Advertisement

Organogenesis of the Drosophila Respiratory System

Chapter

Abstract

The trachea (Drosophila respiratory organ) is a highly branched tubular network, which has emerged as a premier model system for the investigation of molecular and cellular mechanisms of tubular organogenesis. Genetic and molecular analyses of tracheal development have implicated an organogenetic network composed of over two hundred genes, several of which function in highly conserved cell signaling pathways. Tracheal construction incorporates the assembly of multicellular, unicellular and subcellular tube architectures, providing an instructive case study for iterative utilization of the same cell signals under diverse developmental contexts. These signals direct cell specification, migration and branch architecture. Assembly of the tracheal tubular network is driven by several morphogenetic processes, which include invagination, collective cell migration, branch fusion, cell shape changes and cell rearrangements. In addition to assembly, the genetic network also serves to control tubule size while exhibiting a remarkable degree of developmental plasticity. Here, we review all of tracheal development from specification of the primordia in early embryos through the acquisition of terminal architecture to the final clearance of the airway coincident with the onset of tracheal function.

Keywords

Embryo Tubulogenesis Organogenesis Morphogenesis Trachea Gene network 

References

  1. Affolter, M., & Caussinus, E. (2008). Tracheal branching morphogenesis in Drosophila: New insights into cell behaviour and organ architecture. Development, 135(12), 2055–2064. doi: 10.1242/dev.014498 PubMedCrossRefGoogle Scholar
  2. Affolter, M., Nellen, D., Nussbaumer, U., & Basler, K. (1994). Multiple requirements for the receptor serine/threonine kinase thick veins reveal novel functions of TGF beta homologs during Drosophila embryogenesis. Development, 120(11), 3105–3117.PubMedGoogle Scholar
  3. Anderson, M. G., Certel, S. J., Certel, K., Lee, T., Montell, D. J., & Johnson, W. A. (1996). Function of the Drosophila POU domain transcription factor drifter as an upstream regulator of breathless receptor tyrosine kinase expression in developing trachea. Development, 122(12), 4169–4178.PubMedGoogle Scholar
  4. Anderson, M. G., Perkins, G. L., Chittick, P., Shrigley, R. J., & Johnson, W. A. (1995). Drifter, a Drosophila POU-domain transcription factor, is required for correct differentiation and migration of tracheal cells and midline glia. Genes & Development, 9(1), 123–137.CrossRefGoogle Scholar
  5. Araujo, S. J., Aslam, H., Tear, G., & Casanova, J. (2005). Mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development—analysis of its role in Drosophila tracheal morphogenesis. Development Biology, 288(1), 179–193. doi: 10.1016/j.ydbio.2005.09.031 CrossRefGoogle Scholar
  6. Araujo, S. J., & Casanova, J. (2011). Sequoia establishes tip-cell number in Drosophila trachea by regulating FGF levels. Journal of Cell Science, 124(Pt 14), 2335–2340. doi: 10.1242/jcs.085613 PubMedCrossRefGoogle Scholar
  7. Araujo, S. J., Cela, C., & Llimargas, M. (2007). Tramtrack regulates different morphogenetic events during Drosophila tracheal development. Development, 134(20), 3665–3676. doi: 10.1242/dev.007328 PubMedCrossRefGoogle Scholar
  8. Armbruster, K., & Luschnig, S. (2012). The Drosophila Sec7 domain guanine nucleotide exchange factor protein Gartenzwerg localizes at the cis-Golgi and is essential for epithelial tube expansion. Journal of Cell Science, 125(Pt 5), 1318–1328. doi: 10.1242/jcs.096263 PubMedCrossRefGoogle Scholar
  9. Astle, J., Kozlova, T., & Thummel, C. S. (2003). Essential roles for the Dhr78 orphan nuclear receptor during molting of the Drosophila tracheal system. Insect Biochemistry and Molecular Biology, 33(12), 1201–1209.PubMedCrossRefGoogle Scholar
  10. Auld, V. J., Fetter, R. D., Broadie, K., & Goodman, C. S. (1995). Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell, 81(5), 757–767.PubMedCrossRefGoogle Scholar
  11. Baer, M. M., Palm, W., Eaton, S., Leptin, M., & Affolter, M. (2012). Microsomal triacylglycerol transfer protein (MTP) is required to expand tracheal lumen in Drosophila in a cell-autonomous manner. Journal of Cell Science, 125(Pt 24), 6038–6048. doi: 10.1242/jcs.110452 PubMedCrossRefGoogle Scholar
  12. Barko, S., Bugyi, B., Carlier, M. F., Gombos, R., Matusek, T., Mihaly, J., et al. (2010). Characterization of the biochemical properties and biological function of the formin homology domains of Drosophila DAAM. Journal of Biological Chemistry, 285(17), 13154–13169. doi: 10.1074/jbc.M109.093914 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barry, M. K., Triplett, A. A., & Christensen, A. C. (1999). A peritrophin-like protein expressed in the embryonic tracheae of Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 29(4), 319–327.PubMedCrossRefGoogle Scholar
  14. Batz, T., Forster, D., & Luschnig, S. (2014). The transmembrane protein Macroglobulin complement-related is essential for septate junction formation and epithelial barrier function in Drosophila. Development, 141(4), 899–908. doi: 10.1242/dev.102160 PubMedCrossRefGoogle Scholar
  15. Baumgartner, S., Littleton, J. T., Broadie, K., Bhat, M. A., Harbecke, R., Lengyel, J. A., et al. (1996). A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell, 87(6), 1059–1068.PubMedCrossRefGoogle Scholar
  16. Behr, M., Riedel, D., & Schuh, R. (2003). The claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. Developmental Cell, 5(4), 611–620.PubMedCrossRefGoogle Scholar
  17. Behr, M., Wingen, C., Wolf, C., Schuh, R., & Hoch, M. (2007). Wurst is essential for airway clearance and respiratory-tube size control. Nature Cell Biology, 9(7), 847–853. doi: 10.1038/ncb1611 PubMedCrossRefGoogle Scholar
  18. Bieber, A. J., Snow, P. M., Hortsch, M., Patel, N. H., Jacobs, J. R., Traquina, Z. R., et al. (1989). Drosophila neuroglian: A member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell, 59(3), 447–460.PubMedCrossRefGoogle Scholar
  19. Boore, J. L., & Brown, W. M. (1998). Big trees from little genomes: Mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics & Development, 8(6), 668–674.CrossRefGoogle Scholar
  20. Boube, M., Llimargas, M., & Casanova, J. (2000). Cross-regulatory interactions among tracheal genes support a co-operative model for the induction of tracheal fates in the Drosophila embryo. Mechanisms of Development, 91(1–2), 271–278.PubMedCrossRefGoogle Scholar
  21. Bradley, P. L., & Andrew, D. J. (2001). Ribbon encodes a novel BTB/POZ protein required for directed cell migration in Drosophila melanogaster. Development, 128(15), 3001–3015.PubMedGoogle Scholar
  22. Brodu, V., & Casanova, J. (2006). The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes & Development, 20(13), 1817–1828. doi: 10.1101/gad.375706 CrossRefGoogle Scholar
  23. Brown, S., Hu, N., & Hombria, J. C. (2001). Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Current Biology, 11(21), 1700–1705.PubMedCrossRefGoogle Scholar
  24. Brown, S., Hu, N., & Hombria, J. C. (2003). Novel level of signalling control in the JAK/STAT pathway revealed by in situ visualisation of protein-protein interaction during Drosophila development. Development, 130(14), 3077–3084.PubMedCrossRefGoogle Scholar
  25. Buti, E., Mesquita, D., & Araujo, S. J. (2014). Hedgehog is a positive regulator of FGF signalling during embryonic tracheal cell migration. PLoS One, 9(3), e92682. doi: 10.1371/journal.pone.0092682 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Castillejo-Lopez, C., Arias, W. M., & Baumgartner, S. (2004). The fat-like gene of Drosophila is the true orthologue of vertebrate fat cadherins and is involved in the formation of tubular organs. Journal of Biological Chemistry, 279(23), 24034–24043. doi: 10.1074/jbc.M313878200 PubMedCrossRefGoogle Scholar
  27. Caussinus, E., Colombelli, J., & Affolter, M. (2008). Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Current Biology, 18(22), 1727–1734. doi: 10.1016/j.cub.2008.10.062 PubMedCrossRefGoogle Scholar
  28. Caviglia, S., & Luschnig, S. (2013). The ETS domain transcriptional repressor Anterior open inhibits MAP kinase and Wingless signaling to couple tracheal cell fate with branch identity. Development, 140(6), 1240–1249. doi: 10.1242/dev.087874 PubMedCrossRefGoogle Scholar
  29. Cela, C., & Llimargas, M. (2006). Egfr is essential for maintaining epithelial integrity during tracheal remodelling in Drosophila. Development, 133(16), 3115–3125. doi: 10.1242/dev.02482 PubMedCrossRefGoogle Scholar
  30. Centanin, L., Dekanty, A., Romero, N., Irisarri, M., Gorr, T. A., & Wappner, P. (2008). Cell autonomy of HIF effects in Drosophila: Tracheal cells sense hypoxia and induce terminal branch sprouting. Developmental Cell, 14(4), 547–558. doi: 10.1016/j.devcel.2008.01.020 PubMedCrossRefGoogle Scholar
  31. Chanut-Delalande, H., Jung, A. C., Lin, L., Baer, M. M., Bilstein, A., Cabernard, C., et al. (2007). A genetic mosaic analysis with a repressible cell marker screen to identify genes involved in tracheal cell migration during Drosophila air sac morphogenesis. Genetics, 176(4), 2177–2187. doi: 10.1534/genetics.107.073890 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chavoshi, T. M., Moussian, B., & Uv, A. (2010). Tissue-autonomous EcR functions are required for concurrent organ morphogenesis in the Drosophila embryo. Mechanisms of Development, 127(5–6), 308–319. doi: 10.1016/j.mod.2010.01.003 PubMedCrossRefGoogle Scholar
  33. Chen, F., & Krasnow, M. A. (2014). Progenitor outgrowth from the niche in Drosophila trachea is guided by FGF from decaying branches. Science, 343(6167), 186–189. doi: 10.1126/science.1241442 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chen, C. K., Kuhnlein, R. P., Eulenberg, K. G., Vincent, S., Affolter, M., & Schuh, R. (1998). The transcription factors KNIRPS and KNIRPS RELATED control cell migration and branch morphogenesis during Drosophila tracheal development. Development, 125(24), 4959–4968.PubMedGoogle Scholar
  35. Cheng, Y. L., & Andrew, D. J. (2015). Extracellular Mipp1 activity confers migratory advantage to epithelial cells during collective migration. Cell Reports, 13(10), 2174–2188. doi: 10.1016/j.celrep.2015.10.071 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cheshire, A. M., Kerman, B. E., Zipfel, W. R., Spector, A. A., & Andrew, D. J. (2008). Kinetic and mechanical analysis of live tube morphogenesis. Developmental Dynamics, 237(10), 2874–2888. doi: 10.1002/dvdy.21709 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chiang, C., Young, K. E., & Beachy, P. A. (1995). Control of Drosophila tracheal branching by the novel homeodomain gene unplugged, a regulatory target for genes of the bithorax complex. Development, 121(11), 3901–3912.PubMedGoogle Scholar
  38. Chihara, T., & Hayashi, S. (2000). Control of tracheal tubulogenesis by Wingless signaling. Development, 127(20), 4433–4442.PubMedGoogle Scholar
  39. Chihara, T., Kato, K., Taniguchi, M., Ng, J., & Hayashi, S. (2003). Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Development, 130(7), 1419–1428.PubMedCrossRefGoogle Scholar
  40. Chung, S., Chavez, C., & Andrew, D. J. (2011). Trachealess (Trh) regulates all tracheal genes during Drosophila embryogenesis. Development Biology, 360(1), 160–172. doi: 10.1016/j.ydbio.2011.09.014 CrossRefGoogle Scholar
  41. Chung, S., Vining, M. S., Bradley, P. L., Chan, C. C., Wharton, K. A, Jr., & Andrew, D. J. (2009). Serrano (sano) functions with the planar cell polarity genes to control tracheal tube length. PLoS Genetics, 5(11), e1000746. doi: 10.1371/journal.pgen.1000746 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Copf, T., Rabet, N., & Averof, M. (2006). Knockdown of spalt function by RNAi causes de-repression of Hox genes and homeotic transformations in the crustacean Artemia franciscana. Development Biology, 298(1), 87–94. doi: 10.1016/j.ydbio.2006.07.024 CrossRefGoogle Scholar
  43. Cruz, J., Bota-Rabassedas, N., & Franch-Marro, X. (2015). FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2. Scientific Reports, 5, 17806. doi: 10.1038/srep17806 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cubas, P., Modolell, J., & Ruiz-Gomez, M. (1994). The helix-loop-helix extramacrochaetae protein is required for proper specification of many cell types in the Drosophila embryo. Development, 120(9), 2555–2566.PubMedGoogle Scholar
  45. Damen, W. G., Saridaki, T., & Averof, M. (2002). Diverse adaptations of an ancestral gill: A common evolutionary origin for wings, breathing organs, and spinnerets. Current Biology, 12(19), 1711–1716.PubMedCrossRefGoogle Scholar
  46. Dammai, V., Adryan, B., Lavenburg, K. R., & Hsu, T. (2003). Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes & Development, 17(22), 2812–2824. doi: 10.1101/gad.1096903 CrossRefGoogle Scholar
  47. de Celis, J. F., Llimargas, M., & Casanova, J. (1995). Ventral veinless, the gene encoding the Cf1a transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster. Development, 121(10), 3405–3416.PubMedGoogle Scholar
  48. Deligiannaki, M., Casper, A. L., Jung, C., & Gaul, U. (2015). Pasiflora proteins are novel core components of the septate junction. Development, 142(17), 3046–3057. doi: 10.1242/dev.119412 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Devine, W. P., Lubarsky, B., Shaw, K., Luschnig, S., Messina, L., & Krasnow, M. A. (2005). Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17014–17019. doi: 10.1073/pnas.0506676102 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dong, B., Kakihara, K., Otani, T., Wada, H., & Hayashi, S. (2013). Rab9 and retromer regulate retrograde trafficking of luminal protein required for epithelial tube length control. Nature Communications, 4, 1358. doi: 10.1038/ncomms2347 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dong, B., Miao, G., & Hayashi, S. (2014). A fat body-derived apical extracellular matrix enzyme is transported to the tracheal lumen and is required for tube morphogenesis in Drosophila. Development, 141(21), 4104–4109. doi: 10.1242/dev.109975 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dorfman, R., Glazer, L., Weihe, U., Wernet, M. F., & Shilo, B. Z. (2002a). Elbow and Noc define a family of zinc finger proteins controlling morphogenesis of specific tracheal branches. Development, 129(15), 3585–3596.PubMedGoogle Scholar
  53. Dorfman, R., Shilo, B. Z., & Volk, T. (2002b). Stripe provides cues synergizing with branchless to direct tracheal cell migration. Development Biology, 252(1), 119–126.CrossRefGoogle Scholar
  54. Englund, C., Steneberg, P., Falileeva, L., Xylourgidis, N., & Samakovlis, C. (2002). Attractive and repulsive functions of Slit are mediated by different receptors in the Drosophila trachea. Development, 129(21), 4941–4951.PubMedGoogle Scholar
  55. Englund, C., Uv, A. E., Cantera, R., Mathies, L. D., Krasnow, M. A., & Samakovlis, C. (1999). Adrift, a novel bnl-induced Drosophila gene, required for tracheal pathfinding into the CNS. Development, 126(7), 1505–1514.PubMedGoogle Scholar
  56. Eulenberg, K. G., & Schuh, R. (1997). The tracheae defective gene encodes a bZIP protein that controls tracheal cell movement during Drosophila embryogenesis. EMBO Journal, 16(23), 7156–7165. doi: 10.1093/emboj/16.23.7156 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Forster, D., Armbruster, K., & Luschnig, S. (2010). Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila. Current Biology, 20(1), 62–68. doi: 10.1016/j.cub.2009.11.062 PubMedCrossRefGoogle Scholar
  58. Forster, D., & Luschnig, S. (2012). Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila. Nature Cell Biology, 14(5), 526–534. doi: 10.1038/ncb2456 PubMedCrossRefGoogle Scholar
  59. Fox, R. M., & Andrew, D. J. (2015). Changes in organelle position and epithelial architecture associated with loss of CrebA. Biology Open, 4(3), 317–330. doi: 10.1242/bio.201411205 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Fraisl, P., Mazzone, M., Schmidt, T., & Carmeliet, P. (2009). Regulation of angiogenesis by oxygen and metabolism. Developmental Cell, 16(2), 167–179. doi: 10.1016/j.devcel.2009.01.003 PubMedCrossRefGoogle Scholar
  61. Franch-Marro, X., Martin, N., Averof, M., & Casanova, J. (2006). Association of tracheal placodes with leg primordia in Drosophila and implications for the origin of insect tracheal systems. Development, 133(5), 785–790. doi: 10.1242/dev.02260 PubMedCrossRefGoogle Scholar
  62. Francis, D., & Ghabrial, A. S. (2015). Compensatory branching morphogenesis of stalk cells in the Drosophila trachea. Development, 142(11), 2048–2057. doi: 10.1242/dev.119602 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gallio, M., Englund, C., Kylsten, P., & Samakovlis, C. (2004). Rhomboid 3 orchestrates Slit-independent repulsion of tracheal branches at the CNS midline. Development, 131(15), 3605–3614. doi: 10.1242/dev.01242 PubMedCrossRefGoogle Scholar
  64. Gervais, L., & Casanova, J. (2010). In vivo coupling of cell elongation and lumen formation in a single cell. Current Biology, 20(4), 359–366. doi: 10.1016/j.cub.2009.12.043 PubMedCrossRefGoogle Scholar
  65. Gervais, L., Lebreton, G., & Casanova, J. (2012). The making of a fusion branch in the Drosophila trachea. Development Biology, 362(2), 187–193. doi: 10.1016/j.ydbio.2011.11.018 CrossRefGoogle Scholar
  66. Ghabrial, A. S. (2012). A sweet spot in the FGFR signal transduction pathway. Science signaling, 5(207), pe1. doi: 10.1126/scisignal.2002789 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ghabrial, A. S., & Krasnow, M. A. (2006). Social interactions among epithelial cells during tracheal branching morphogenesis. Nature, 441(7094), 746–749. doi: 10.1038/nature04829 PubMedCrossRefGoogle Scholar
  68. Ghabrial, A. S., Levi, B. P., & Krasnow, M. A. (2011). A systematic screen for tube morphogenesis and branching genes in the Drosophila tracheal system. PLoS Genetics, 7(7), e1002087. doi: 10.1371/journal.pgen.1002087 PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ghabrial, A., Luschnig, S., Metzstein, M. M., & Krasnow, M. A. (2003). Branching morphogenesis of the Drosophila tracheal system. Annual Review of Cell and Developmental Biology, 19, 623–647. doi: 10.1146/annurev.cellbio.19.031403.160043 PubMedCrossRefGoogle Scholar
  70. Gillot, C. (2005). Gas exchange. In C. Gillott (Ed.), Entomology (pp. 469–485). The Netherlands: Springer.Google Scholar
  71. Glasheen, B. M., Robbins, R. M., Piette, C., Beitel, G. J., & Page-McCaw, A. (2010). A matrix metalloproteinase mediates airway remodeling in Drosophila. Development Biology, 344(2), 772–783. doi: 10.1016/j.ydbio.2010.05.504 CrossRefGoogle Scholar
  72. Glazer, L., & Shilo, B. Z. (2001). Hedgehog signaling patterns the tracheal branches. Development, 128(9), 1599–1606.PubMedGoogle Scholar
  73. Grieder, N. C., Caussinus, E., Parker, D. S., Cadigan, K., Affolter, M., & Luschnig, S. (2008). GammaCOP is required for apical protein secretion and epithelial morphogenesis in Drosophila melanogaster. PLoS One, 3(9), e3241. doi: 10.1371/journal.pone.0003241 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gu, Y. Z., Hogenesch, J. B., & Bradfield, C. A. (2000). The PAS superfamily: Sensors of environmental and developmental signals. Annual Review of Pharmacology and Toxicology, 40, 519–561. doi: 10.1146/annurev.pharmtox.40.1.519 PubMedCrossRefGoogle Scholar
  75. Guha, A., Lin, L., & Kornberg, T. B. (2009). Regulation of Drosophila matrix metalloprotease Mmp2 is essential for wing imaginal disc: Trachea association and air sac tubulogenesis. Development Biology, 335(2), 317–326. doi: 10.1016/j.ydbio.2009.09.005 CrossRefGoogle Scholar
  76. Guillemin, K., Groppe, J., Ducker, K., Treisman, R., Hafen, E., Affolter, M., et al. (1996). The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development, 122(5), 1353–1362.PubMedGoogle Scholar
  77. Guillemin, K., Williams, T., & Krasnow, M. A. (2001). A nuclear lamin is required for cytoplasmic organization and egg polarity in Drosophila. Nature Cell Biology, 3(9), 848–851. doi: 10.1038/ncb0901-848 PubMedCrossRefGoogle Scholar
  78. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y., & Krasnow, M. A. (1998). Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell, 92(2), 253–263.PubMedCrossRefGoogle Scholar
  79. Hall, S., Bone, C., Oshima, K., Zhang, L., McGraw, M., Lucas, B., et al. (2014). Macroglobulin complement-related encodes a protein required for septate junction organization and paracellular barrier function in Drosophila. Development, 141(4), 889–898. doi: 10.1242/dev.102152 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Han, Z., Li, X., Wu, J., & Olson, E. N. (2004). A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12567–12572. doi: 10.1073/pnas.0405085101 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M., & Perrimon, N. (1998). Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes & Development, 12(20), 3252–3263.CrossRefGoogle Scholar
  82. Hartenstein, K., Sinha, P., Mishra, A., Schenkel, H., Torok, I., & Mechler, B. M. (1997). The congested-like tracheae gene of Drosophila melanogaster encodes a member of the mitochondrial carrier family required for gas-filling of the tracheal system and expansion of the wings after eclosion. Genetics, 147(4), 1755–1768.PubMedPubMedCentralGoogle Scholar
  83. Hemphala, J., Uv, A., Cantera, R., Bray, S., & Samakovlis, C. (2003). Grainy head controls apical membrane growth and tube elongation in response to Branchless/FGF signalling. Development, 130(2), 249–258.PubMedCrossRefGoogle Scholar
  84. Hijazi, A., Haenlin, M., Waltzer, L., & Roch, F. (2011). The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila. PLoS One, 6(3), e17763. doi: 10.1371/journal.pone.0017763 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hijazi, A., Masson, W., Auge, B., Waltzer, L., Haenlin, M., & Roch, F. (2009). Boudin is required for septate junction organisation in Drosophila and codes for a diffusible protein of the Ly6 superfamily. Development, 136(13), 2199–2209. doi: 10.1242/dev.033845 PubMedCrossRefGoogle Scholar
  86. Hildebrandt, A., Pflanz, R., Behr, M., Tarp, T., Riedel, D., & Schuh, R. (2015). Bark beetle controls epithelial morphogenesis by septate junction maturation in Drosophila. Development Biology, 400(2), 237–247. doi: 10.1016/j.ydbio.2015.02.008 CrossRefGoogle Scholar
  87. Hsouna, A., Lawal, H. O., Izevbaye, I., Hsu, T., & O’Donnell, J. M. (2007). Drosophila dopamine synthesis pathway genes regulate tracheal morphogenesis. Development Biology, 308(1), 30–43. doi: 10.1016/j.ydbio.2007.04.047 CrossRefGoogle Scholar
  88. Hsouna, A., Nallamothu, G., Kose, N., Guinea, M., Dammai, V., & Hsu, T. (2010). Drosophila von Hippel-Lindau tumor suppressor gene function in epithelial tubule morphogenesis. Molecular and Cellular Biology, 30(15), 3779–3794. doi: 10.1128/MCB.01578-09 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ikeya, T., & Hayashi, S. (1999). Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea. Development, 126(20), 4455–4463.PubMedGoogle Scholar
  90. Ile, K. E., Tripathy, R., Goldfinger, V., & Renault, A. D. (2012). Wunen, a Drosophila lipid phosphate phosphatase, is required for septate junction-mediated barrier function. Development, 139(14), 2535–2546. doi: 10.1242/dev.077289 PubMedCrossRefGoogle Scholar
  91. Imam, F., Sutherland, D., Huang, W., & Krasnow, M. A. (1999). Stumps, a Drosophila gene required for fibroblast growth factor (FGF)-directed migrations of tracheal and mesodermal cells. Genetics, 152(1), 307–318.PubMedPubMedCentralGoogle Scholar
  92. Iordanou, E., Chandran, R. R., Yang, Y., Essak, M., Blackstone, N., & Jiang, L. (2014). The novel Smad protein expansion regulates the receptor tyrosine kinase pathway to control Drosophila tracheal tube size. Development Biology, 393(1), 93–108. doi: 10.1016/j.ydbio.2014.06.016 CrossRefGoogle Scholar
  93. Isaac, D. D., & Andrew, D. J. (1996). Tubulogenesis in Drosophila: A requirement for the trachealess gene product. Genes & Development, 10(1), 103–117.CrossRefGoogle Scholar
  94. Ismat, A., Cheshire, A. M., & Andrew, D. J. (2013). The secreted AdamTS-A metalloprotease is required for collective cell migration. Development, 140(9), 1981–1993. doi: 10.1242/dev.087908 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Izumi, Y., & Furuse, M. (2014). Molecular organization and function of invertebrate occluding junctions. Seminars in Cell & Developmental Biology,. doi: 10.1016/j.semcdb.2014.09.009 Google Scholar
  96. Jack, J., & Myette, G. (1997). The genes raw and ribbon are required for proper shape of tubular epithelial tissues in Drosophila. Genetics, 147(1), 243–253.PubMedPubMedCentralGoogle Scholar
  97. Jarecki, J., Johnson, E., & Krasnow, M. A. (1999). Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell, 99(2), 211–220.PubMedCrossRefGoogle Scholar
  98. Jaspers, M. H., Pflanz, R., Riedel, D., Kawelke, S., Feussner, I., & Schuh, R. (2014). The fatty acyl-CoA reductase Waterproof mediates airway clearance in Drosophila. Development Biology, 385(1), 23–31. doi: 10.1016/j.ydbio.2013.10.022 CrossRefGoogle Scholar
  99. JayaNandanan, N., Mathew, R., & Leptin, M. (2014). Guidance of subcellular tubulogenesis by actin under the control of a synaptotagmin-like protein and Moesin. Nature Communications, 5, 3036. doi: 10.1038/ncomms4036 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jayaram, S. A., Senti, K. A., Tiklova, K., Tsarouhas, V., Hemphala, J., & Samakovlis, C. (2008). COPI vesicle transport is a common requirement for tube expansion in Drosophila. PLoS One, 3(4), e1964. doi: 10.1371/journal.pone.0001964 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Jazwinska, A., Ribeiro, C., & Affolter, M. (2003). Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. Nature Cell Biology, 5(10), 895–901. doi: 10.1038/ncb1049 PubMedCrossRefGoogle Scholar
  102. Jeon, M., Scott, M. P., & Zinn, K. (2012). Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila. Biology Open, 1(6), 548–558. doi: 10.1242/bio.2012471 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Jeon, M., & Zinn, K. (2009). Receptor tyrosine phosphatases control tracheal tube geometries through negative regulation of Egfr signaling. Development, 136(18), 3121–3129. doi: 10.1242/dev.033597 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Jiang, L., & Crews, S. T. (2003). The Drosophila dysfusion basic helix-loop-helix (bHLH)-PAS gene controls tracheal fusion and levels of the trachealess bHLH-PAS protein. Molecular and Cellular Biology, 23(16), 5625–5637.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Jiang, L., & Crews, S. T. (2006). Dysfusion transcriptional control of Drosophila tracheal migration, adhesion, and fusion. Molecular and Cellular Biology, 26(17), 6547–6556. doi: 10.1128/MCB.00284-06 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Jiang, L., & Crews, S. T. (2007). Transcriptional specificity of Drosophila dysfusion and the control of tracheal fusion cell gene expression. Journal of Biological Chemistry, 282(39), 28659–28668. doi: 10.1074/jbc.M703803200 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Jiang, L., Pearson, J. C., & Crews, S. T. (2010). Diverse modes of Drosophila tracheal fusion cell transcriptional regulation. Mechanisms of Development, 127(5–6), 265–280. doi: 10.1016/j.mod.2010.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Jiang, L., Rogers, S. L., & Crews, S. T. (2007). The Drosophila Dead end Arf-like3 GTPase controls vesicle trafficking during tracheal fusion cell morphogenesis. Development Biology, 311(2), 487–499. doi: 10.1016/j.ydbio.2007.08.049 CrossRefGoogle Scholar
  109. Jin, J., Anthopoulos, N., Wetsch, B., Binari, R. C., Isaac, D. D., Andrew, D. J., et al. (2001). Regulation of Drosophila tracheal system development by protein kinase B. Developmental Cell, 1(6), 817–827.PubMedCrossRefGoogle Scholar
  110. Jones, T. A., & Metzstein, M. M. (2011). A novel function for the PAR complex in subcellular morphogenesis of tracheal terminal cells in Drosophila melanogaster. Genetics, 189(1), 153–164. doi: 10.1534/genetics.111.130351 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Jones, T. A., Nikolova, L. S., Schjelderup, A., & Metzstein, M. M. (2014). Exocyst-mediated membrane trafficking is required for branch outgrowth in Drosophila tracheal terminal cells. Development Biology, 390(1), 41–50. doi: 10.1016/j.ydbio.2014.02.021 CrossRefGoogle Scholar
  112. Jung, A. C., Ribeiro, C., Michaut, L., Certa, U., & Affolter, M. (2006). Polychaetoid/ZO-1 is required for cell specification and rearrangement during Drosophila tracheal morphogenesis. Current Biology, 16(12), 1224–1231. doi: 10.1016/j.cub.2006.04.048 PubMedCrossRefGoogle Scholar
  113. Kakihara, K., Shinmyozu, K., Kato, K., Wada, H., & Hayashi, S. (2008). Conversion of plasma membrane topology during epithelial tube connection requires Arf-like 3 small GTPase in Drosophila. Mechanisms of Development, 125(3–4), 325–336. doi: 10.1016/j.mod.2007.10.012 PubMedCrossRefGoogle Scholar
  114. Kamimura, K., Fujise, M., Villa, F., Izumi, S., Habuchi, H., Kimata, K., et al. (2001). Drosophila heparan sulfate 6-O-sulfotransferase (dHS6ST) gene. Structure, expression, and function in the formation of the tracheal system. Journal of Biological Chemistry, 276(20), 17014–17021. doi: 10.1074/jbc.M011354200 PubMedCrossRefGoogle Scholar
  115. Kato, K., Chihara, T., & Hayashi, S. (2004). Hedgehog and Decapentaplegic instruct polarized growth of cell extensions in the Drosophila trachea. Development, 131(21), 5253–5261. doi: 10.1242/dev.01404 PubMedCrossRefGoogle Scholar
  116. Kerman, B. E., Cheshire, A. M., & Andrew, D. J. (2006). From fate to function: The Drosophila trachea and salivary gland as models for tubulogenesis. Differentiation, 74(7), 326–348. doi: 10.1111/j.1432-0436.2006.00095.x PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kerman, B. E., Cheshire, A. M., Myat, M. M., & Andrew, D. J. (2008). Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Development Biology, 320(1), 278–288. doi: 10.1016/j.ydbio.2008.05.541 CrossRefGoogle Scholar
  118. Klambt, C., Glazer, L., & Shilo, B. Z. (1992). breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes & Development, 6(9), 1668–1678.CrossRefGoogle Scholar
  119. Kondo, T., Hashimoto, Y., Kato, K., Inagaki, S., Hayashi, S., & Kageyama, Y. (2007). Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. Nature Cell Biology, 9(6), 660–665. doi: 10.1038/ncb1595 PubMedCrossRefGoogle Scholar
  120. Kondo, T., & Hayashi, S. (2013). Mitotic cell rounding accelerates epithelial invagination. Nature, 494(7435), 125–129. doi: 10.1038/nature11792 PubMedCrossRefGoogle Scholar
  121. Krause, C., Wolf, C., Hemphala, J., Samakovlis, C., & Schuh, R. (2006). Distinct functions of the leucine-rich repeat transmembrane proteins capricious and tartan in the Drosophila tracheal morphogenesis. Development Biology, 296(1), 253–264. doi: 10.1016/j.ydbio.2006.04.462 CrossRefGoogle Scholar
  122. Kuhnlein, R. P., & Schuh, R. (1996). Dual function of the region-specific homeotic gene spalt during Drosophila tracheal system development. Development, 122(7), 2215–2223.PubMedGoogle Scholar
  123. Laplante, C., Paul, S. M., Beitel, G. J., & Nilson, L. A. (2010). Echinoid regulates tracheal morphology and fusion cell fate in Drosophila. Developmental Dynamics, 239(9), 2509–2519. doi: 10.1002/dvdy.22386 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Laprise, P., Paul, S. M., Boulanger, J., Robbins, R. M., Beitel, G. J., & Tepass, U. (2010). Epithelial polarity proteins regulate Drosophila tracheal tube size in parallel to the luminal matrix pathway. Current Biology, 20(1), 55–61. doi: 10.1016/j.cub.2009.11.017 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lee, S., & Kolodziej, P. A. (2002). The plakin Short Stop and the RhoA GTPase are required for E-cadherin-dependent apical surface remodeling during tracheal tube fusion. Development, 129(6), 1509–1520.PubMedGoogle Scholar
  126. Lee, M., Lee, S., Zadeh, A. D., & Kolodziej, P. A. (2003). Distinct sites in E-cadherin regulate different steps in Drosophila tracheal tube fusion. Development, 130(24), 5989–5999. doi: 10.1242/dev.00806 PubMedCrossRefGoogle Scholar
  127. Lee, J. R., Urban, S., Garvey, C. F., & Freeman, M. (2001). Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell, 107(2), 161–171.PubMedCrossRefGoogle Scholar
  128. Letizia, A., Sotillos, S., Campuzano, S., & Llimargas, M. (2011). Regulated Crb accumulation controls apical constriction and invagination in Drosophila tracheal cells. Journal of Cell Science, 124(Pt 2), 240–251. doi: 10.1242/jcs.073601 PubMedCrossRefGoogle Scholar
  129. Levi, B. P., Ghabrial, A. S., & Krasnow, M. A. (2006). Drosophila talin and integrin genes are required for maintenance of tracheal terminal branches and luminal organization. Development, 133(12), 2383–2393. doi: 10.1242/dev.02404 PubMedCrossRefGoogle Scholar
  130. Li, J., Li, W., Calhoun, H. C., Xia, F., Gao, F. B., & Li, W. X. (2003). Patterns and functions of STAT activation during Drosophila embryogenesis. Mechanisms of Development, 120(12), 1455–1468.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Lin, X., Buff, E. M., Perrimon, N., & Michelson, A. M. (1999). Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development, 126(17), 3715–3723.PubMedGoogle Scholar
  132. Linneweber, G. A., Jacobson, J., Busch, K. E., Hudry, B., Christov, C. P., Dormann, D., et al. (2014). Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching. Cell, 156(1–2), 69–83. doi: 10.1016/j.cell.2013.12.008 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Liu, Q. X., Jindra, M., Ueda, H., Hiromi, Y., & Hirose, S. (2003a). Drosophila MBF1 is a co-activator for Tracheae defective and contributes to the formation of tracheal and nervous systems. Development, 130(4), 719–728.PubMedCrossRefGoogle Scholar
  134. Liu, L., Johnson, W. A., & Welsh, M. J. (2003b). Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 2128–2133. doi: 10.1073/pnas.252785099 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Llimargas, M. (1999). The Notch pathway helps to pattern the tips of the Drosophila tracheal branches by selecting cell fates. Development, 126(11), 2355–2364.PubMedGoogle Scholar
  136. Llimargas, M. (2000). Wingless and its signalling pathway have common and separable functions during tracheal development. Development, 127(20), 4407–4417.PubMedGoogle Scholar
  137. Llimargas, M., & Casanova, J. (1997). ventral veinless, a POU domain transcription factor, regulates different transduction pathways required for tracheal branching in Drosophila. Development, 124(17), 3273–3281.PubMedGoogle Scholar
  138. Llimargas, M., & Casanova, J. (1999). EGF signalling regulates cell invagination as well as cell migration during formation of tracheal system in Drosophila. Development Genes and Evolution, 209(3), 174–179.PubMedCrossRefGoogle Scholar
  139. Llimargas, M., & Lawrence, P. A. (2001). Seven Wnt homologues in Drosophila: A case study of the developing tracheae. Proceedings of the National Academy of Sciences of the United States of America, 98(25), 14487–14492. doi: 10.1073/pnas.251304398 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Llimargas, M., Strigini, M., Katidou, M., Karagogeos, D., & Casanova, J. (2004). Lachesin is a component of a septate junction-based mechanism that controls tube size and epithelial integrity in the Drosophila tracheal system. Development, 131(1), 181–190. doi: 10.1242/dev.00917 PubMedCrossRefGoogle Scholar
  141. Long, S. K., Fulkerson, E., Breese, R., Hernandez, G., Davis, C., Melton, M. A., et al. (2014). A comparison of midline and tracheal gene regulation during Drosophila development. PLoS One, 9(1), e85518. doi: 10.1371/journal.pone.0085518 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Lundstrom, A., Gallio, M., Englund, C., Steneberg, P., Hemphala, J., Aspenstrom, P., et al. (2004). Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes & Development, 18(17), 2161–2171. doi: 10.1101/gad.310204 CrossRefGoogle Scholar
  143. Luschnig, S., Batz, T., Armbruster, K., & Krasnow, M. A. (2006). Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Current Biology, 16(2), 186–194. doi: 10.1016/j.cub.2005.11.072 PubMedCrossRefGoogle Scholar
  144. Luschnig, S., & Uv, A. (2014). Luminal matrices: An inside view on organ morphogenesis. Experimental Cell Research, 321(1), 64–70. doi: 10.1016/j.yexcr.2013.09.010 PubMedCrossRefGoogle Scholar
  145. Manning, G., & Krasnow, M. (1993). Development of the Drosophila tracheal system. In M. Bate & A. M. Arias (Eds.), The develoment of Drosophila melanogaster (Vol. 1, pp. 609–686). Plainview, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  146. Mariappa, D., Sauert, K., Marino, K., Turnock, D., Webster, R., van Aalten, D. M., et al. (2011). Protein O-GlcNAcylation is required for fibroblast growth factor signaling in Drosophila. Science Signaling, 4(204), ra89. doi: 10.1126/scisignal.2002335 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Martinek, N., Shahab, J., Saathoff, M., & Ringuette, M. (2008). Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos. Journal of Cell Science, 121(Pt 10), 1671–1680. doi: 10.1242/jcs.021931 PubMedCrossRefGoogle Scholar
  148. Maruyama, R., & Andrew, D. J. (2012). Drosophila as a model for epithelial tube formation. Developmental Dynamics, 241(1), 119–135. doi: 10.1002/dvdy.22775 PubMedCrossRefGoogle Scholar
  149. Mathews, W. R., Ong, D., Milutinovich, A. B., & Van Doren, M. (2006). Zinc transport activity of fear of intimacy is essential for proper gonad morphogenesis and DE-cadherin expression. Development, 133(6), 1143–1153. doi: 10.1242/dev.02256 PubMedCrossRefGoogle Scholar
  150. Mathews, W. R., Wang, F., Eide, D. J., & Van Doren, M. (2005). Drosophila fear of intimacy encodes a Zrt/IRT-like protein (ZIP) family zinc transporter functionally related to mammalian ZIP proteins. Journal of Biological Chemistry, 280(1), 787–795. doi: 10.1074/jbc.M411308200 PubMedCrossRefGoogle Scholar
  151. Matusek, T., Djiane, A., Jankovics, F., Brunner, D., Mlodzik, M., & Mihaly, J. (2006). The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development, 133(5), 957–966. doi: 10.1242/dev.02266 PubMedCrossRefGoogle Scholar
  152. McKay, J. P., Nightingale, B., & Pollock, J. A. (2008). Helmsman is expressed in both trachea and photoreceptor development: Partial inactivation alters tracheal morphology and visually guided behavior. Journal of Neurogenetics, 22(2), 1. doi: 10.1080/01677060801893276 PubMedCrossRefGoogle Scholar
  153. Metzger, R. J., & Krasnow, M. A. (1999). Genetic control of branching morphogenesis. Science, 284(5420), 1635–1639.PubMedCrossRefGoogle Scholar
  154. Michelson, A. M., Gisselbrecht, S., Buff, E., & Skeath, J. B. (1998). Heartbroken is a specific downstream mediator of FGF receptor signalling in Drosophila. Development, 125(22), 4379–4389.PubMedGoogle Scholar
  155. Mitchell, B., & Crews, S. T. (2002). Expression of the Artemia trachealess gene in the salt gland and epipod. Evolution & Development, 4(5), 344–353.CrossRefGoogle Scholar
  156. Morozova, T., Hackett, J., Sedaghat, Y., & Sonnenfeld, M. (2010). The Drosophila jing gene is a downstream target in the Trachealess/Tango tracheal pathway. Development Genes and Evolution, 220(7–8), 191–206. doi: 10.1007/s00427-010-0339-z PubMedCrossRefGoogle Scholar
  157. Mortimer, N. T., & Moberg, K. H. (2007). The Drosophila F-box protein Archipelago controls levels of the Trachealess transcription factor in the embryonic tracheal system. Development Biology, 312(2), 560–571. doi: 10.1016/j.ydbio.2007.10.002 CrossRefGoogle Scholar
  158. Mortimer, N. T., & Moberg, K. H. (2009). Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia. Development Biology, 329(2), 294–305. doi: 10.1016/j.ydbio.2009.03.001 CrossRefGoogle Scholar
  159. Mortimer, N. T., & Moberg, K. H. (2013). The archipelago ubiquitin ligase subunit acts in target tissue to restrict tracheal terminal cell branching and hypoxic-induced gene expression. PLoS Genetics, 9(2), e1003314. doi: 10.1371/journal.pgen.1003314 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Moussian, B., Letizia, A., Martinez-Corrales, G., Rotstein, B., Casali, A., & Llimargas, M. (2015). Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition. PLoS Genetics, 11(1), e1004939. doi: 10.1371/journal.pgen.1004939 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Moussian, B., Tang, E., Tonning, A., Helms, S., Schwarz, H., Nusslein-Volhard, C., et al. (2006). Drosophila Knickkopf and retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development, 133(1), 163–171. doi: 10.1242/dev.02177 PubMedCrossRefGoogle Scholar
  162. Myat, M. M., Lightfoot, H., Wang, P., & Andrew, D. J. (2005). A molecular link between FGF and Dpp signaling in branch-specific migration of the Drosophila trachea. Development Biology, 281(1), 38–52. doi: 10.1016/j.ydbio.2005.02.005 CrossRefGoogle Scholar
  163. Nelson, K. S., Furuse, M., & Beitel, G. J. (2010). The Drosophila Claudin Kune-kune is required for septate junction organization and tracheal tube size control. Genetics, 185(3), 831–839. doi: 10.1534/genetics.110.114959 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Ng, T., Yu, F., & Roy, S. (2006). A homologue of the vertebrate SET domain and zinc finger protein Blimp-1 regulates terminal differentiation of the tracheal system in the Drosophila embryo. Development Genes and Evolution, 216(5), 243–252. doi: 10.1007/s00427-005-0044-5 PubMedCrossRefGoogle Scholar
  165. Nishimura, M., Inoue, Y., & Hayashi, S. (2007). A wave of EGFR signaling determines cell alignment and intercalation in the Drosophila tracheal placode. Development, 134(23), 4273–4282. doi: 10.1242/dev.010397 PubMedCrossRefGoogle Scholar
  166. Norum, M., Tang, E., Chavoshi, T., Schwarz, H., Linke, D., Uv, A., et al. (2010). Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation. PLoS One, 5(5), e10802. doi: 10.1371/journal.pone.0010802 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Nussbaumer, U., Halder, G., Groppe, J., Affolter, M., & Montagne, J. (2000). Expression of the blistered/DSRF gene is controlled by different morphogens during Drosophila trachea and wing development. Mechanisms of Development, 96(1), 27–36.PubMedCrossRefGoogle Scholar
  168. Ohshiro, T., Emori, Y., & Saigo, K. (2002). Ligand-dependent activation of breathless FGF receptor gene in Drosophila developing trachea. Mechanisms of Development, 114(1–2), 3–11.PubMedCrossRefGoogle Scholar
  169. Ohshiro, T., & Saigo, K. (1997). Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea. Development, 124(20), 3975–3986.PubMedGoogle Scholar
  170. Oshima, K., Takeda, M., Kuranaga, E., Ueda, R., Aigaki, T., Miura, M., et al. (2006). IKK epsilon regulates F actin assembly and interacts with Drosophila IAP1 in cellular morphogenesis. Current Biology, 16(15), 1531–1537. doi: 10.1016/j.cub.2006.06.032 PubMedCrossRefGoogle Scholar
  171. Parvy, J. P., Napal, L., Rubin, T., Poidevin, M., Perrin, L., Wicker-Thomas, C., et al. (2012). Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genetics, 8(8), e1002925. doi: 10.1371/journal.pgen.1002925 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Paul, S. M., Palladino, M. J., & Beitel, G. J. (2007). A pump-independent function of the Na, K-ATPase is required for epithelial junction function and tracheal tube-size control. Development, 134(1), 147–155. doi: 10.1242/dev.02710 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Paul, S. M., Ternet, M., Salvaterra, P. M., & Beitel, G. J. (2003). The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development, 130(20), 4963–4974. doi: 10.1242/dev.00691 PubMedCrossRefGoogle Scholar
  174. Perkins, L. A., Johnson, M. R., Melnick, M. B., & Perrimon, N. (1996). The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Development Biology, 180(1), 63–81. doi: 10.1006/dbio.1996.0285 CrossRefGoogle Scholar
  175. Peterson, S. J., & Krasnow, M. A. (2015). Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle. Cell, 160(1–2), 313–323. doi: 10.1016/j.cell.2014.11.043 PubMedCrossRefGoogle Scholar
  176. Pitsouli, C., & Perrimon, N. (2010). Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis. Development, 137(21), 3615–3624. doi: 10.1242/dev.056408 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Pitsouli, C., & Perrimon, N. (2013). The homeobox transcription factor cut coordinates patterning and growth during Drosophila airway remodeling. Science Signaling, 6(263), ra12. doi: 10.1126/scisignal.2003424 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Reichman-Fried, M., Dickson, B., Hafen, E., & Shilo, B. Z. (1994). Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes & Development, 8(4), 428–439.CrossRefGoogle Scholar
  179. Reichman-Fried, M., & Shilo, B. Z. (1995). Breathless, a Drosophila FGF receptor homolog, is required for the onset of tracheal cell migration and tracheole formation. Mechanisms of Development, 52(2–3), 265–273.PubMedCrossRefGoogle Scholar
  180. Renfranz, P. J., Blankman, E., & Beckerle, M. C. (2010). The cytoskeletal regulator zyxin is required for viability in Drosophila melanogaster. The Anatomical Record, 293(9), 1455–1469. doi: 10.1002/ar.21193 PubMedPubMedCentralCrossRefGoogle Scholar
  181. Ribeiro, C., Neumann, M., & Affolter, M. (2004). Genetic control of cell intercalation during tracheal morphogenesis in Drosophila. Current Biology, 14(24), 2197–2207. doi: 10.1016/j.cub.2004.11.056 PubMedCrossRefGoogle Scholar
  182. Robbins, R. M., Gbur, S. C., & Beitel, G. J. (2014). Non-canonical roles for Yorkie and Drosophila Inhibitor of Apoptosis 1 in epithelial tube size control. PLoS One, 9(7), e101609. doi: 10.1371/journal.pone.0101609 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Rotstein, B., Molnar, D., Adryan, B., & Llimargas, M. (2011). Tramtrack is genetically upstream of genes controlling tracheal tube size in Drosophila. PLoS One, 6(12), e28985. doi: 10.1371/journal.pone.0028985 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Ruiz, O. E., Nikolova, L. S., & Metzstein, M. M. (2012). Drosophila Zpr1 (Zinc finger protein 1) is required downstream of both EGFR and FGFR signaling in tracheal subcellular lumen formation. PLoS One, 7(9), e45649. doi: 10.1371/journal.pone.0045649 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Samakovlis, C., Hacohen, N., Manning, G., Sutherland, D. C., Guillemin, K., & Krasnow, M. A. (1996). Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development, 122(5), 1395–1407.PubMedGoogle Scholar
  186. Sanchez-Higueras, C., Sotillos, S., & Castelli-Gair Hombria, J. (2014). Common origin of insect trachea and endocrine organs from a segmentally repeated precursor. Current Biology, 24(1), 76–81. doi: 10.1016/j.cub.2013.11.010 PubMedCrossRefGoogle Scholar
  187. Sarkar, S., & Lakhotia, S. C. (2005). The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. Journal of Genetics, 84(3), 265–281.PubMedCrossRefGoogle Scholar
  188. Sato, M., & Kornberg, T. B. (2002). FGF is an essential mitogen and chemoattractant for the air sacs of the Drosophila tracheal system. Developmental Cell, 3(2), 195–207.PubMedCrossRefGoogle Scholar
  189. Scholz, H., Deatrick, J., Klaes, A., & Klambt, C. (1993). Genetic dissection of pointed, a Drosophila gene encoding two ETS-related proteins. Genetics, 135(2), 455–468.PubMedPubMedCentralGoogle Scholar
  190. Schottenfeld, J., Song, Y., & Ghabrial, A. S. (2010). Tube continued: Morphogenesis of the Drosophila tracheal system. Current Opinion in Cell Biology, 22(5), 633–639. doi: 10.1016/j.ceb.2010.07.016 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Schottenfeld-Roames, J., & Ghabrial, A. S. (2012). Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth. Nature Cell Biology, 14(4), 386–393. doi: 10.1038/ncb2454 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Schottenfeld-Roames, J., Rosa, J. B., & Ghabrial, A. S. (2014). Seamless tube shape is constrained by endocytosis-dependent regulation of active Moesin. Current Biology, 24(15), 1756–1764. doi: 10.1016/j.cub.2014.06.029 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Schulz, J. G., Ceulemans, H., Caussinus, E., Baietti, M. F., Affolter, M., Hassan, B. A., et al. (2011). Drosophila syndecan regulates tracheal cell migration by stabilizing Robo levels. EMBO Reports, 12(10), 1039–1046. doi: 10.1038/embor.2011.153 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Sedaghat, Y., Miranda, W. F., & Sonnenfeld, M. J. (2002). The jing Zn-finger transcription factor is a mediator of cellular differentiation in the Drosophila CNS midline and trachea. Development, 129(11), 2591–2606.PubMedGoogle Scholar
  195. Shaye, D. D., Casanova, J., & Llimargas, M. (2008). Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nature Cell Biology, 10(8), 964–970. doi: 10.1038/ncb1756 PubMedCrossRefGoogle Scholar
  196. Shim, K., Blake, K. J., Jack, J., & Krasnow, M. A. (2001). The Drosophila ribbon gene encodes a nuclear BTB domain protein that promotes epithelial migration and morphogenesis. Development, 128(23), 4923–4933.PubMedGoogle Scholar
  197. Shindo, M., Wada, H., Kaido, M., Tateno, M., Aigaki, T., Tsuda, L., et al. (2008). Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development, 135(7), 1355–1364. doi: 10.1242/dev.015982 PubMedCrossRefGoogle Scholar
  198. Song, Y., Eng, M., & Ghabrial, A. S. (2013). Focal defects in single-celled tubes mutant for Cerebral cavernous malformation 3, GCKIII, or NSF2. Developmental Cell, 25(5), 507–519. doi: 10.1016/j.devcel.2013.05.002 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Sonnenfeld, M. J., Delvecchio, C., & Sun, X. (2005). Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor. Development Genes and Evolution, 215(5), 221–229. doi: 10.1007/s00427-004-0462-9 PubMedCrossRefGoogle Scholar
  200. Sonnenfeld, M., Morozova, T., Hackett, J., & Sun, X. (2010). Drosophila Jing is part of the breathless fibroblast growth factor receptor positive feedback loop. Development Genes and Evolution, 220(7–8), 207–220. doi: 10.1007/s00427-010-0342-4 PubMedCrossRefGoogle Scholar
  201. Sonnenfeld, M., Ward, M., Nystrom, G., Mosher, J., Stahl, S., & Crews, S. (1997). The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development, 124(22), 4571–4582.PubMedGoogle Scholar
  202. Sotillos, S., Aguilar, M., & Hombria, J. C. (2013). Forces shaping a Hox morphogenetic gene network. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4303–4308. doi: 10.1073/pnas.1212970110 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Sotillos, S., Espinosa-Vazquez, J. M., Foglia, F., Hu, N., & Hombria, J. C. (2010). An efficient approach to isolate STAT regulated enhancers uncovers STAT92E fundamental role in Drosophila tracheal development. Development Biology, 340(2), 571–582. doi: 10.1016/j.ydbio.2010.02.015 CrossRefGoogle Scholar
  204. Stahl, M., Schuh, R., & Adryan, B. (2007). Identification of FGF-dependent genes in the Drosophila tracheal system. Gene Expression Patterns, 7(1–2), 202–209. doi: 10.1016/j.modgep.2006.07.005 PubMedCrossRefGoogle Scholar
  205. Stark, K. A., Yee, G. H., Roote, C. E., Williams, E. L., Zusman, S., & Hynes, R. O. (1997). A novel alpha integrin subunit associates with betaPS and functions in tissue morphogenesis and movement during Drosophila development. Development, 124(22), 4583–4594.PubMedGoogle Scholar
  206. Steneberg, P., Englund, C., Kronhamn, J., Weaver, T. A., & Samakovlis, C. (1998). Translational readthrough in the hdc mRNA generates a novel branching inhibitor in the Drosophila trachea. Genes & Development, 12(7), 956–967.CrossRefGoogle Scholar
  207. Steneberg, P., Hemphala, J., & Samakovlis, C. (1999). Dpp and Notch specify the fusion cell fate in the dorsal branches of the Drosophila trachea. Mechanisms of Development, 87(1–2), 153–163.PubMedCrossRefGoogle Scholar
  208. Sutherland, D., Samakovlis, C., & Krasnow, M. A. (1996). Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell, 87(6), 1091–1101.PubMedCrossRefGoogle Scholar
  209. Swanson, L. E., Yu, M., Nelson, K. S., Laprise, P., Tepass, U., & Beitel, G. J. (2009). Drosophila convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization. Genetics, 181(4), 1281–1290. doi: 10.1534/genetics.108.099531 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Szuplewski, S., Fraisse-Veron, I., George, H., & Terracol, R. (2010). Vrille is required to ensure tracheal integrity in Drosophila embryo. Development, Growth & Differentiation, 52(5), 409–418. doi: 10.1111/j.1440-169X.2010.01186.x CrossRefGoogle Scholar
  211. Tanaka, H., Takasu, E., Aigaki, T., Kato, K., Hayashi, S., & Nose, A. (2004). Formin3 is required for assembly of the F-actin structure that mediates tracheal fusion in Drosophila. Development Biology, 274(2), 413–425. doi: 10.1016/j.ydbio.2004.07.035 CrossRefGoogle Scholar
  212. Tanaka-Matakatsu, M., Uemura, T., Oda, H., Takeichi, M., & Hayashi, S. (1996). Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot. Development, 122(12), 3697–3705.PubMedGoogle Scholar
  213. Thomas, G. H., Zarnescu, D. C., Juedes, A. E., Bales, M. A., Londergan, A., Korte, C. C., et al. (1998). Drosophila betaHeavy-spectrin is essential for development and contributes to specific cell fates in the eye. Development, 125(11), 2125–2134.PubMedGoogle Scholar
  214. Tian, E., & Ten Hagen, K. G. (2007). A UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase is required for epithelial tube formation. Journal of Biological Chemistry, 282(1), 606–614. doi: 10.1074/jbc.M606268200 PubMedCrossRefGoogle Scholar
  215. Tiklova, K., Tsarouhas, V., & Samakovlis, C. (2013). Control of airway tube diameter and integrity by secreted chitin-binding proteins in Drosophila. PLoS One, 8(6), e67415. doi: 10.1371/journal.pone.0067415 PubMedPubMedCentralCrossRefGoogle Scholar
  216. Tonning, A., Hemphala, J., Tang, E., Nannmark, U., Samakovlis, C., & Uv, A. (2005). A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. Developmental Cell, 9(3), 423–430. doi: 10.1016/j.devcel.2005.07.012 PubMedCrossRefGoogle Scholar
  217. Tsarouhas, V., Senti, K. A., Jayaram, S. A., Tiklova, K., Hemphala, J., Adler, J., et al. (2007). Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Developmental Cell, 13(2), 214–225. doi: 10.1016/j.devcel.2007.06.008 PubMedCrossRefGoogle Scholar
  218. Uemura, T., Oda, H., Kraut, R., Hayashi, S., Kotaoka, Y., & Takeichi, M. (1996). Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes & Development, 10(6), 659–671.CrossRefGoogle Scholar
  219. Urban, S., Lee, J. R., & Freeman, M. (2001). Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell, 107(2), 173–182.PubMedCrossRefGoogle Scholar
  220. Urbano, J. M., Dominguez-Gimenez, P., Estrada, B., & Martin-Bermudo, M. D. (2011). PS integrins and laminins: Key regulators of cell migration during Drosophila embryogenesis. PLoS One, 6(9), e23893. doi: 10.1371/journal.pone.0023893 PubMedPubMedCentralCrossRefGoogle Scholar
  221. Uv, A., Cantera, R., & Samakovlis, C. (2003). Drosophila tracheal morphogenesis: Intricate cellular solutions to basic plumbing problems. Trends in Cell Biology, 13(6), 301–309.PubMedCrossRefGoogle Scholar
  222. Van Doren, M., Mathews, W. R., Samuels, M., Moore, L. A., Broihier, H. T., & Lehmann, R. (2003). Fear of intimacy encodes a novel transmembrane protein required for gonad morphogenesis in Drosophila. Development, 130(11), 2355–2364.PubMedCrossRefGoogle Scholar
  223. Vincent, S., Ruberte, E., Grieder, N. C., Chen, C. K., Haerry, T., Schuh, R., et al. (1997). DPP controls tracheal cell migration along the dorsoventral body axis of the Drosophila embryo. Development, 124(14), 2741–2750.PubMedGoogle Scholar
  224. Vincent, S., Wilson, R., Coelho, C., Affolter, M., & Leptin, M. (1998). The Drosophila protein Dof is specifically required for FGF signaling. Molecular Cell, 2(4), 515–525.PubMedCrossRefGoogle Scholar
  225. Wang, Y., Cruz, T., Irion, U., & Moussian, B. (2015). Differentiated muscles are mandatory for gas-filling of the Drosophila airway system. Biology Open, 4(12), 1753–1761. doi: 10.1242/bio.013086 PubMedPubMedCentralCrossRefGoogle Scholar
  226. Wang, S., Jayaram, S. A., Hemphala, J., Senti, K. A., Tsarouhas, V., Jin, H., et al. (2006). Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Current Biology, 16(2), 180–185. doi: 10.1016/j.cub.2005.11.074 PubMedCrossRefGoogle Scholar
  227. Wang, S., Meyer, H., Ochoa-Espinosa, A., Buchwald, U., Onel, S., Altenhein, B., et al. (2012). GBF1 (Gartenzwerg)-dependent secretion is required for Drosophila tubulogenesis. Journal of Cell Science, 125(Pt 2), 461–472. doi: 10.1242/jcs.092551 PubMedCrossRefGoogle Scholar
  228. Wappner, P., Gabay, L., & Shilo, B. Z. (1997). Interactions between the EGF receptor and DPP pathways establish distinct cell fates in the tracheal placodes. Development, 124(22), 4707–4716.PubMedGoogle Scholar
  229. Ward, R. E., Lamb, R. S., & Fehon, R. G. (1998). A conserved functional domain of Drosophila coracle is required for localization at the septate junction and has membrane-organizing activity. Journal of Cell Biology, 140(6), 1463–1473.PubMedCrossRefGoogle Scholar
  230. Warrington, S. J., Strutt, H., & Strutt, D. (2013). The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2. Development, 140(5), 1045–1054. doi: 10.1242/dev.088724 PubMedPubMedCentralCrossRefGoogle Scholar
  231. Weaver, M., & Krasnow, M. A. (2008). Dual origin of tissue-specific progenitor cells in Drosophila tracheal remodeling. Science, 321(5895), 1496–1499. doi: 10.1126/science.1158712 PubMedPubMedCentralCrossRefGoogle Scholar
  232. Wigglesworth, V. B. (1954). Growth and regeneration of the tracheal system of an insect. Quarterly Journal of Microscopical Science, 95, 115–137.Google Scholar
  233. Wilk, R., Reed, B. H., Tepass, U., & Lipshitz, H. D. (2000). The hindsight gene is required for epithelial maintenance and differentiation of the tracheal system in Drosophila. Development Biology, 219(2), 183–196. doi: 10.1006/dbio.2000.9619 CrossRefGoogle Scholar
  234. Wilk, R., Weizman, I., & Shilo, B. Z. (1996). Trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes & Development, 10(1), 93–102.CrossRefGoogle Scholar
  235. Wilkin, M. B., Becker, M. N., Mulvey, D., Phan, I., Chao, A., Cooper, K., et al. (2000). Drosophila dumpy is a gigantic extracellular protein required to maintain tension at epidermal-cuticle attachment sites. Current Biology, 10(10), 559–567.PubMedCrossRefGoogle Scholar
  236. Wolf, C., & Schuh, R. (2000). Single mesodermal cells guide outgrowth of ectodermal tubular structures in Drosophila. Genes & Development, 14(17), 2140–2145.CrossRefGoogle Scholar
  237. Wolpert, B. (2011). Developmental biology: A very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  238. Woods, D. F., & Bryant, P. J. (1991). The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell, 66(3), 451–464.PubMedCrossRefGoogle Scholar
  239. Wu, V. M., Schulte, J., Hirschi, A., Tepass, U., & Beitel, G. J. (2004). Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. Journal of Cell Biology, 164(2), 313–323. doi: 10.1083/jcb.200309134 PubMedPubMedCentralCrossRefGoogle Scholar
  240. Wu, V. M., Yu, M. H., Paik, R., Banerjee, S., Liang, Z., Paul, S. M., et al. (2007). Drosophila varicose, a member of a new subgroup of basolateral MAGUKs, is required for septate junctions and tracheal morphogenesis. Development, 134(5), 999–1009. doi: 10.1242/dev.02785 PubMedPubMedCentralCrossRefGoogle Scholar
  241. Yan, D., & Lin, X. (2007). Drosophila glypican Dally-like acts in FGF-receiving cells to modulate FGF signaling during tracheal morphogenesis. Development Biology, 312(1), 203–216. doi: 10.1016/j.ydbio.2007.09.015 CrossRefGoogle Scholar
  242. Zelzer, E., & Shilo, B. Z. (2000a). Cell fate choices in Drosophila tracheal morphogenesis. BioEssays, 22(3), 219–226. doi: 10.1002/(SICI)1521-1878(200003)22:3<219:AID-BIES3>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  243. Zelzer, E., & Shilo, B. Z. (2000b). Interaction between the bHLH-PAS protein Trachealess and the POU-domain protein Drifter, specifies tracheal cell fates. Mechanisms of Development, 91(1–2), 163–173.PubMedCrossRefGoogle Scholar
  244. Zelzer, E., Wappner, P., & Shilo, B. Z. (1997). The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins. Genes & Development, 11(16), 2079–2089.CrossRefGoogle Scholar
  245. Zhan, Y., Maung, S. W., Shao, B., & Myat, M. M. (2010). The bHLH transcription factor, hairy, refines the terminal cell fate in the Drosophila embryonic trachea. PLoS One, 5(11), e14134. doi: 10.1371/journal.pone.0014134 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Zhang, S., Dailey, G. M., Kwan, E., Glasheen, B. M., Sroga, G. E., & Page-McCaw, A. (2006). An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion. Genes & Development, 20(14), 1899–1910. doi: 10.1101/gad.1426906 CrossRefGoogle Scholar
  247. Zhang, S. D., Kassis, J., Olde, B., Mellerick, D. M., & Odenwald, W. F. (1996). Pollux, a novel Drosophila adhesion molecule, belongs to a family of proteins expressed in plants, yeast, nematodes, and man. Genes & Development, 10(9), 1108–1119.CrossRefGoogle Scholar
  248. Zhang, L., & Ward, R. E. (2009). uninflatable encodes a novel ectodermal apical surface protein required for tracheal inflation in Drosophila. Development Biology, 336(2), 201–212. doi: 10.1016/j.ydbio.2009.09.040 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Cell BiologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations