Advances in Understanding the Generation and Specification of Unique Neuronal Sub-types from Drosophila Neuropeptidergic Neurons



The central nervous system (CNS) contains a daunting diversity of neuronal cell types. One of the major challenges of developmental neurobiology is to understand the regulatory mechanisms underlying this vast complexity. Studies in the Drosophila melanogaster (Drosophila) model system has contributed greatly to our understanding of neuronal cell sub-type specification, and the majority of mechanisms and genes identified in this system has proved to be of great value, and often more or less directly transferable to studies of mammalian neuro-development. In Drosophila, studies of the developmental generation of numerous different neuropeptide neurons have been highly informative, since these neurons are generated in a highly restricted and reproducible manner. In addition, neuropeptides are expressed at high levels and their regulatory regions have proven comparatively condensed, facilitating the generation of a multitude of antibodies and transgenic markers. Here, we first provide a general background to Drosophila CNS development. Then, we focus in more detail on various well studied neuropeptide neurons identified in this system, and describe what has been learned regarding the generation and differentiation of these highly unique neuronal sub-types. We intend this review to provide an overview of the variety of mechanisms that operate throughout the developmental period to generate highly unique neuronal sub-types. Finally, we conclude with some general remarks and perspectives regarding neuronal sub-type specification in general.


Cell specification Central nervous system Gene regulation Combinatorial codes Terminal selector 



We thank the Swedish Research Council, Knut and Alice Wallenberg Foundation, Swedish Cancer Foundation, and Swedish Royal Academy of Sciences for funding to ST, and the Canadian Institutes of Health Research and the National Sciences and Engineering Research Council of Canada for funding to DWA. We would like to thank Lyubov Veverytsa for assistance in generating figures.


  1. Aberle, H., Haghighi, A. P., Fetter, R. D., McCabe, B. D., Magalhaes, T. R., & Goodman, C. S. (2002). Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron, 33, 545–558.PubMedCrossRefGoogle Scholar
  2. Abruzzi, K. C., Rodriguez, J., Menet, J. S., Desrochers, J., Zadina, A., Luo, W., et al. (2011). Drosophila CLOCK target gene characterization: Implications for circadian tissue-specific gene expression. Genes & Development, 25, 2374–2386.CrossRefGoogle Scholar
  3. Akam, M. (1987). The molecular basis for metameric pattern in the Drosophila embryo. Development (Cambridge, England) 101, 1–22.Google Scholar
  4. Al-Anzi, B., Armand, E., Nagamei, P., Olszewski, M., Sapin, V., Waters, C., et al. (2010). The leucokinin pathway and its neurons regulate meal size in Drosophila. Current Biology, 20, 969–978.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allan, D. W., Park, D., St Pierre, S. E., Taghert, P. H., & Thor, S. (2005). Regulators acting in combinatorial codes also act independently in single differentiating neurons. Neuron, 45, 689–700.PubMedCrossRefGoogle Scholar
  6. Allan, D. W., Pierre, S. E., Miguel-Aliaga, I., & Thor, S. (2003). Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell, 113, 73–86.PubMedCrossRefGoogle Scholar
  7. Allan, D. W., & Thor, S. (2015). Transcriptional selectors, masters, and combinatorial codes: Regulatory principles of neural subtype specification. Wiley interdisciplinary reviews Developmental biology.Google Scholar
  8. Anderson, K. V. (1998). Pinning down positional information: Dorsal-ventral polarity in the Drosophila embryo. Cell, 95, 439–442.PubMedCrossRefGoogle Scholar
  9. Barad, O., Hornstein, E., & Barkai, N. (2011). Robust selection of sensory organ precursors by the notch-delta pathway. Current Opinion in Cell Biology, 23, 663–667.PubMedCrossRefGoogle Scholar
  10. Baumgardt, M., Karlsson, D., Salmani, B. Y., Bivik, C., MacDonald, R. B., Gunnar, E., et al. (2014). Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade. Developmental Cell, 30, 192–208.PubMedCrossRefGoogle Scholar
  11. Baumgardt, M., Karlsson, D., Terriente, J., Diaz-Benjumea, F. J., & Thor, S. (2009). Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell, 139, 969–982.PubMedCrossRefGoogle Scholar
  12. Baumgardt, M., Miguel-Aliaga, I., Karlsson, D., Ekman, H., & Thor, S. (2007). Specification of neuronal identities by feedforward combinatorial coding. PLoS Biology, 5, 295–308.CrossRefGoogle Scholar
  13. Beatus, P., & Lendahl, U. (1998). Notch and neurogenesis. Journal of Neuroscience Research, 54, 125–136.PubMedCrossRefGoogle Scholar
  14. Beckwith, E. J., Gorostiza, E. A., Berni, J., Rezaval, C., Perez-Santangelo, A., Nadra, A. D., & Ceriani, M. F. (2013). Circadian period integrates network information through activation of the BMP signaling pathway. PLoS Biology, 11, e1001733.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bello, B. C., Hirth, F., & Gould, A. P. (2003). A pulse of the Drosophila Hox protein abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron, 37, 209–219.PubMedCrossRefGoogle Scholar
  16. Benito-Sipos, J., Estacio-Gomez, A., Moris-Sanz, M., Baumgardt, M., Thor, S., & Diaz-Benjumea, F. J. (2010). A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the Drosophila CNS. Development (Cambridge, England), 137, 3327–3336.Google Scholar
  17. Benito-Sipos, J., Ulvklo, C., Gabilondo, H., Baumgardt, M., Angel, A., Torroja, L., et al. (2011). Seven up acts as a temporal factor during two different stages of neuroblast 5–6 development. Development (Cambridge, England), 138, 5311–5320.Google Scholar
  18. Benveniste, R. J., & Taghert, P. H. (1999). Cell type-specific regulatory sequences control expression of the Drosophila FMRF-NH2 neuropeptide gene. Journal of Neurobiology, 38, 507–520.PubMedCrossRefGoogle Scholar
  19. Benveniste, R. J., Thor, S., Thomas, J. B., & Taghert, P. H. (1998). Cell type-specific regulation of the Drosophila FMRF-NH2 neuropeptide gene by Apterous, a LIM homeodomain transcription factor. Development (Cambridge, England), 125, 4757–4765.Google Scholar
  20. Berger, C., Kannan, R., Myneni, S., Renner, S., Shashidhara, L. S., & Technau, G. M. (2010). Cell cycle independent role of cyclin E during neural cell fate specification in Drosophila is mediated by its regulation of prospero function. Developmental Biology, 337, 415–424.PubMedCrossRefGoogle Scholar
  21. Berger, C., Pallavi, S. K., Prasad, M., Shashidhara, L. S., & Technau, G. M. (2005). A critical role for cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster. Nature Cell Biology, 7, 56–62.PubMedCrossRefGoogle Scholar
  22. Bhat, K. M. (1999). Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. BioEssays, 21, 472–485.PubMedCrossRefGoogle Scholar
  23. Bhat, K. M., Gaziova, I., & Katipalla, S. (2011). Neuralized mediates asymmetric division of neural precursors by two distinct and sequential events: Promoting asymmetric localization of numb and enhancing activation of notch-signaling. Developmental Biology, 351, 186–198.PubMedCrossRefGoogle Scholar
  24. Birkholz, O., Rickert, C., Berger, C., Urbach, R., & Technau, G. M. (2013a). Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors. Development (Cambridge, England), 140, 1830–1842.Google Scholar
  25. Birkholz, O., Vef, O., Rogulja-Ortmann, A., Berger, C., & Technau, G. M. (2013b). Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region. Development (Cambridge, England), 140, 3552–3564.Google Scholar
  26. Boone, J. Q., & Doe, C. Q. (2008). Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Developmental neurobiology, 68, 1185–1195.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Broadus, J., & Doe, C. Q. (1995). Evolution of neuroblast identity: Seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development (Cambridge, England), 121, 3989–3996.Google Scholar
  28. Brody, T., & Odenwald, W. F. (2000). Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Developmental Biology, 226, 34–44.PubMedCrossRefGoogle Scholar
  29. Brown, H. L., Cherbas, L., Cherbas, P., & Truman, J. W. (2006). Use of time-lapse imaging and dominant negative receptors to dissect the steroid receptor control of neuronal remodeling in Drosophila. Development (Cambridge, England), 133, 275–285.Google Scholar
  30. Buss, R. R., & Oppenheim, R. W. (2004). Role of programmed cell death in normal neuronal development and function. Anatomical science international, 79, 191–197.PubMedCrossRefGoogle Scholar
  31. Buss, R. R., Sun, W., & Oppenheim, R. W. (2006). Adaptive roles of programmed cell death during nervous system development. Annual Review of Neuroscience, 29, 1–35.PubMedCrossRefGoogle Scholar
  32. Capovilla, M., & Botas, J. (1998). Functional dominance among Hox genes: Repression dominates activation in the regulation of Dpp. Development (Cambridge, England), 125, 4949–4957.Google Scholar
  33. Cau, E., & Blader, P. (2009). Notch activity in the nervous system: To switch or not switch? Neural development, 4, 36.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cenci, C., & Gould, A. P. (2005). Drosophila grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development (Cambridge, England), 132, 3835–3845.Google Scholar
  35. Chia, W., & Yang, X. (2002). Asymmetric division of Drosophila neural progenitors. Current Opinion in Genetics & Development, 12, 459–464.CrossRefGoogle Scholar
  36. Chin, A., Reynolds, E., & Scheller, R. H. (1990). Organization and expression of the Drosophila FMRFamide-related prohormone gene. DNA and Cell Biology, 9, 263–271.PubMedCrossRefGoogle Scholar
  37. Chitnis, A. B. (1995). The role of notch in lateral inhibition and cell fate specification. Molecular and cellular neurosciences, 6, 311–321.CrossRefGoogle Scholar
  38. Choi, S. H., Lee, G., Monahan, P., & Park, J. H. (2008). Spatial regulation of corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. The Journal of Comparative Neurology, 507, 1184–1195.PubMedCrossRefGoogle Scholar
  39. Choi, Y. J., Lee, G., & Park, J. H. (2006). Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development (Cambridge, England), 133, 2223–2232.Google Scholar
  40. Cleary, M. D., & Doe, C. Q. (2006). Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window. Genes & Development, 20, 429–434.CrossRefGoogle Scholar
  41. da Silva, S., & Wang, F. (2011). Retrograde neural circuit specification by target-derived neurotrophins and growth factors. Current Opinion in Neurobiology, 21, 61–67.PubMedCrossRefGoogle Scholar
  42. Deneris, E. S., & Hobert, O. (2014). Maintenance of postmitotic neuronal cell identity. Nature Neuroscience, 17, 899–907.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dewey, E. M., McNabb, S. L., Ewer, J., Kuo, G. R., Takanishi, C. L., Truman, J. W., et al. (2004). Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Current Biology, 14, 1208–1213.PubMedCrossRefGoogle Scholar
  44. Dittrich, R., Bossing, T., Gould, A. P., Technau, G. M., & Urban, J. (1997). The differentiation of the serotonergic neurons in the Drosophila ventral nerve cord depends on the combined function of the zinc finger proteins Eagle and Huckebein. Development (Cambridge, England), 124, 2515–2525.Google Scholar
  45. Doe, C. Q. (1992). Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development (Cambridge, England), 116, 855–863.Google Scholar
  46. Doe, C. Q. (2008). Neural stem cells: Balancing self-renewal with differentiation. Development (Cambridge, England), 135, 1575–1587.Google Scholar
  47. Doe, C. Q., & Goodman, C. S. (1993). Embryonic development of the Drosophila central nervous system. In M. Bate & A. Martinez Arias (Eds.), The Development of Drosophila melanogaster (pp. 1131–1206). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  48. Doe, C. Q., & Technau, G. M. (1993). Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends in Neurosciences, 16, 510–514.PubMedCrossRefGoogle Scholar
  49. Dubois, L., & Vincent, A. (2001). The COE–Collier/Olf1/EBF–transcription factors: Structural conservation and diversity of developmental functions. Mechanisms of Development, 108, 3–12.PubMedCrossRefGoogle Scholar
  50. Eade, K. T., & Allan, D. W. (2009). Neuronal phenotype in the mature nervous system is maintained by persistent retrograde bone morphogenetic protein signaling. Journal of Neuroscience, 29, 3852–3864.PubMedCrossRefGoogle Scholar
  51. Eade, K. T., Fancher, H. A., Ridyard, M. S., & Allan, D. W. (2012). Developmental transcriptional networks are required to maintain neuronal subtype identity in the mature nervous system. PLoS Genetics, 8, e1002501.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Egger, B., Chell, J. M., & Brand, A. H. (2008). Insights into neural stem cell biology from flies. Philosophical Transactions of the Royal Society of London, 363, 39–56.PubMedCrossRefGoogle Scholar
  53. Estacio-Gomez, A., Moris-Sanz, M., Schafer, A. K., Perea, D., Herrero, P., & Diaz-Benjumea, F. J. (2013). Bithorax-complex genes sculpt the pattern of leucokinergic neurons in the Drosophila central nervous system. Development (Cambridge, England), 140, 2139–2148.Google Scholar
  54. Ewer, J. (2005). Behavioral actions of neuropeptides in invertebrates: Insights from Drosophila. Hormones and Behavior, 48, 418–429.PubMedCrossRefGoogle Scholar
  55. Formosa-Jordan, P., Ibanes, M., Ares, S., & Frade, J. M. (2013). Lateral inhibition and neurogenesis: Novel aspects in motion. The International journal of developmental Biology, 57, 341–350.PubMedCrossRefGoogle Scholar
  56. Gabilondo, H., Losada-Perez, M., del Saz, D., Molina, I., Leon, Y., Canal, I., et al. (2011). A targeted genetic screen identifies crucial players in the specification of the Drosophila abdominal capaergic neurons. Mechanisms of Development, 128, 208–221.PubMedCrossRefGoogle Scholar
  57. Garces, A., and Thor, S. (2006). Specification of Drosophila aCC motoneuron identity by a genetic cascade involving even-skipped, grain and zfh1. Development (Cambridge, England), 133, 1445–1455.Google Scholar
  58. Gaspard, N., Bouschet, T., Hourez, R., Dimidschstein, J., Naeije, G., van den Ameele, J., et al. (2008). An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature, 455, 351–357.PubMedCrossRefGoogle Scholar
  59. Gehring, W. J., Kloter, U., & Suga, H. (2009). Evolution of the Hox gene complex from an evolutionary ground state. Current Topics in Developmental Biology, 88, 35–61.PubMedCrossRefGoogle Scholar
  60. Grosskortenhaus, R., Pearson, B. J., Marusich, A., & Doe, C. Q. (2005). Regulation of temporal identity transitions in Drosophila neuroblasts. Developmental Cell, 8, 193–202.PubMedCrossRefGoogle Scholar
  61. Grosskortenhaus, R., Robinson, K. J., & Doe, C. Q. (2006). Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage. Genes & Development, 20, 2618–2627.CrossRefGoogle Scholar
  62. Hamanaka, Y., Park, D., Yin, P., Annangudi, S. P., Edwards, T. N., Sweedler, J., et al. (2010). Transcriptional orchestration of the regulated secretory pathway in neurons by the bHLH protein DIMM. Current Biology, 20, 9–18.PubMedCrossRefGoogle Scholar
  63. Hayes, T. K., Pannabecker, T. L., Hinckley, D. J., Holman, G. M., Nachman, R. J., Petzel, D. H., et al. (1989). Leucokinins, a new family of ion transport stimulators and inhibitors in insect malpighian tubules. Life Sciences, 44, 1259–1266.PubMedCrossRefGoogle Scholar
  64. Herrero, P., Magarinos, M., Molina, I., Benito, J., Dorado, B., Turiegano, E., et al. (2007). Squeeze involvement in the specification of Drosophila leucokinergic neurons: Different regulatory mechanisms endow the same neuropeptide selection. Mechanisms of Development, 124, 427–440.PubMedCrossRefGoogle Scholar
  65. Hewes, R. S., Park, D., Gauthier, S. A., Schaefer, A. M., & Taghert, P. H. (2003). The bHLH protein dimmed controls neuroendocrine cell differentiation in Drosophila. Development (Cambridge, England), 130, 1771–1781.Google Scholar
  66. Hewes, R. S., & Taghert, P. H. (2001). Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Research, 11, 1126–1142.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Higashijima, S., Shishido, E., Matsuzaki, M., & Saigo, K. (1996). Eagle, a member of the steroid receptor gene superfamily, is expressed in a subset of neuroblasts and regulates the fate of their putative progeny in the Drosophila CNS. Development (Cambridge, England), 122, 527–536.Google Scholar
  68. Hippenmeyer, S., Kramer, I., & Arber, S. (2004). Control of neuronal phenotype: What targets tell the cell bodies. Trends in Neurosciences, 27, 482–488.PubMedCrossRefGoogle Scholar
  69. Hirth, F., Hartmann, B., & Reichert, H. (1998). Homeotic gene action in embryonic brain development of Drosophila. Development (Cambridge, England), 125, 1579–1589.Google Scholar
  70. Hirth, F., Therianos, S., Loop, T., Gehring, W. J., Reichert, H., & Furukubo-Tokunaga, K. (1995). Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron, 15, 769–778.PubMedCrossRefGoogle Scholar
  71. Hobert, O. (2008). Regulatory logic of neuronal diversity: Terminal selector genes and selector motifs. Proceedings of the National Academy of Sciences of the United States of America, 105, 20067–20071.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hobert, O., Carrera, I., & Stefanakis, N. (2010). The molecular and gene regulatory signature of a neuron. Trends in Neurosciences, 33, 435–445.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Honegger, H. W., Dewey, E. M., & Ewer, J. (2008). Bursicon, the tanning hormone of insects: Recent advances following the discovery of its molecular identity. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 194, 989–1005.PubMedCrossRefGoogle Scholar
  74. Isshiki, T., Pearson, B., Holbrook, S., & Doe, C. Q. (2001). Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell, 106, 511–521.PubMedCrossRefGoogle Scholar
  75. Jacob, J., Maurange, C., & Gould, A. P. (2008). Temporal control of neuronal diversity: Common regulatory principles in insects and vertebrates? Development (Cambridge, England), 135, 3481–3489.Google Scholar
  76. Kambadur, R., Koizumi, K., Stivers, C., Nagle, J., Poole, S. J., & Odenwald, W. F. (1998). Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes & Development, 12, 246–260.CrossRefGoogle Scholar
  77. Kanai, M. I., Okabe, M., & Hiromi, Y. (2005). Seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Developmental Cell, 8, 203–213.PubMedCrossRefGoogle Scholar
  78. Karcavich, R., & Doe, C. Q. (2005). Drosophila neuroblast 7-3 cell lineage: A model system for studying programmed cell death, notch/numb signaling, and sequential specification of ganglion mother cell identity. The Journal of Comparative Neurology, 481, 240–251.PubMedCrossRefGoogle Scholar
  79. Karlsson, D., Baumgardt, M., & Thor, S. (2010). Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biology, 8, e1000368.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kean, L., Cazenave, W., Costes, L., Broderick, K. E., Graham, S., Pollock, V. P., et al. (2002). Two nitridergic peptides are encoded by the gene capability in Drosophila melanogaster. American Journal of Physiology, 282, R1297–R1307.PubMedGoogle Scholar
  81. Kearney, J. B., Wheeler, S. R., Estes, P., Parente, B., & Crews, S. T. (2004). Gene expression profiling of the developing Drosophila CNS midline cells. Developmental Biology, 275, 473–492.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kim, N. C., & Marques, G. (2010). Identification of downstream targets of the bone morphogenetic protein pathway in the Drosophila nervous system. Developmental Dynamics, 239, 2413–2425.PubMedCrossRefGoogle Scholar
  83. Kim, Y. J., Spalovska-Valachova, I., Cho, K. H., Zitnanova, I., Park, Y., Adams, M. E., et al. (2004). Corazonin receptor signaling in ecdysis initiation. Proceedings of the National Academy of Sciences of the United States of America, 101, 6704–6709.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Klose, M. K., Dason, J. S., Atwood, H. L., Boulianne, G. L., & Mercier, A. J. (2010). Peptide-induced modulation of synaptic transmission and escape response in Drosophila requires two G-protein-coupled receptors. Journal of Neuroscience, 30, 14724–14734.PubMedCrossRefGoogle Scholar
  85. Knoblich, J. A. (2010). Asymmetric cell division: Recent developments and their implications for tumour biology. Nature Reviews, 11, 849–860.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kohwi, M., & Doe, C. Q. (2013). Temporal fate specification and neural progenitor competence during development. Nature Reviews Neuroscience, 14, 823–838.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kohwi, M., Hiebert, L. S., & Doe, C. Q. (2011). The pipsqueak-domain proteins distal antenna and distal antenna-related restrict Hunchback neuroblast expression and early-born neuronal identity. Development (Cambridge, England), 138, 1727–1735.Google Scholar
  88. Lahr, E. C., Dean, D., & Ewer, J. (2012). Genetic analysis of ecdysis behavior in Drosophila reveals partially overlapping functions of two unrelated neuropeptides. Journal of Neuroscience, 32, 6819–6829.PubMedCrossRefGoogle Scholar
  89. Lawrence, P. A., Sanson, B., & Vincent, J. P. (1996). Compartments, wingless and engrailed: Patterning the ventral epidermis of Drosophila embryos. Development (Cambridge, England), 122, 4095–4103.Google Scholar
  90. Lee, G., Kim, K. M., Kikuno, K., Wang, Z., Choi, Y. J., & Park, J. H. (2008). Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell and Tissue Research, 331, 659–673.PubMedCrossRefGoogle Scholar
  91. Lee, G., Wang, Z., Sehgal, R., Chen, C. H., Kikuno, K., Hay, B., & Park, J. H. (2011). Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. The Journal of Comparative Neurology, 519, 34–48.PubMedCrossRefGoogle Scholar
  92. Losada-Perez, M., Gabilondo, H., del Saz, D., Baumgardt, M., Molina, I., Leon, Y., et al. (2010). Lineage-unrelated neurons generated in different temporal windows and expressing different combinatorial codes can converge in the activation of the same terminal differentiation gene. Mechanisms of Development, 127, 458–471.PubMedCrossRefGoogle Scholar
  93. Lundell, M. J., Lee, H. K., Perez, E., & Chadwell, L. (2003). The regulation of apoptosis by Numb/Notch signaling in the serotonin lineage of Drosophila. Development (Cambridge, England), 130, 4109–4121.Google Scholar
  94. Lundgren, S. E., Callahan, C. A., Thor, S., & Thomas, J. B. (1995). Control of neuronal pathway selection by the Drosophila LIM homeodomain gene apterous. Development (Cambridge, England), 121, 1769–1773.Google Scholar
  95. Maeda, R. K., & Karch, F. (2006). The ABC of the BX-C: The bithorax complex explained. Development (Cambridge, England), 133, 1413–1422.Google Scholar
  96. Mangan, S., & Alon, U. (2003). Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences of the United States of America, 100, 11980–11985.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mangan, S., Zaslaver, A., & Alon, U. (2003). The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. Journal of Molecular Biology, 334, 197–204.PubMedCrossRefGoogle Scholar
  98. Mann, R. S., & Affolter, M. (1998). Hox proteins meet more partners. Current Opinion in Genetics & Development, 8, 423–429.CrossRefGoogle Scholar
  99. Marques, G., Bao, H., Haerry, T. E., Shimell, M. J., Duchek, P., Zhang, B., & O’Connor, M. B. (2002). The Drosophila BMP type II receptor wishful thinking regulates neuromuscular synapse morphology and function. Neuron, 33, 529–543.PubMedCrossRefGoogle Scholar
  100. Marques, G., Haerry, T. E., Crotty, M. L., Xue, M., Zhang, B., & O’Connor, M. B. (2003). Retrograde Gbb signaling through the Bmp type 2 receptor wishful thinking regulates systemic FMRFa expression in Drosophila. Development (Cambridge, England), 130, 5457–5470.Google Scholar
  101. Maurange, C., Cheng, L., & Gould, A. P. (2008). Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell, 133, 891–902.PubMedCrossRefGoogle Scholar
  102. Maurange, C., & Gould, A. P. (2005). Brainy but not too brainy: Starting and stopping neuroblast divisions in Drosophila. Trends in Neurosciences, 28, 30–36.PubMedCrossRefGoogle Scholar
  103. McCabe, B. D., Marques, G., Haghighi, A. P., Fetter, R. D., Crotty, M. L., Haerry, T. E., et al. (2003). The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron, 39, 241–254.PubMedCrossRefGoogle Scholar
  104. McClure, K. D., & Heberlein, U. (2013). A small group of neurosecretory cells expressing the transcriptional regulator apontic and the neuropeptide corazonin mediate ethanol sedation in Drosophila. Journal of Neuroscience, 33, 4044–4054.PubMedPubMedCentralCrossRefGoogle Scholar
  105. McDonald, J. A., Holbrook, S., Isshiki, T., Weiss, J., Doe, C. Q., & Mellerick, D. M. (1998). Dorsoventral patterning in the Drosophila central nervous system: The vnd homeobox gene specifies ventral column identity. Genes & Development, 12, 3603–3612.CrossRefGoogle Scholar
  106. McGuire, S. E., Mao, Z., & Davis, R. L. (2004). Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Science’s STKE: Signal Transduction Knowledge Environment, 2004, pl6.Google Scholar
  107. Merabet, S., Pradel, J., & Graba, Y. (2005). Getting a molecular grasp on Hox contextual activity. Trends in Genetics, 21, 477–480.PubMedCrossRefGoogle Scholar
  108. Mettler, U., Vogler, G., & Urban, J. (2006). Timing of identity: Spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by seven-up and prospero. Development (Cambridge, England), 133, 429–437.Google Scholar
  109. Miguel-Aliaga, I., Allan, D. W., & Thor, S. (2004). Independent roles of the dachshund and eyes absent genes in BMP signaling, axon pathfinding and neuronal specification. Development (Cambridge, England), 131, 5837–5848.Google Scholar
  110. Miguel-Aliaga, I., & Thor, S. (2004). Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity. Development (Cambridge, England), 131, 6093–6105.Google Scholar
  111. Miguel-Aliaga, I., & Thor, S. (2009). Programmed cell death in the nervous system–a programmed cell fate? Current Opinion in Neurobiology, 19, 127–133.Google Scholar
  112. Miguel-Aliaga, I., Thor, S., & Gould, A. P. (2008). Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons. PLoS Biology, 6, e58.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Milakovic, M., Ormerod, K. G., Klose, M. K., & Mercier, A. J. (2014). Mode of action of a Drosophila FMRFamide in inducing muscle contraction. The Journal of experimental biology, 217, 1725–1736.PubMedCrossRefGoogle Scholar
  114. Mills, J. C., & Taghert, P. H. (2012). Scaling factors: Transcription factors regulating subcellular domains. BioEssays, 34, 10–16.PubMedCrossRefGoogle Scholar
  115. Nassel, D. R., & Winther, A. M. (2010). Drosophila neuropeptides in regulation of physiology and behavior. Progress in Neurobiology, 92, 42–104.PubMedCrossRefGoogle Scholar
  116. Neumuller, R. A., & Knoblich, J. A. (2009). Dividing cellular asymmetry: Asymmetric cell division and its implications for stem cells and cancer. Genes & Development, 23, 2675–2699.CrossRefGoogle Scholar
  117. Novotny, T., Eiselt, R., & Urban, J. (2002). Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development (Cambridge, England), 129, 1027–1036.Google Scholar
  118. Nusslein-Volhard, C., & Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287, 795–801.PubMedCrossRefGoogle Scholar
  119. O’Brien, M. A., & Taghert, P. H. (1998). A peritracheal neuropeptide system in insects: Release of myomodulin-like peptides at ecdysis. The Journal of experimental biology, 201(Pt 2), 193–209.PubMedGoogle Scholar
  120. Okano, H., & Temple, S. (2009). Cell types to order: Temporal specification of CNS stem cells. Current Opinion in Neurobiology, 19, 112–119.PubMedCrossRefGoogle Scholar
  121. Park, J. H., Schroeder, A. J., Helfrich-Forster, C., Jackson, F. R., & Ewer, J. (2003). Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Development (Cambridge, England), 130, 2645–2656.Google Scholar
  122. Park, D., & Taghert, P. H. (2009). Peptidergic neurosecretory cells in insects: Organization and control by the bHLH protein DIMMED. General and Comparative Endocrinology, 162, 2–7.PubMedCrossRefGoogle Scholar
  123. Park, D., Veenstra, J. A., Park, J. H., & Taghert, P. H. (2008). Mapping peptidergic cells in Drosophila: Where DIMM fits in. PLoS One, 3, e1896.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Pearson, B. J., & Doe, C. Q. (2003). Regulation of neuroblast competence in Drosophila. Nature, 425, 624–628.PubMedCrossRefGoogle Scholar
  125. Pearson, B. J., & Doe, C. Q. (2004). Specification of temporal identity in the developing nervous system. Annual Review of Cell and Developmental Biology, 20, 619–647.PubMedCrossRefGoogle Scholar
  126. Peterson, C., Carney, G. E., Taylor, B. J., & White, K. (2002). Reaper is required for neuroblast apoptosis during Drosophila development. Development (Cambridge, England), 129, 1467–1476.Google Scholar
  127. Price, D. A., & Greenberg, M. J. (1977a). Purification and characterization of a cardioexcitatory neuropeptide from the central ganglia of a bivalve mollusc. Preparative biochemistry, 7, 261–281.PubMedCrossRefGoogle Scholar
  128. Price, D. A., & Greenberg, M. J. (1977b). Structure of a molluscan cardioexcitatory neuropeptide. Science (New York, NY), 197, 670–671.CrossRefGoogle Scholar
  129. Prokop, A. (2006). Organization of the efferent system and structure of neuromuscular junctions in Drosophila. International Review of Neurobiology, 75, 71–90.PubMedCrossRefGoogle Scholar
  130. Prokop, A., Bray, S., Harrison, E., & Technau, G. M. (1998). Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system. Mechanisms of Development, 74, 99–110.PubMedCrossRefGoogle Scholar
  131. Prokop, A., & Technau, G. M. (1994). Early tagma-specific commitment of Drosophila CNS progenitor NB1-1. Development (Cambridge, England), 120, 2567–2578.Google Scholar
  132. Rogulja-Ortmann, A., Luer, K., Seibert, J., Rickert, C., & Technau, G. M. (2007). Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development (Cambridge, England), 134, 105–116.Google Scholar
  133. Rogulja-Ortmann, A., Picao-Osorio, J., Villava, C., Patraquim, P., Lafuente, E., Aspden, J., Thomsen, S., Technau, G. M., & Alonso, C. R. (2014). The RNA-binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system. Development (Cambridge, England), 141, 2046–2056.Google Scholar
  134. Rogulja-Ortmann, A., Renner, S., & Technau, G. M. (2008). Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system. Development (Cambridge, England), 135, 3435–3445.Google Scholar
  135. Roth, K. A., & D’Sa, C. (2001). Apoptosis and brain development. Mental retardation and developmental disabilities research reviews, 7, 261–266.PubMedCrossRefGoogle Scholar
  136. Santos, J. G., Pollak, E., Rexer, K. H., Molnar, L., & Wegener, C. (2006). Morphology and metamorphosis of the peptidergic Va neurons and the median nerve system of the fruit fly, Drosophila melanogaster. Cell and Tissue Research, 326, 187–199.PubMedCrossRefGoogle Scholar
  137. Schmid, A., Chiba, A., & Doe, C. Q. (1999). Clonal analysis of Drosophila embryonic neuroblasts: Neural cell types, axon projections and muscle targets. Development (Cambridge, England), 126, 4653–4689.Google Scholar
  138. Schmidt, H., Rickert, C., Bossing, T., Vef, O., Urban, J., & Technau, G. M. (1997). The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Developmental Biology, 189, 186–204.PubMedCrossRefGoogle Scholar
  139. Schneider, L. E., Roberts, M. S., & Taghert, P. H. (1993a). Cell type-specific transcriptional regulation of the Drosophila FMRFamide neuropeptide gene. Neuron, 10, 279–291.PubMedCrossRefGoogle Scholar
  140. Schneider, L. E., Sun, E. T., Garland, D. J., & Taghert, P. H. (1993b). An immunocytochemical study of the FMRFamide neuropeptide gene products in Drosophila. The Journal of Comparative Neurology, 337, 446–460.PubMedCrossRefGoogle Scholar
  141. Schneider, L. E., & Taghert, P. H. (1990). Organization and expression of the Drosophila Phe-Met-Arg-Phe-NH2 neuropeptide gene. The Journal of biological chemistry, 265, 6890–6895.PubMedGoogle Scholar
  142. Schotzinger, R. J., & Landis, S. C. (1988). Cholinergic phenotype developed by noradrenergic sympathetic neurons after innervation of a novel cholinergic target in vivo. Nature, 335, 637–639.PubMedCrossRefGoogle Scholar
  143. Schubiger, M., Tomita, S., Sung, C., Robinow, S., & Truman, J. W. (2003). Isoform specific control of gene activity in vivo by the Drosophila ecdysone receptor. Mechanisms of Development, 120, 909–918.PubMedCrossRefGoogle Scholar
  144. Schubiger, M., Wade, A. A., Carney, G. E., Truman, J. W., & Bender, M. (1998). Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and for neuron remodeling during metamorphosis. Development (Cambridge, England), 125, 2053–2062.Google Scholar
  145. Sha, K., Choi, S. H., Im, J., Lee, G. G., Loeffler, F., & Park, J. H. (2014). Regulation of ethanol-related behavior and ethanol metabolism by the corazonin neurons and corazonin receptor in Drosophila melanogaster. PLoS ONE, 9, e87062.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Shafer, O. T., Helfrich-Forster, C., Renn, S. C., & Taghert, P. H. (2006). Reevaluation of Drosophila melanogaster’s neuronal circadian pacemakers reveals new neuronal classes. The Journal of Comparative Neurology, 498, 180–193.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Skeath, J. B. (1999). At the nexus between pattern formation and cell-type specification: The generation of individual neuroblast fates in the Drosophila embryonic central nervous system. BioEssays, 21, 922–931.PubMedCrossRefGoogle Scholar
  148. Skeath, J. B., & Doe, C. Q. (1998). Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS. Development (Cambridge, England), 125, 1857–1865.Google Scholar
  149. Skeath, J. B., & Thor, S. (2003). Genetic control of Drosophila nerve cord development. Current Opinion in Neurobiology, 13, 8–15.PubMedCrossRefGoogle Scholar
  150. Smith, R. B., Machamer, J. B., Kim, N. C., Hays, T. S., & Marques, G. (2012). Relay of retrograde synaptogenic signals through axonal transport of BMP receptors. Journal of Cell Science, 125, 3752–3764.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Sousa-Nunes, R., Cheng, L. Y., & Gould, A. P. (2010). Regulating neural proliferation in the Drosophila CNS. Current Opinion in Neurobiology, 20, 50–57.PubMedCrossRefGoogle Scholar
  152. Southall, T. D., Egger, B., Gold, K. S., & Brand, A. H. (2008). Regulation of self-renewal and differentiation in the Drosophila nervous system. Cold Spring Harbor Symposia on Quantitative Biology, 73, 523–528.PubMedCrossRefGoogle Scholar
  153. Spana, E. P., & Doe, C. Q. (1996). Numb antagonizes notch signaling to specify sibling neuron cell fates. Neuron, 17, 21–26.PubMedCrossRefGoogle Scholar
  154. Spana, E. P., Kopczynski, C., Goodman, C. S., & Doe, C. Q. (1995). Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development (Cambridge, England), 121, 3489–3494.Google Scholar
  155. Sulston, J. E., & Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology, 56, 110–156.PubMedCrossRefGoogle Scholar
  156. Sulston, J. E., Schierenberg, E., White, J. G., & Thomson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100, 64–119.PubMedCrossRefGoogle Scholar
  157. Suska, A., Miguel-Aliaga, I., & Thor, S. (2011). Segment-specific generation of Drosophila capability neuropeptide neurons by multi-faceted Hox cues. Developmental Biology, 353, 72–80.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Taghert, P. H., & Nitabach, M. N. (2012). Peptide neuromodulation in invertebrate model systems. Neuron, 76, 82–97.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tayler, T. D., Pacheco, D. A., Hergarden, A. C., Murthy, M., & Anderson, D. J. (2012). A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109, 20697–20702.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Terhzaz, S., O’Connell, F. C., Pollock, V. P., Kean, L., Davies, S. A., Veenstra, J. A., et al. (1999). Isolation and characterization of a leucokinin-like peptide of Drosophila melanogaster. The Journal of experimental biology, 202(Pt 24), 3667–3676.PubMedGoogle Scholar
  161. Terriente Felix, J., Magarinos, M., & Diaz-Benjumea, F. J. (2007). Nab controls the activity of the zinc-finger transcription factors squeeze and rotund in Drosophila development. Development (Cambridge, England), 134, 1845–1852.Google Scholar
  162. Therianos, S., Leuzinger, S., Hirth, F., Goodman, C. S., & Reichert, H. (1995). Embryonic development of the Drosophila brain: Formation of commissural and descending pathways. Development (Cambridge, England), 121, 3849–3860.Google Scholar
  163. Thor, S. (1995). The genetics of brain-development—conserved programs in flies and mice. Neuron, 15, 975–977.PubMedCrossRefGoogle Scholar
  164. Tissot, M., & Stocker, R. F. (2000). Metamorphosis in Drosophila and other insects: The fate of neurons throughout the stages. Progress in Neurobiology, 62, 89–111.PubMedCrossRefGoogle Scholar
  165. Tran, K. D., & Doe, C. Q. (2008). Pdm and castor close successive temporal identity windows in the NB3-1 lineage. Development (Cambridge, England), 135, 3491-3499.Google Scholar
  166. Tsuji, T., Hasegawa, E., & Isshiki, T. (2008). Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development (Cambridge, England), 135, 3859–3869.Google Scholar
  167. Udolph, G., Luer, K., Bossing, T., & Technau, G. M. (1995). Commitment of CNS progenitors along the dorsoventral axis of Drosophila neuroectoderm. Science (New York, NY), 269, 1278–1281.CrossRefGoogle Scholar
  168. Ulvklo, C., Macdonald, R., Bivik, C., Baumgardt, M., Karlsson, D., & Thor, S. (2012). Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression. Development (Cambridge, England), 139, 678–689.Google Scholar
  169. Urbach, R., Schnabel, R., & Technau, G. M. (2003). The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development (Cambridge, England), 130, 3589–3606.Google Scholar
  170. Urbach, R., & Technau, G. M. (2003a). Early steps in building the insect brain: Neuroblast formation and segmental patterning in the developing brain of different insect species. Arthropod structure & development, 32, 103–123.Google Scholar
  171. Urbach, R., & Technau, G. M. (2003b). Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development (Cambridge, England), 130, 3621–3637.Google Scholar
  172. Urbach, R., & Technau, G. M. (2003c). Segment polarity and DV patterning gene expression reveals segmental organization of the Drosophila brain. Development (Cambridge, England), 130, 3607–3620.Google Scholar
  173. Urbach, R., & Technau, G. M. (2004). Neuroblast formation and patterning during early brain development in Drosophila. BioEssays, 26, 739–751.PubMedCrossRefGoogle Scholar
  174. Veenstra, J. A. (1989). Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Letters, 250, 231–234.PubMedCrossRefGoogle Scholar
  175. Veenstra, J. A. (1994). Isolation and structure of the Drosophila corazonin gene. Biochemical and biophysical research communications, 204, 292–296.PubMedCrossRefGoogle Scholar
  176. Veenstra, J.A. (2009). Does corazonin signal nutritional stress in insects? Insect Biochemistry and Molecular Biology, 39, 755–762.Google Scholar
  177. Verleyen, P., Baggerman, G., Wiehart, U., Schoeters, E., Van Lommel, A., De Loof, A., & Schoofs, L. (2004). Expression of a novel neuropeptide, NVGTLARDFQLPIPNamide, in the larval and adult brain of Drosophila melanogaster. Journal of Neurochemistry, 88, 311–319.PubMedCrossRefGoogle Scholar
  178. Veverytsa, L., & Allan, D. W. (2011). Retrograde BMP signaling controls Drosophila behavior through regulation of a peptide hormone battery. Development (Cambridge, England), 138, 3147–3157.Google Scholar
  179. Veverytsa, L., & Allan, D. W. (2012). Temporally tuned neuronal differentiation supports the functional remodeling of a neuronal network in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109, E748–E756.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Veverytsa, L., & Allan, D. W. (2013). Subtype-specific neuronal remodeling during Drosophila metamorphosis. Fly, 7, 78–86.PubMedPubMedCentralCrossRefGoogle Scholar
  181. von Ohlen, T., & Doe, C. Q. (2000). Convergence of dorsal, dpp, and egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal-ventral columns. Developmental Biology, 224, 362–372.CrossRefGoogle Scholar
  182. Wheeler, S. R., Kearney, J. B., Guardiola, A. R., & Crews, S. T. (2006). Single-cell mapping of neural and glial gene expression in the developing Drosophila CNS midline cells. Developmental Biology, 294, 509–524.PubMedPubMedCentralCrossRefGoogle Scholar
  183. White, B. H., & Ewer, J. (2014). Neural and hormonal control of postecdysial behaviors in insects. Annual Review of Entomology, 59, 363–381.PubMedCrossRefGoogle Scholar
  184. Wu, P. S., Egger, B., & Brand, A. H. (2008). Asymmetric stem cell division: Lessons from Drosophila. Seminars in Cell & Developmental Biology, 19, 283–293.CrossRefGoogle Scholar
  185. Zhao, Y., Bretz, C. A., Hawksworth, S. A., Hirsh, J., & Johnson, E. C. (2010). Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS ONE, 5, e9141.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Clinical and Experimental MedicineLinkoping UniversityLinkopingSweden
  2. 2.Department of Cellular and Physiological Sciences, Life Sciences InstituteUniversity of British ColumbiaVancouverCanada

Personalised recommendations