Advertisement

Genetic Control of Salivary Gland Tubulogenesis in Drosophila

Chapter

Abstract

Organ formation during embryogenesis requires the delicate orchestration of many different events. The specification of an organ primordium is tightly coordinated with the onset and control of morphogenetic events shaping that organ. In many cases, though, only the gene regulatory events that specify organ positioning and identity have been elucidated in much detail, whereas knowledge is scarce about the upstream regulation that controls effectors that directly drive morphogenesis. In this review, we will use the formation of the tubes of the salivary gland in the Drosophila embryo as a model system to illustrate what has been uncovered with regards to different phases of salivary gland morphogenesis: specification and positioning of the primordium, gland invagination, tube extension, organ positioning, as well as gland function. The salivary glands are an excellent model for the analysis of tube formation, as they are amenable to advanced imaging, genetic analysis and perturbance. In addition, upon specification by-and-large no cell death or division occurs, and thus the whole morphogenesis is driven entirely by cell shape changes and cell rearrangements.

Keywords

Salivary gland Tubulogenesis Fork head Cytoskeleton Apical constriction 

Notes

Acknowledgments

The authors would like to apologize to colleagues whose work could not be cited or discussed in sufficient depth owing to space limitations, and would like to thank Gemma Girdler and the reviewer for critical reading of the manuscript and valuable suggestions.

Work in the lab is supported by the Medical Research Council (MRC file reference number MC_UP_1201/11).

References

  1. Abrams, E. W., & Andrew, D. J. (2005). CrebA regulates secretory activity in the Drosophila salivary gland and epidermis. Development, 132, 2743–2758.CrossRefPubMedGoogle Scholar
  2. Abrams, E. W., Mihoulides, W. K., & Andrew, D. J. (2006). Fork head and Sage maintain a uniform and patent salivary gland lumen through regulation of two downstream target genes, PH4alphaSG1 and PH4alphaSG2. Development, 133, 3517–3527.CrossRefPubMedGoogle Scholar
  3. Andrew, D. J., Baig, A., Bhanot, P., Smolik, S. M., & Henderson, K. D. (1997). The Drosophila dCREB-A gene is required for dorsal/ventral patterning of the larval cuticle. Development, 124, 181–193.PubMedGoogle Scholar
  4. Andrew, D. J., Horner, M. A., Petitt, M. G., Smolik, S. M., & Scott, M. P. (1994). Setting limits on homeotic gene function: Restraint of Sex combs reduced activity by teashirt and other homeotic genes. The EMBO Journal, 13, 1132–1144.PubMedPubMedCentralGoogle Scholar
  5. Booth, A. J. R., Blanchard, G. B., Adams, R. J., & Röper, K. (2014). A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Developmental Cell, 29, 562–576.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bradley, P. L., Myat, M. M., Comeaux, C. A., & Andrew, D. J. (2003). Posterior migration of the salivary gland requires an intact visceral mesoderm and integrin function. Developmental Biology, 257, 249–262.CrossRefPubMedGoogle Scholar
  7. Brönner, G., Chu-LaGraff, Q., Doe, C. Q., Cohen, B., Weigel, D., Taubert, H., et al. (1994). Sp1/egr-like zinc-finger protein required for endoderm specification and germ-layer formation in Drosophila. Nature, 369, 664–668.CrossRefPubMedGoogle Scholar
  8. Cao, C., Liu, Y., & Lehmann, M. (2007). Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death. The Journal of Cell Biology, 176, 843–852.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chandrasekaran, V., & Beckendorf, S. K. (2003). senseless is necessary for the survival of embryonic salivary glands in Drosophila. Development, 130, 4719–4728.CrossRefPubMedGoogle Scholar
  10. Chandrasekaran, V., & Beckendorf, S. K. (2005). Tec29 controls actin remodeling and endoreplication during invagination of the Drosophila embryonic salivary glands. Development, 132, 3515–3524.CrossRefPubMedGoogle Scholar
  11. Chung, S., & Andrew, D. J. (2014). Cadherin 99C regulates apical expansion and cell rearrangement during epithelial tube elongation. Development, 141, 1950–1960.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Curtiss, J., & Heilig, J. S. (1995). Establishment of Drosophila imaginal precursor cells is controlled by the Arrowhead gene. Development, 121, 3819–3828.PubMedGoogle Scholar
  13. Escudero, L. M., Bischoff, M., & Freeman, M. (2007). Myosin II regulates complex cellular arrangement and epithelial architecture in Drosophila. Developmental Cell, 13, 717–729.CrossRefPubMedGoogle Scholar
  14. Fasano, L., Röder, L., Coré, N., Alexandre, E., Vola, C., Jacq, B., et al. (1991). The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell, 64, 63–79.CrossRefPubMedGoogle Scholar
  15. Fox, R. M., Hanlon, C. D., & Andrew, D. J. (2010). The CrebA/Creb3-like transcription factors are major and direct regulators of secretory capacity. The Journal of Cell Biology, 191, 479–492.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fox, R. M., Vaishnavi, A., Maruyama, R., & Andrew, D. J. (2013). Organ-specific gene expression: The bHLH protein Sage provides tissue specificity to Drosophila FoxA. Development, 140, 2160–2171.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haberman, A. S., Isaac, D. D., & Andrew, D. J. (2003). Specification of cell fates within the salivary gland primordium. Developmental Biology, 258, 443–453.CrossRefPubMedGoogle Scholar
  18. Harris, K. E., & Beckendorf, S. K. (2007). Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration. Development, 134, 2017–2025.CrossRefPubMedGoogle Scholar
  19. Harris, K. E., Schnittke, N., & Beckendorf, S. K. (2007). Two ligands signal through the Drosophila PDGF/VEGF receptor to ensure proper salivary gland positioning. Mechanisms of Development, 124, 441–448.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Henderson, K. D., & Andrew, D. J. (2000). Regulation and function of Scr, exd, and hth in the Drosophila salivary gland. Developmental Biology, 217, 362–374.CrossRefPubMedGoogle Scholar
  21. Henderson, K. D., Isaac, D. D., & Andrew, D. J. (1999). Cell fate specification in the Drosophila salivary gland: The integration of homeotic gene function with the DPP signaling cascade. Developmental Biology, 205, 10–21.CrossRefPubMedGoogle Scholar
  22. Hu, N., & Castelli-Gair, J. (1999). Study of the posterior spiracles of Drosophila as a model to understand the genetic and cellular mechanisms controlling morphogenesis. Developmental Biology, 214, 197–210.CrossRefPubMedGoogle Scholar
  23. Irish, V. F., & Gelbart, W. M. (1987). The decapentaplegic gene is required for dorsal-ventral patterning of the Drosophila embryo. Genes & Development, 1, 868–879.CrossRefGoogle Scholar
  24. Isaac, D. D., & Andrew, D. J. (1996). Tubulogenesis in Drosophila: A requirement for the trachealess gene product. Genes & Development, 10, 103–117.CrossRefGoogle Scholar
  25. Ismat, A., Cheshire, A. M., & Andrew, D. J. (2013). The secreted AdamTS-A metalloprotease is required for collective cell migration. Development, 140, 1981–1993.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jones, N. A., Kuo, Y. M., Sun, Y. H., & Beckendorf, S. K. (1998). The Drosophila Pax gene eye gone is required for embryonic salivary duct development. Development, 125, 4163–4174.PubMedGoogle Scholar
  27. Kam, Z., Minden, J. S., Agard, D. A., Sedat, J. W., & Leptin, M. (1991). Drosophila gastrulation: Analysis of cell shape changes in living embryos by three-dimensional fluorescence microscopy. Development, 112, 365–370.PubMedGoogle Scholar
  28. Kerman, B. E., Cheshire, A. M., Myat, M. M., & Andrew, D. J. (2008). Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Developmental Biology, 320, 278–288.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kidd, S., Baylies, M. K., Gasic, G. P., & Young, M. W. (1989). Structure and distribution of the Notch protein in developing Drosophila. Genes & Development, 3, 1113–1129.CrossRefGoogle Scholar
  30. Klämbt, C., Jacobs, J. R., & Goodman, C. S. (1991). The midline of the Drosophila central nervous system: A model for the genetic analysis of cell fate, cell migration, and growth cone guidance. Cell, 64, 801–815.CrossRefPubMedGoogle Scholar
  31. Kolesnikov, T., & Beckendorf, S. K. (2007). 18 wheeler regulates apical constriction of salivary gland cells via the Rho-GTPase-signaling pathway. Developmental Biology, 307, 53–61.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kuo, Y. M., Jones, N., Zhou, B., Panzer, S., Larson, V., & Beckendorf, S. K. (1996). Salivary duct determination in Drosophila: Roles of the EGF receptor signalling pathway and the transcription factors fork head and trachealess. Development, 122, 1909–1917.PubMedGoogle Scholar
  33. Lehmann, M., & Korge, G. (1996). The fork head product directly specifies the tissue-specific hormone responsiveness of the Drosophila Sgs-4 gene. The EMBO Journal, 15, 4825–4834.PubMedPubMedCentralGoogle Scholar
  34. Lekven, A. C., Tepass, U., Keshmeshian, M., & Hartenstein, V. (1998). faint sausage encodes a novel extracellular protein of the immunoglobulin superfamily required for cell migration and the establishment of normal axonal pathways in the Drosophila nervous system. Development, 125, 2747–2758.PubMedGoogle Scholar
  35. LeMotte, P. K., Kuroiwa, A., Fessler, L. I., & Gehring, W. J. (1989). The homeotic gene Sex Combs Reduced of Drosophila: Gene structure and embryonic expression. The EMBO Journal, 8, 219–227.PubMedPubMedCentralGoogle Scholar
  36. Letizia, A., Ricardo, S., Moussian, B., Martin, N., & Llimargas, M. (2013). A functional role of the extracellular domain of Crumbs in cell architecture and apicobasal polarity. Journal of Cell Science, 126, 2157–2163.CrossRefPubMedGoogle Scholar
  37. Letizia, A., Sotillos, S., Campuzano, S., & Llimargas, M. (2011). Regulated Crb accumulation controls apical constriction and invagination in Drosophila tracheal cells. Journal of Cell Science, 124, 240–251.CrossRefPubMedGoogle Scholar
  38. Liu, X., Kiss, I., & Lengyel, J. A. (1999). Identification of genes controlling malpighian tubule and other epithelial morphogenesis in Drosophila melanogaster. Genetics, 151, 685–695.PubMedPubMedCentralGoogle Scholar
  39. Liu, Y., & Lehmann, M. (2008). Genes and biological processes controlled by the Drosophila FOXA orthologue Fork head. Insect Molecular Biology, 17, 91–101.CrossRefPubMedGoogle Scholar
  40. Lovegrove, B., Simões, S., Rivas, M. L., Sotillos, S., Johnson, K., Knust, E., et al. (2006). Coordinated control of cell adhesion, polarity, and cytoskeleton underlies Hox-induced organogenesis in Drosophila. Current Biology, 16, 2206–2216.CrossRefPubMedGoogle Scholar
  41. Mach, V., Ohno, K., Kokubo, H., & Suzuki, Y. (1996). The Drosophila fork head factor directly controls larval salivary gland-specific expression of the glue protein gene Sgs3. Nucleic Acids Research, 24, 2387–2394.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Manning, A. J., & Rogers, S. L. (2014). The Fog signaling pathway: Insights into signaling in morphogenesis. Developmental Biology, 394, 6–14.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Martin, A. C. (2010). Pulsation and stabilization: Contractile forces that underlie morphogenesis. Development Biology, 341, 114–125.CrossRefGoogle Scholar
  44. Martin, A. C., & Goldstein, B. (2014). Apical constriction: Themes and variations on a cellular mechanism driving morphogenesis. Development, 141, 1987–1998.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Martin, A. C., Kaschube, M., & Wieschaus, E. F. (2009). Pulsed contractions of an actin-myosin network drive apical constriction. Nature, 457, 495–499.CrossRefPubMedGoogle Scholar
  46. Martinez-Arias, A., Ingham, P. W., Scott, M. P., & Akam, M. E. (1987). The spatial and temporal deployment of Dfd and Scr transcripts throughout development of Drosophila. Development, 100, 673–683.PubMedGoogle Scholar
  47. Maruyama, R., & Andrew, D. J. (2012). Drosophila as a model for epithelial tube formation. Developmental Dynamics, 241, 119–135.CrossRefPubMedGoogle Scholar
  48. Maruyama, R., Grevengoed, E., Stempniewicz, P., & Andrew, D. J. (2011). Genome-wide analysis reveals a major role in cell fate maintenance and an unexpected role in endoreduplication for the Drosophila FoxA gene Fork head. PLoS ONE, 6, e20901.CrossRefPubMedCentralGoogle Scholar
  49. Mason, F. M., Tworoger, M., & Martin, A. C. (2013). Apical domain polarization localizes actin–myosin activity to drive ratchet-like apical constriction. Nature Cell Biology, 15, 1–15 (Nature Publishing Group).Google Scholar
  50. Moore, A. W., Barbel, S., Jan, L. Y., & Jan, Y. N. (2000). A genomewide survey of basic helix-loop-helix factors in Drosophila. Proceedings of the National Academy of Sciences, 97, 10436–10441.CrossRefGoogle Scholar
  51. Myat, M. M., & Andrew, D. J. (2000a). Fork head prevents apoptosis and promotes cell shape change during formation of the Drosophila salivary glands. Development, 127, 4217–4226.PubMedGoogle Scholar
  52. Myat, M. M., & Andrew, D. J. (2000b). Organ shape in the Drosophila salivary gland is controlled by regulated, sequential internalization of the primordia. Development, 127, 679–691.PubMedGoogle Scholar
  53. Myat, M. M., & Andrew, D. J. (2002). Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane. Cell, 111, 879–891.CrossRefPubMedGoogle Scholar
  54. Myat, M. M., Isaac, D. D., & Andrew, D. J. (2000). Early genes required for salivary gland fate determination and morphogenesis in Drosophila melanogaster. Advances in Dental Research, 14, 89–98.CrossRefPubMedGoogle Scholar
  55. Nikolaidou, K. K., & Barrett, K. (2004). A rho GTPase signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of rho activation. Current Biology, 14, 1822–1826.CrossRefPubMedGoogle Scholar
  56. Nishimura, M., Inoue, Y., & Hayashi, S. (2007). A wave of EGFR signaling determines cell alignment and intercalation in the Drosophila tracheal placode. Development, 134, 4273–4282.CrossRefPubMedGoogle Scholar
  57. Padgett, R. W., St Johnston, R. D., & Gelbart, W. M. (1987). A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature, 325, 81–84.CrossRefPubMedGoogle Scholar
  58. Panzer, S., Weigel, D., & Beckendorf, S. K. (1992). Organogenesis in Drosophila melanogaster: Embryonic salivary gland determination is controlled by homeotic and dorsoventral patterning genes. Development, 114, 49–57.PubMedGoogle Scholar
  59. Pederson, J. D., Kiehart, D. P., & Mahaffey, J. W. (1996). The role of HOM-C genes in segmental transformations: Reexamination of the Drosophila Sex combs reduced embryonic phenotype. Development Biology, 180, 131–142.CrossRefGoogle Scholar
  60. Pirraglia, C., Walters, J., Ahn, N., & Myat, M. M. (2013). Rac1 GTPase acts downstream of αPS1βPS integrin to control collective migration and lumen size in the Drosophila salivary gland. Developmental Biology, 377, 21–32.CrossRefPubMedGoogle Scholar
  61. Pirraglia, C., Walters, J., & Myat, M. M. (2010). Pak1 control of E-cadherin endocytosis regulates salivary gland lumen size and shape. Development, 137, 4177–4189.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ray, R. P., Arora, K., Nüsslein-Volhard, C., & Gelbart, W. M. (1991). The control of cell fate along the dorsal-ventral axis of the Drosophila embryo. Development, 113, 35–54.PubMedGoogle Scholar
  63. Renault, N., King-Jones, K., & Lehmann, M. (2001). Downregulation of the tissue-specific transcription factor Fork head by Broad-Complex mediates a stage-specific hormone response. Development, 128, 3729–3737.PubMedGoogle Scholar
  64. Riley, P. D., Carroll, S. B., & Scott, M. P. (1987). The expression and regulation of Sex combs reduced protein in Drosophila embryos. Genes & Development, 1, 716–730.CrossRefGoogle Scholar
  65. Röper, K. (2012). Anisotropy of Crumbs and aPKC drives myosin cable assembly during tube formation. Developmental Cell, 23, 939–953.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Roth, G. E., Wattler, S., Bornschein, H., Lehmann, M., & Korge, G. (1999). Structure and regulation of the salivary gland secretion protein gene Sgs-1 of Drosophila melanogaster. Genetics, 153, 753–762.PubMedPubMedCentralGoogle Scholar
  67. Sawyer, J. M., Harrell, J. R., Shemer, G., Sullivan-Brown, J., Roh-Johnson, M., & Goldstein, B. (2010). Apical constriction: A cell shape change that can drive morphogenesis. Developmental Biology, 341. 5–19 (Elsevier Inc).Google Scholar
  68. Simoes, S., Denholm, B., Azevedo, D., Sotillos, S., Martin, P., Skaer, H., et al. (2006). Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. Development, 133, 4257–4267.CrossRefPubMedGoogle Scholar
  69. Smith, A. V., & Orr-Weaver, T. L. (1991). The regulation of the cell cycle during Drosophila embryogenesis: The transition to polyteny. Development, 112, 997–1008.PubMedGoogle Scholar
  70. Taghli-Lamallem, O., Gallet, A., Leroy, F., Malapert, P., Vola, C., Kerridge, S., et al. (2007). Direct interaction between Teashirt and Sex combs reduced proteins, via Tsh’s acidic domain, is essential for specifying the identity of the prothorax in Drosophila. Developmental Biology, 307, 142–151.CrossRefPubMedGoogle Scholar
  71. Tepass, U., Theres, C., & Knust, E. (1990). crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell, 61, 787–799.CrossRefPubMedGoogle Scholar
  72. Urban, S., Lee, J. R., & Freeman, M. (2001). Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell, 107, 173–182.CrossRefPubMedGoogle Scholar
  73. Vining, M. S., Bradley, P. L., Comeaux, C. A., & Andrew, D. J. (2005). Organ positioning in Drosophila requires complex tissue-tissue interactions. Developmental Biology, 287, 19–34.CrossRefPubMedGoogle Scholar
  74. Weigel, D., Jürgens, G., Küttner, F., Seifert, E., & Jäckle, H. (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell, 57, 645–658.CrossRefPubMedGoogle Scholar
  75. Widmann, T. J., & Dahmann, C. (2009). Dpp signaling promotes the cuboidal-to-columnar shape transition of Drosophila wing disc epithelia by regulating Rho1. Journal of Cell Science, 122, 1362–1373.CrossRefPubMedGoogle Scholar
  76. Xu, N., Bagumian, G., Galiano, M., & Myat, M. M. (2011). Rho GTPase controls Drosophila salivary gland lumen size through regulation of the actin cytoskeleton and Moesin. Development, 138, 5415–5427.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Xu, N., Keung, B., & Myat, M. M. (2008). Rho GTPase controls invagination and cohesive migration of the Drosophila salivary gland through Crumbs and Rho-kinase. Developmental Biology, 321, 88–100.CrossRefPubMedGoogle Scholar
  78. Zhou, B., Bagri, A., & Beckendorf, S. K. (2001). Salivary gland determination in Drosophila: A salivary-specific, fork head enhancer integrates spatial pattern and allows fork head autoregulation. Developmental Biology, 237, 54–67.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.MRC-Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations