholar
  13. de Rouffignac, C. (1972). Physiological role of the loop of Henle in urinary concentration. Kidney International, 2(6), 297–303.CrossRefPubMedGoogle Scholar
  14. Diep, C. Q., Peng, Z., Ukah, T. K., Kelly, P. M., Daigle, R. V., & Davidson, A. J. (2015). Development of the zebrafish mesonephros. Genesis, 53(3–4), 257–269.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dong, L., Pietsch, S., Tan, Z., et al. (2015). Integration of cistromic and transcriptomic analyses identifies Nphs2, Mafb, and Magi2 as wilms’ tumor 1 target genes in podocyte differentiation and maintenance. Journal of the American Society of Nephrology.Google Scholar
  16. Dressler, G. R. (2006). The cellular basis of kidney development. Annual Review of Cell and Developmental Biology, 22(1), 509–529.CrossRefPubMedGoogle Scholar
  17. Dreyer, S. D., Morello, R., German, M. S., et al. (2000). LMX1B transactivation and expression in nail–patella syndrome. Human Molecular Genetics, 9(7), 1067–1074.CrossRefPubMedGoogle Scholar
  18. Drummond, I. A., Majumdar, A., Hentschel, H., et al. (1998). Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development, 125(23), 4655–4667.PubMedGoogle Scholar
  19. Duester, G. (2008). Retinoic acid synthesis and signaling during early organogenesis. Cell, 134(6), 921–931.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fukui, K., Yang, Q., Cao, Y., et al. (2005). The HNF-1 target Collectrin controls insulin exocytosis by SNARE complex formation. Cell Metabolism, 2(6), 373–384.CrossRefPubMedGoogle Scholar
  21. Fukuyo, Y., Nakamura, T., Bubenshchikova, E., et al. (2014). Nephrin and Podocin functions are highly conserved between the zebrafish pronephros and mammalian metanephros. Molecular Medicine Report, 9(2), 457–465.Google Scholar
  22. Gavalas, A., & Krumlauf, R. (2000). Retinoid signalling and hindbrain patterning. Current Opinion in Genetics & Development, 10(4), 380–386.CrossRefGoogle Scholar
  23. Gerlach, G. F., & Wingert, R. A. (2014). Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Developmental Biology, 396(2), 183–200.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gessler, M., Poustka, A., Cavenee, W., Neve, R. L., Orkin, S. H., & Bruns, G. A. P. (1990). Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature, 343(6260), 774–778.CrossRefPubMedGoogle Scholar
  25. Glover, J. C., Renaud, J.-S., & Rijli, F. M. (2006). Retinoic acid and hindbrain patterning. Journal of Neurobiology, 66(7), 705–725.CrossRefPubMedGoogle Scholar
  26. Gresh, L., Fischer, E., Reimann, A., et al. (2004). A transcriptional network in polycystic kidney disease. The EMBO Journal, 23(7), 1657–1668.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guggino, W., Oberleithner, H., & Giebisch, G. (1988). The amphibian diluting segment. American Journal of Physiology, 254(5), F615–F627.PubMedGoogle Scholar
  28. Guo, G., Morrison, D. J., Licht, J. D., & Quaggin, S. E. (2004). WT1 activates a glomerular-specific enhancer identified from the human nephrin gene. Journal of the American Society of Nephrology, 15(11), 2851–2856.CrossRefPubMedGoogle Scholar
  29. He, B., Ebarasi, L., Zhao, Z., et al. (2014). Lmx1b and FoxC combinatorially regulate podocin expression in podocytes. Journal of the American Society of Nephrology, 25(12), 2764–2777.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Heliot, C., Desgrange, A., Buisson, I., et al. (2013). HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development, 140(4), 873–885.CrossRefPubMedGoogle Scholar
  31. Hoyt, P. R., Bartholomew, C., Davis, A. J., et al. (1997). The Evil proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mechanisms of Development, 65(1–2), 55–70.CrossRefPubMedGoogle Scholar
  32. Ichimura, K., Bubenshchikova, E., Powell, R., et al. (2012). A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish. PLoS ONE, 7(9), e45286.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ichimura, K., Powell, R., Nakamura, T., Kurihara, H., Sakai, T., & Obara, T. (2013). Podocalyxin regulates pronephric glomerular development in zebrafish. Physiological Reports, 1(3).Google Scholar
  34. Igarashi, P., Vanden Heuvel, G. B., Payne, J. A., & Forbush, B. (1995). Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-Cl cotransporter. American Journal of Physiology—Renal Physiology, 269(3), F405–F418.Google Scholar
  35. Jacobson, H. (1981). Functional segmentation of the mammalian nephron. The American Journal of Physiology, 241(3), F203–F218.PubMedGoogle Scholar
  36. Kikuchi, R., Kusuhara, H., Hattori, N., et al. (2006). Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1α/β and DNA methylation. Molecular Pharmacology, 70(3), 887–896.CrossRefPubMedGoogle Scholar
  37. Kishimoto, Y., Lee, K. H., Zon, L., Hammerschmidt, M., & Schulte-Merker, S. (1997). The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development, 124(22), 4457–4466.PubMedGoogle Scholar
  38. Kramer-Zucker, A. G., Wiessner, S., Jensen, A. M., & Drummond, I. A. (2005). Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Developmental Biology, 285(2), 316–329.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kreidberg, J. A., Sariola, H., Loring, J. M., et al. (1993). WT-1 is required for early kidney development. Cell, 74(4), 679–691.CrossRefPubMedGoogle Scholar
  40. Krishnamurthy, V. G. (1976). Cytophysiology of corpuscles of Stannius. International Review of Cytology, 46, 177–249.Google Scholar
  41. Krupinski, T., & Beitel, G. J. (2009). Unexpected roles of the Na-K-ATPase and other ion transporters in cell junctions and tubulogenesis. Physiology, 24(3), 192–201.CrossRefPubMedGoogle Scholar
  42. Kumano, G., & Smith, W. C. (2002). Revisions to the Xenopus gastrula fate map: Implications for mesoderm induction and patterning. Developmental Dynamics, 225(4), 409–421.CrossRefPubMedGoogle Scholar
  43. Lane, M. C., & Sheets, M. D. (2002). Rethinking axial patterning in amphibians. Developmental Dynamics, 225(4), 434–447.CrossRefPubMedGoogle Scholar
  44. Li, Y., Cheng, C. N., Verdun, V. A., & Wingert, R. A. (2014). Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. Developmental Biology, 386(1), 111–122.CrossRefPubMedGoogle Scholar
  45. Lienkamp, S. S., Liu, K., Karner, C. M., et al. (2012). Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nature Genetics, 44(12), 1382–1387.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu, Y., Pathak, N., Kramer-Zucker, A., & Drummond, I. A. (2007). Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development, 134(6), 1111–1122.CrossRefPubMedGoogle Scholar
  47. Ma, M., & Jiang, Y.-J. (2007). Jagged2a-Notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genetics, 3(1), e18.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Majumdar, A., Lun, K., Brand, M., & Drummond, I. A. (2000). Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development, 127(10), 2089–2098.PubMedGoogle Scholar
  49. Massa, F., Garbay, S., Bouvier, R., et al. (2013). Hepatocyte nuclear factor 1β controls nephron tubular development. Development, 140(4), 886–896.CrossRefPubMedGoogle Scholar
  50. Mastroianni, N., Fusco, M. D., Zollo, M., et al. (1996). Molecular cloning, expression pattern, and chromosomal localization of the human Na–Cl Thiazide-Sensitive Cotransporter (SLC12A3). Genomics, 35(3), 486–493.CrossRefPubMedGoogle Scholar
  51. Miller, R. K., de la Torre Canny, S. G., Jang, C.-W., et al. (2011). Pronephric tubulogenesis requires Daam1-Mediated planar cell polarity signaling. Journal of the American Society of Nephrology, 22(9), 1654–1664.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Miner, J. H. (2012). The glomerular basement membrane. Experimental Cell Research, 318(9), 973–978.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Miner, J. H., Morello, R., Andrews, K. L., et al. (2002). Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. The Journal of Clinical Investigation, 109(8), 1065–1072.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Morello, R., Zhou, G., Dreyer, S. D., et al. (2001). Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nature Genetics, 27(2), 205–208.CrossRefPubMedGoogle Scholar
  55. Mudumana, S. P., Hentschel, D., Liu, Y., Vasilyev, A., & Drummond, I. A. (2008). odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development, 135(20), 3355–3367.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mullins, M. C., Hammerschmidt, M., Kane, D. A., et al. (1996). Genes establishing dorsoventral pattern formation in the zebrafish embryo: The ventral specifying genes. Development, 123(1), 81–93.PubMedGoogle Scholar
  57. Naylor, R. W., Przepiorski, A., Ren, Q., Yu, J., & Davidson, A. J. (2013). HNF1β Is Essential for Nephron Segmentation during Nephrogenesis. Journal of the American Society of Nephrology, 24(1), 77–87.CrossRefPubMedGoogle Scholar
  58. Neto, A., Mercader, N., & Gómez-Skarmeta, J. L. (2012). The osr1 and osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of wnt2b to maintain pectoral fin development. Development, 139(2), 301–311.CrossRefPubMedGoogle Scholar
  59. Nichane, M., Van Campenhout, C., Pendeville, H., Voz, M. L., & Bellefroid, E. J. (2006). The Na+/PO4 cotransporter SLC20A1 gene labels distinct restricted subdomains of the developing pronephros in Xenopus and zebrafish embryos. Gene Expression Patterns, 6(7), 667–672.CrossRefPubMedGoogle Scholar
  60. Nishibori, Y., Katayama, K., Parikka, M., et al. (2011). Glcci1 deficiency leads to proteinuria. Journal of the American Society of Nephrology, 22(11), 2037–2046.CrossRefPubMedPubMedCentralGoogle Scholar
  61. O’Brien, L. L., Grimaldi, M., Kostun, Z., Wingert, R. A., Selleck, R., & Davidson, A. J. (2011). Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Developmental Biology, 358(2), 318–330.CrossRefPubMedPubMedCentralGoogle Scholar
  62. O’Brien, L. L., & McMahon, A. P. (2014). Induction and patterning of the metanephric nephron. Seminars in Cell & Developmental Biology, 36, 31–38.CrossRefGoogle Scholar
  63. Paroly, S. S., Wang, F., Spraggon, L., et al. (2013). Stromal protein Ecm1 regulates ureteric bud patterning and branching. PLoS ONE, 8(12), e84155.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pavenstädt, H., Kriz, W., & Kretzler, M. (2003). Cell biology of the glomerular podocyte. Physiological Reviews, 83(1), 253–307.CrossRefPubMedGoogle Scholar
  65. Perisic, L., Rodriguez, P. Q., Hultenby, K., et al. (2015). Schip1 Is a novel podocyte foot process protein that mediates actin cytoskeleton rearrangements and forms a complex with Nherf2 and Ezrin. PLoS ONE, 10(3), e0122067.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Perner, B., Englert, C., & Bollig, F. (2007). The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Developmental Biology, 309(1), 87–96.CrossRefPubMedGoogle Scholar
  67. Pyati, U. J., Webb, A. E., & Kimelman, D. (2005). Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development, 132(10), 2333–2343.CrossRefPubMedGoogle Scholar
  68. Rascle, A., Suleiman, H., Neumann, T., & Witzgall, R. (2007). Role of transcription factors in podocytes. Nephron Experimental Nephrology, 106(2), e60–e66.CrossRefPubMedGoogle Scholar
  69. Reilly, R. F., & Ellison, D. H. (2000). Mammalian distal tubule: Physiology, pathophysiology, and molecular anatomy. Physiological Reviews, 80(1), 277–313.PubMedGoogle Scholar
  70. Rosselot, C., Spraggon, L., Chia, I., et al. (2010). Non-cell-autonomous retinoid signaling is crucial for renal development. Development, 137(2), 283–292.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ryan, G., Steele-Perkins, V., Morris, J. F., Rauscher, F. J., & Dressler, G. R. (1995). Repression of Pax-2 by WT1 during normal kidney development. Development, 121(3), 867–875.PubMedGoogle Scholar
  72. Satchell, S. C., & Braet, F. (2009). Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. American Journal of Physiology—Renal Physiology, 296(5), F947–F956.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schlondorff, D. (1987). The glomerular mesangial cell: an expanding role for a specialized pericyte. The FASEB Journal, 1(4), 272–281.PubMedGoogle Scholar
  74. Schulte-Merker, S., Lee, K. J., McMahon, A. P., & Hammerschmidt, M. (1997). The zebrafish organizer requires chordino. Nature, 387(6636), 862–863.CrossRefPubMedGoogle Scholar
  75. Shimozono, S., Iimura, T., Kitaguchi, T., Higashijima, S-i., & Miyawaki, A. (2013). Visualization of an endogenous retinoic acid gradient across embryonic development. Nature, 496(7445), 363–366.Google Scholar
  76. Shmukler, B. E., Kurschat, C. E., Ackermann, G. E., et al. (2005). Zebrafish slc4a2/ae2 anion exchanger: cDNA cloning, mapping, functional characterization, and localization. American Journal of Physiology—Renal Physiology, 289(4), F835–F849.CrossRefPubMedGoogle Scholar
  77. Simon, D. B., Nelson-Williams, C., Johnson Bia, M., et al. (1996). Gitelman’s variant of Barter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nature Genetics, 12(1), 24–30.CrossRefPubMedGoogle Scholar
  78. Sun, Z., Amsterdam, A., Pazour, G. J., Cole, D. G., Miller, M. S., & Hopkins, N. (2004). A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development, 131(16), 4085–4093.CrossRefPubMedGoogle Scholar
  79. Swanhart, L. M., Takahashi, N., Jackson, R. L., et al. (2010). Characterization of an lhx1a transgenic reporter in zebrafish. The International Journal of Developmental Biology, 54(4), 731–736.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tena, J. J., Neto, A., de la Calle-Mustienes, E., Bras-Pereira, C., Casares, F., & Gómez-Skarmeta, J. L. (2007). Odd-skipped genes encode repressors that control kidney development. Developmental Biology, 301(2), 518–531.CrossRefPubMedGoogle Scholar
  81. Tomar, R., Mudumana, S. P., Pathak, N., Hukriede, N. A., & Drummond, I. A. (2014). osr1 is required for podocyte development downstream of wt1a. Journal of the American Society of Nephrology, 25(11), 2539–2545.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wagner, K.-D., Wagner, N., Guo, J.-K., et al. (2006). An inducible mouse model for PAX2-Dependent glomerular disease: Insights into a complex pathogenesis. Current Biology, 16(8), 793–800.CrossRefPubMedGoogle Scholar
  83. Wagner, K.-D., Wagner, N., & Schedl, A. (2003). The complex life of WT1. Journal of Cell Science, 116(9), 1653–1658.CrossRefPubMedGoogle Scholar
  84. Warga, R. M., & Nusslein-Volhard, C. (1999). Origin and development of the zebrafish endoderm. Development, 126(4), 827–838.PubMedGoogle Scholar
  85. White, J. T., Zhang, B., Cerqueira, D. M., Tran, U., & Wessely, O. (2010). Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development, 137(11), 1863–1873.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wingert, R. A., & Davidson, A. J. (2008). The zebrafish pronephros: A model to study nephron segmentation. Kidney International, 73(10), 1120–1127.CrossRefPubMedGoogle Scholar
  87. Wingert, R. A., & Davidson, A. J. (2011). Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. Developmental Dynamics, 240(8), 2011–2027.CrossRefPubMedGoogle Scholar
  88. Wingert, R. A., Selleck, R., Yu, J., et al. (2007). The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genetics, 3(10), e189.CrossRefPubMedCentralGoogle Scholar
  89. Yang, Y., Jeanpierre, C., Dressler, G. R., Lacoste, M., Niaudet, P., & Gubler, M.-C. (1999). WT1 and PAX-2 podocyte expression in denys-drash syndrome and isolated diffuse mesangial sclerosis. The American Journal of Pathology, 154(1), 181–192.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, School of Medical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations