Organogenesis of the C. elegans Vulva and Control of Cell Fusion



The vulva of Caenorhabditis elegans is widely used as a paradigm for the study of organogenesis and is composed of seven toroids, formed by the migration of cells and the formation of homotypic contacts. Five of the toroids contain two or four nuclei and cell membrane fusion is one of the main driving forces during the morphogenesis of the vulva. The network of genes involved in the control of cell fusion during the formation of the vulva must determine which cells fuse and when. Especially during the formation of the vulval toroids, when those cells that fuse to form each ring, must not fuse with the neighbor cells, which form other separate rings. This is achieved through very fine control on the expression and function of several key genes.


Vulva morphogenesis Caenorhabditis elegans Cell fusion Organogenesis Signaling pathways eff-1 aff-1 Wnt Notch RTK-Ras-ERK Vulval toroids Developmental genetics Cell differentiation Cell invasion Anchor cell Vulval precursors Fate determination Cell migration Cell lineage Cell polarization Transcriptional control Modeling Uterine-vulval connection Nematodes Evolution Evo-devo 



We thank Alex Hajnal and Gidi Shemer for critically reading the manuscript. BP was a Grass fellow at Radcliffe Institute for Advanced Study at Harvard University. The work in BP lab was funded by European Research Council (ERC) Advanced grant 268843, GIF German-Israeli Foundation for Scientific Research and Development (grant 937/2006), US-Israel Binational Science Foundation grant 2013151 and the Israel Science Foundation grant 443/12. The work of NW was partially supported by ABACUS, CONACyT grant EDOMEX-2011-C01-165873.


  1. Alkema, M. J., et al. (2005). Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron, 46(2), 247–260.PubMedCrossRefGoogle Scholar
  2. Alper, S., & Kenyon, C. (2001). REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity. Development, 128(10), 1793–1804.PubMedGoogle Scholar
  3. Alper, S., & Kenyon, C. (2002). The zinc finger protein REF-2 functions with the Hox genes to inhibit cell fusion in the ventral epidermis of C. elegans. Development, 129, 3335–3348.PubMedGoogle Scholar
  4. Alper, S., & Podbilewicz, B. (2008). In E. H. Chen (Ed.), Cell fusion in Caenorhabditis elegans, in Cell Fusion (pp. 53–74). Humana Press: Totowa, NJ.Google Scholar
  5. Altun, Z.F., & Hall, D H. (2009). Epithelial system, hypodermis. WormAtlas.Google Scholar
  6. Andersson, E. R., Sandberg, R., & Lendahl, U. (2011). Notch signaling: Simplicity in design, versatility in function. Development, 138(17), 3593–3612.PubMedCrossRefGoogle Scholar
  7. Angers, S., & Moon, R. T. (2009). Proximal events in Wnt signal transduction. Nature Reviews Molecular Cell Biology, 10, 468–477.PubMedCrossRefGoogle Scholar
  8. Aroian, R. V., & Sternberg, P. W. (1991). Multiple functions of let-23, a Caenorhabditis elegans receptor tyrosine kinase gene required for vulval induction. Genetics, 128, 251–267.PubMedPubMedCentralGoogle Scholar
  9. Beitel, G. J., Clark, S. G., & Horvitz, H. R. (1990). Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature, 348, 503–509.PubMedCrossRefGoogle Scholar
  10. Berset, T. A., Hoier, E. F., & Hajnal, A. (2005). The C. elegans homolog of the mammalian tumor suppressor Dep-1/Scc1 inhibits EGFR signaling to regulate binary cell fate decisions. Genes & Development, 19(11), 1328–1340.CrossRefGoogle Scholar
  11. Berset, T., et al. (2001). Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science, 291(5506), 1055–1058.PubMedCrossRefGoogle Scholar
  12. Bonzanni, N., et al. (2009). Executing multicellular differentiation: Quantitative predictive modelling of C. elegans vulval development. Bioinformatics, 25(16), 2049–2056.PubMedCrossRefGoogle Scholar
  13. Braendle, C., Baer, C. F., & Félix, M.-A. (2010). Bias and evolution of the mutationally accessible phenotypic space in a developmental system. PLoS Genetics, 6(3), e1000877.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buck, S. H., Chiu, D., & Saito, R. M. (2009). The cyclin-dependent kinase inhibitors, cki-1 and cki-2, act in overlapping but distinct pathways to control cell cycle quiescence during C. elegans development. Cell Cycle, 8(16), 2613–2620.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bulik, D. A., & Robbins, P. W. (2002). The Caenorhabditis elegans sqv genes and functions of proteoglycans in development. Biochimica et Biophysica Acta (BBA)—General Subjects, 1573(3), 247–257.Google Scholar
  16. Bulik, D. A., et al. (2000). sqv-3, -7, and -8, a set of genes affecting morphogenesis in Caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. Proceedings of the National Academy of Sciences, 97(20), 10838–10843.CrossRefGoogle Scholar
  17. Burdine, R. D., Branda, C. S., & Stern, M. J. (1998). EGL-17(FGF) expression coordinates the attraction of the migrating sex myoblasts with vulval induction in C. elegans. Development, 125, 1083–1093.PubMedGoogle Scholar
  18. Chang, C., Hopper, N. A., & Sternberg, P. W. (2000). Caenorhabditis elegans SOS-1 is necessary for multiple RAS-mediated developmental signals. The EMBO Journal, 19(13), 3283–3294.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chang, C., Newman, A. P., & Sternberg, P. W. (1999). Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia. Current Biology, 9(5), 237–246.PubMedCrossRefGoogle Scholar
  20. Chen, N., & Greenwald, I. (2004). The lateral signal for LIN-12/notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Developmental Cell, 6(2), 183–192.PubMedCrossRefGoogle Scholar
  21. Chisholm, A. D., & Hsiao, T. I. (2012). The C. elegans epidermis as a model skin. I: Development, patterning, and growth. Wiley Interdiscip Rev. Dev Biol., 1(6), 861–878.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Choi, V. N., Park, S. K., & Hwang, B. J. (2013). Clustered LAG-1 binding sites in lag-1/CSL are involved in regulating lag-1 expression during lin-12/notch-dependent cell-fate specification. BMB reports, 46(4), 219–224.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Christensen, S., et al. (1996). lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and drosophila Su(H). Development, 122, 1373–1383.PubMedGoogle Scholar
  24. Clandinin, T. R., Katz, W. S., & Sternberg, P. W. (1997). Caenorhabditis elegans HOM-C genes regulate the response of vulval precursor cells to inductive signal. Developmental Biology, 182, 150–161.PubMedCrossRefGoogle Scholar
  25. Clark, S. G., Chisholm, A. D., & Horvitz, H. R. (1993). Control of cell fates in the central body region of C. elegans by the homebox gene lin-39. Cell, 74, 43–55.PubMedCrossRefGoogle Scholar
  26. Clark, S. G., Stern, M. J., & Horvitz, H. R. (1992). C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature, 356, 340–344.PubMedCrossRefGoogle Scholar
  27. Clayton, J. E., van den Heuvel, S. J. L., & Saito, R. M. (2008). Transcriptional control of cell-cycle quiescence during C. elegans development. Developmental Biology, 313(2), 603–613.PubMedCrossRefGoogle Scholar
  28. Clevers, H., & Nusse, R. (2012). Wnt/β-catenin signaling and disease. Cell, 149(6), 1192–1205.PubMedCrossRefGoogle Scholar
  29. Corson, F., & Siggia, E. D. (2012). Geometry, epistasis, and developmental patterning. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5568–5575.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Costa, M., et al. (1998). A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. The Journal of Cell Biology, 141(1), 297–308.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cui, M., & Han, M. (2003). Cis regulatory requirements for vulval cell-specific expression of the Caenorhabditis elegans fibroblast growth factor gene egl-17. Developmental Biology, 257(1), 104–116.PubMedCrossRefGoogle Scholar
  32. Dalpé, G., Brown, L., & Culotti, J. G. (2005). Vulva morphogenesis involves attraction of plexin 1-expressing primordial vulva cells to semaphorin 1a sequentially expressed at the vulva midline. Development, 132(6), 1387–1400.PubMedCrossRefGoogle Scholar
  33. Delattre, M., & Félix, M.-A. (2001). Polymorphism and evolution of vulval precursor cell lineages within two nematode genera, caenorhabditis and oscheius. Current Biology, 11(9), 631–643.PubMedCrossRefGoogle Scholar
  34. Doyle, T. G., Wen, C., & Greenwald, I. (2000). SEL-8, a nuclear protein required for LIN-12 and GLP-1 signaling in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 7877–7881.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dutt, A., et al. (2004). EGF signal propagation during C. elegans vulval development mediated by ROM-1 rhomboid. PLoS Biology, 2(11), e334.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Eisenmann, D. M., & Kim, S. K. (2000). Protruding vulva mutants identify novel loci and Wnt signaling factors that function during Caenorhabditis elegans vulva development. Genetics, 153(3), 1097–1116.Google Scholar
  37. Eisenmann, D. M., et al. (1998). The β-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development. Development, 125, 3667–3680.PubMedGoogle Scholar
  38. Estes, K. A., Kalamegham, R., & Hanna-Rose, W. (2007). Membrane localization of the NlpC/P60 family protein EGL-26 correlates with regulation of vulval cell morphogenesis in Caenorhabditis elegans. Developmental Biology, 308(1), 196–205.PubMedCrossRefGoogle Scholar
  39. Euling, S., & Ambros, V. (1996). Reversal of cell fate determination in Caenorhabditis elegans vulval development. Development, 122, 2507–2515.PubMedGoogle Scholar
  40. Farooqui, S., et al. (2012). Coordinated lumen contraction and expansion during vulval tube morphogenesis in Caenorhabditis elegans. Developmental Cell, 23, 494–506.PubMedCrossRefGoogle Scholar
  41. Fay, D. S., et al. (1999). A Caenorhabditis elegans homologue of hunchback is required for late stages of development but not early embryonic patterning. Developmental Biology, 205(2), 240–253.PubMedCrossRefGoogle Scholar
  42. Felix, M.-A. (2006). Oscheius tipulae. WormBook.Google Scholar
  43. Félix, M.-A. (2012). Caenorhabditis elegans vulval cell fate patterning. Physical Biology, 9(4), 045001.PubMedCrossRefGoogle Scholar
  44. Félix, M.-A., & Barkoulas, M. (2012). Robustness and flexibility in nematode vulva development. Trends in Genetics, 28(4), 185–195.PubMedCrossRefGoogle Scholar
  45. Ferguson, E. L., & Horvitz, H. R. (1985). Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics, 110, 17–72.PubMedPubMedCentralGoogle Scholar
  46. Fernandes, J. S., & Sternberg, P. W. (2007). The tailless ortholog nhr-67 regulates patterning of gene expression and morphogenesis in the C. elegans vulva. PLoS Genetics, 3(4), e69.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ferrel, J. E. (2012). Bistability, bifurcations, and Waddington’s review epigenetic landscape. Current Biology, 22(11), R458-R466.Google Scholar
  48. Fertig, E. J., et al. (2011). Hybrid modeling of cell signaling and transcriptional reprogramming and its application in C. elegans development. Frontiers in Genetics, 2(77), 1–9.Google Scholar
  49. Fisher, J., et al. (2005). Computational insights into Caenorhabditis elegans vulval development. Proceedings of the National Academy of Sciences of the United States of America, 102(6), 1951–1956.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fisher, J., et al. (2007). Predictive modeling of signaling crosstalk during C. elegans vulval development. PLoS Computational Biology, 3(5), e92.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fitzgerald, K., & Greenwald, I. (1995). Interchangeability of Caenorhabditis elegans DSL proteins and intrinsic signalling activity of their extracellular domains in vivo. Development, 121(12), 4275–4282.PubMedGoogle Scholar
  52. Forrester, W. C., et al. (1999). A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature, 400(6747), 881–885.PubMedCrossRefGoogle Scholar
  53. Francis, R., et al. (2002). aph-1 and pen-2 are required for notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Developmental Cell, 3, 85–97.PubMedCrossRefGoogle Scholar
  54. Friedlander-Shani, L., Podbilewicz, B. (2011). In T. Dittmar & K. S. Zänker (Eds.), Heterochronic control of AFF-1-mediated cell-to-cell fusion in C. elegans, in cell fusion in health and disease. Springer Netherlands. p. 5–11.Google Scholar
  55. Ghosh, S., & Sternberg, P. W. (2014). Spatial and molecular cues for cell outgrowth during C. elegans uterine development. Developmental Biology, 396(1), 121–135.PubMedCrossRefGoogle Scholar
  56. Gilbert, S. F. (2013). Developmental biology. In Tenth (Ed.), Developmental biology (Vol. 1, p. 719). Sunderland, Massachusetts: Sinauer Associates, Inc.Google Scholar
  57. Giurumescu, C. A., Sternberg, P. W., & Asthagiri, A. R. (2006). Intercellular coupling amplifies fate segregation during Caenorhabditis elegans vulval development. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1331–1336.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Giurumescu, C. A., Sternberg, P. W., & Asthagiri, A. R. (2009). Predicting phenotypic diversity and the underlying quantitative molecular transitions. PLoS Computational Biology, 5(4), e1000354.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gleason, J. E., Korswagen, H. C., & Eisenmann, D. M. (2002). Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C. elegans vulval induction. Genes & Development, 16, 1281–1290.CrossRefGoogle Scholar
  60. Gleason, J. E., Szyleyko, E. A., & Eisenmann, D. M. (2006). Multiple redundant Wnt signaling components function in two processes during C. elegans vulval development. Developmental Biology, 298(2), 442–457.PubMedCrossRefGoogle Scholar
  61. Goutte, C., et al. (2002). APH-1 is a multipass membrane protein essential for the notch signaling pathway in Caenorhabditis elegans embryos. Proc Natl Acad Sci U S A, 99(2), 775–779.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Graves, F. P. (1910). The history of education during the middle ages and the transition to modern times. New York: Mcmillan.Google Scholar
  63. Green, J. L., Inoue, T., & Sternberg, P. W. (2008). Opposing Wnt pathways orient cell polarity during organogenesis. Cell, 134(4), 646–656.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Greenwald, I. (1997). In D. B. T. Riddle, B. Meyer & Priess (Eds.), Development of the vulva, in C. elegans II (pp. 519–541). New York: Cold Spring Harbor Laboratory Press: Cold Spring Harbor.Google Scholar
  65. Greenwald, I., & Kovall, R. (2002). Notch signaling: Genetics and structure. WormBook.Google Scholar
  66. Greenwald, I. S., Sternberg, P. W., & Horvitz, H. R. (1983). The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell, 34(2), 435–444.PubMedCrossRefGoogle Scholar
  67. Gupta, B. P., Hanna-Rose, W., & Sternberg, P. W. (2012). Morphogenesis of the vulva and the vulval-uterine connection. Wormbook.Google Scholar
  68. Gupta, B. P., & Sternberg, P. W. (2002). Tissue-specific regulation of the LIM homeobox Gene lin-11 during development of the Caenorhabditis elegans egg-laying system. Developmental Biology, 247(1), 102–115.PubMedCrossRefGoogle Scholar
  69. Haag, A., et al. (2014). An in vivo EGF receptor localization screen in C. elegans Identifies the Ezrin Homolog ERM-1 as a temporal regulator of signaling. PLoS Genetics, 10(5), e1004341.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hajnal, A., Whitfield, C. W., & Kim, S. K. (1997). Inhibition of Caenorhabditis elegans vulval induction by gap-1 and by let-23 receptor tyrosine kinase. Genes & Development, 11, 2715–2728.CrossRefGoogle Scholar
  71. Han, M., Aroian, R. V., & Sternberg, P. W. (1990). The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. Genetics, 126, 899–913.PubMedPubMedCentralGoogle Scholar
  72. Han, M., et al. (1993). C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature, 363, 133–140.PubMedCrossRefGoogle Scholar
  73. Hanna-Rose, W., & Han, M. (2002). The Caenorhabditis elegans EGL-26 protein mediates vulval cell morphogenesis. Developmental Biology, 241(2), 247–258.PubMedCrossRefGoogle Scholar
  74. Hardin, J., & King, R. S. (2008). The long and the short of Wnt signaling in C. elegans. Current Opinion in Genetics & Development, 18, 362–367.CrossRefGoogle Scholar
  75. Hayashizaki, S., Iino, Y., & Yamamoto, M. (1998). Characterization of the C. elegans gap-2 gene encoding a novel Ras-GTPase activating protein and its possible role in larval development. Genes to Cells, 3(3), 189–202.PubMedCrossRefGoogle Scholar
  76. Herman, T., Hartwieg, E., & Horvitz, H. R. (1999). sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proceedings of the National Academy of Sciences of the United States of America, 96(3), 968–973.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hill, R. J., & Sternberg, P. W. (1992). The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature, 358, 470–476.PubMedCrossRefGoogle Scholar
  78. Hobert, O. (2010). Neurogenesis in the nematode Caenorhabditis elegans (pp. 1–24). WormBook.Google Scholar
  79. Hoier, E. F., et al. (2000). The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression. Genes & Development, 14, 874–886.Google Scholar
  80. Hong, Y., Roy, R., & Ambros, V. (1998). Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. Development, 125, 3585–3597.PubMedGoogle Scholar
  81. Hopper, N. A., Lee, J., & Sternberg, P. W. (2000). ARK-1 inhibits EGFR signaling in C. elegans. Molecular Cell, 6(1), 65–75.PubMedCrossRefGoogle Scholar
  82. Horvitz, H. R., & Sulston, J. E. (1980). Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics, 96(2), 435–454.PubMedPubMedCentralGoogle Scholar
  83. Howell, K., et al. (2010). EOR-2 Is an obligate binding partner of the BTB–zinc finger protein EOR-1 in Caenorhabditis elegans. Genetics, 184(4), 899–913.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hoyos, E., et al. (2011). Quantitative variation in autocrine signaling and pathway crosstalk in the Caenorhabditis vulva network. Current Biology, 21(7), 527–538.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hsu, V., et al. (2002). Caenorhabditis elegans lin-45 raf is essential for larval viability, fertility and the induction of vulval cell fates. Genetics, 160, 481–492.PubMedPubMedCentralGoogle Scholar
  86. Hwang, H.-Y., & Horvitz, H. R. (2002a). The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proceedings of the National Academy of Sciences, 99(22), 14218–14223.CrossRefGoogle Scholar
  87. Hwang, H.-Y., & Horvitz, H. R. (2002b). The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated. Proceedings of the National Academy of Sciences, 99(22), 14224–14229.CrossRefGoogle Scholar
  88. Hwang, B. J., & Sternberg, P. W. (2004). A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development. Development, 131(1), 143–151.PubMedCrossRefGoogle Scholar
  89. Hwang, H.-Y., et al. (2003a). The Caenorhabditis elegans genes sqv-2 and sqv-6, which are required for vulval morphogenesis, encode glycosaminoglycan galactosyltransferase II and Xylosyltransferase. Journal of Biological Chemistry, 278(14), 11735–11738.PubMedCrossRefGoogle Scholar
  90. Hwang, H.-Y., et al. (2003b). Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature, 423(6938), 439–443.PubMedCrossRefGoogle Scholar
  91. Inoue, T., & Sternberg, P. W. (2010). C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis. Developmental Biology, 338(2), 226–236.PubMedCrossRefGoogle Scholar
  92. Inoue, T., et al. (2005). Transcriptional network underlying Caenorhabditis elegans vulval development. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 4972–4977.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Jacobs, D., et al. (1998). Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics, 149, 1809–1822.PubMedPubMedCentralGoogle Scholar
  94. Jarriault, S., & Greenwald, I. (2005). Evidence for functional redundancy between C. elegans ADAM proteins SUP-17/Kuzbanian and ADM-4/TACE. Development Biology, 287(1), 1–10.CrossRefGoogle Scholar
  95. Johnson, S. M., et al. (2005). RAS is regulated by the let-7 MicroRNA family. Cell, 120(5), 635–647.PubMedCrossRefGoogle Scholar
  96. Jongeward, G. D., Clandinin, T. R., & Sternberg, P. W. (1995). sli-1, a negative regulator of let-23-mediated signaling in C. elegans. Genetics, 139(4), 1553–1566.Google Scholar
  97. Kaech, S. M., Whitfield, C. W., & Kim, S. K. (1998). The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell, 94(6), 761–771.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kam, N. A., et al. (2003). Formal modeling of C. elegans development: A scenario-based approach. Lecture Notes in Computer Science, Vol. 2602, pp. 4–20.Google Scholar
  99. Kam N. A., et al. (2008). A scenario-based approach to modeling development: A prototype model of C. elegans vulval fate specification. Developmental Biology, 323(1), 1–5.Google Scholar
  100. Katz, W. S., et al. (1995). Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. Cell, 82(2), 297–307.PubMedCrossRefGoogle Scholar
  101. Kidd, A. R., 3rd, et al. (2005). A beta-catenin identified by functional rather than sequence criteria and its role in Wnt/MAPK signaling. Cell, 121(5), 761–772.PubMedCrossRefGoogle Scholar
  102. Kimble, J. (1981). Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Developmental Biology, 87(2), 286–300.PubMedCrossRefGoogle Scholar
  103. Kiontke, K., et al. (2007). Trends, stasis, and drift in the evolution of nematode vulva development. Current Biology, 17(22), 1925–1937.PubMedCrossRefGoogle Scholar
  104. Kirienko, N. V., Mani, K., & Fay, D. S. (2010). Cancer models in Caenorhabditis elegans. Developmental Dynamics, 239, 1413–1448.PubMedPubMedCentralGoogle Scholar
  105. Kirouac, M.S., & Paul W. (2003). Cis-regulatory control of three cell fate-specific genes in vulval organogenesis of Caenorhabditis elegans and C. briggsae. Developmental Biology, 257(1), 85–103.Google Scholar
  106. Klerkx, E. P. F., et al. (2009). Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans. Developmental Biology, 335(1), 12–21.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Koh, K., et al. (2002). Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors—apparent direct targets of the LIN-39 Hox protein. Development, 129, 5171–5180.PubMedGoogle Scholar
  108. Kolotuev, I., & Podbilewicz, B. (2004). Pristionchus pacificus vulva formation: polarized division, cell migration, cell fusion, and evolution of invagination. Developmental Biology, 266(2), 322–333.PubMedCrossRefGoogle Scholar
  109. Kolotuev, I., & Podbilewicz, B. (2008). Changing of the cell division axes drives vulva evolution in nematodes. Developmental Biology, 313, 142–154.PubMedCrossRefGoogle Scholar
  110. Korswagen, H. C., et al. (2002). The Axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C. elegans. Genes & Development, 16, 1291–1302.CrossRefGoogle Scholar
  111. Lackner, M. R., & Kim, S. K. (1998). Genetic analysis of the caenorhabditis elegans MAP kinase gene mpk-1. Genetics, 150, 103–117.PubMedPubMedCentralGoogle Scholar
  112. Lambie, E. J., & Kimble, J. (1991). Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development, 112(1), 231–240.PubMedGoogle Scholar
  113. Lee, J., Jongeward, G. D., & Sternberg, P. W. (1994). unc-101, a gene required for many aspects of Caenorhabditis elegans development and behavior, encodes a clathrin-associated protein. Genes & Development, 8(1), 60–73.CrossRefGoogle Scholar
  114. Leight, E. R., et al. (2015). Conversion of the LIN-1 ETS protein of Caenorhabditis elegans from a SUMOylated transcriptional repressor to a phosphorylated transcriptional activator. Genetics, 199(3), 761–775.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Levitan, D., et al. (2001). APH-2/nicastrin functions in LIN-12/Notch signaling in the Caenorhabditis elegans somatic gonad. Development Biology, 240(2), 654–661.CrossRefGoogle Scholar
  116. Li, J., & Greenwald, I. (2010). LIN-14 inhibition of LIN-12 contributes to precision and timing of C. elegans vulval fate patterning. Current Biology, 20(20), 1875–1879.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Li, C., et al. (2009). Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension. BMC Systems Biology, 3, 42.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lints, R., & Hall, D.H. (2009). Reproductive system, egglaying apparatus. WormAtlas.Google Scholar
  119. Liu, W.-J., et al. (2014). Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6. BMC Developmental Biology, 14(17).Google Scholar
  120. Liu, Z., et al. (2005). C. elegans PlexinA PLX-1 mediates a cell contact-dependent stop signal in vulval precursor cells. Developmental Biology, 282(1), 138–151.PubMedCrossRefGoogle Scholar
  121. Liu, J., et al. (2008). The C. elegans SYS-1 protein is a bona fide beta-catenin. Developmental Cell, 14(5), 751–761.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Maloof, J. N., & Kenyon, C. (1998). The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling. Development, 125, 181–190.PubMedGoogle Scholar
  123. Marri, S., & Gupta, B. P. (2009). Dissection of lin-11 enhancer regions in Caenorhabditis elegans and other nematodes. Developmental Biology, 325, 402–411.PubMedCrossRefGoogle Scholar
  124. McKay, M. M., & Morrison, D. K. (2007). Integrating signals from RTKs to ERK/MAPK. Oncogene, 26, 3113–3121.PubMedCrossRefGoogle Scholar
  125. Mello, C. C., Draper, B. W., & Prless, J. R. (1994). The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo. Cell, 77(1), 95–106.PubMedCrossRefGoogle Scholar
  126. Mendelson, T. C., Imhoff, V. E., & Venditti, J. J. (2007). The accumulation of reproductive barriers during speciation: postmating barriers in two behaviorally isolated species of darters (Percidae: Etheostoma). Evolution, 61(11), 2596–2606.PubMedCrossRefGoogle Scholar
  127. Minor, P. J., et al. (2013). FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans. Development, 140, 3882–3891.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Mizumoto, K., & Sawa, H. (2007). Cortical β-catenin and apc regulate asymmetric nuclear β-catenin localization during asymmetric cell division in C. elegans. Developmental Cell, 12(2), 287–299.PubMedCrossRefGoogle Scholar
  129. Morf, M. K., Rimann, I., Alexander, M., Roy, P., Hajnal, A. (2013). The Caenorhabditis elegans homolog of the Opitz syndrome gene, madd-2/Mid1, regulates anchor cell invasion during vulval development. Developmental Biology, 374(1), 108–114.Google Scholar
  130. Morita, K., Hirono, K., & Han, M. (2005). The Caenorhabditis elegans ect 2 RhoGEF gene regulates cytokinesis and migration of epidermal P cells. 6, 1163–1168.Google Scholar
  131. Morrissey, M. A., et al. (2014). B-LINK: A hemicentin, plakin, and integrin-dependent adhesion system that links tissues by connecting adjacent basement membranes. Developmental Cell, 31(3), 319–331.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Moss, E. G. (2007). Heterochronic genes and the nature of developmental time. Current Biology, 17(11), R425–R434.PubMedCrossRefGoogle Scholar
  133. Moss, E. G., Lee, R. C., & Ambros, V. (1997). The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell, 88, 637–646.PubMedCrossRefGoogle Scholar
  134. Myers, T. R., & Greenwald, I. (2007). Wnt signal from multiple tissues and lin-3/EGF signal from the gonad maintain vulval precursor cell competence in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20368–20373.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Newman, A. P., White, J. G., & Sternberg, P. W. (1995). The Caenorhabditis elegans lin-12 gene mediates induction of ventral uterine specialization by the anchor cell. Development, 121(2), 263–271.PubMedGoogle Scholar
  136. Nilsson, L., et al. (1998). Caenorhabditis elegans lin-25: Cellular focus, protein expression and requirement for sur-2 during induction of vulval fates. Development, 125, 4809–4819.PubMedGoogle Scholar
  137. Nusser-Stein, S., et al. (2012). Cell-cycle regulation of NOTCH signaling during C. elegans vulval development. Molecular Systems Biology, 8, 618.Google Scholar
  138. Ohmachi, M., et al. (2002). C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation. Current Biology, 12, 427–433.PubMedCrossRefGoogle Scholar
  139. Oosterveen, T., et al. (2007). Two functionally distinct Axin-like proteins regulate canonical Wnt signaling in C. elegans. Developmental Biology, 308, 438–448.PubMedCrossRefGoogle Scholar
  140. Palmer, R. E., et al. (2002). Caenorhabditis elegans cog-1 locus encodes GTX/ Nkx6.1 homeodomain proteins and regulates multiple aspects of reproductive system development. Developmental Biology, 252, 202–213.PubMedCrossRefGoogle Scholar
  141. Park, S. K., Choi, V. N., & Hwang, B. J. (2013). LIN-12/notch regulates lag-1 and lin-12 expression during anchor cell/ventral uterine precursor cell fate specification. Molecules and Cells, 35(3), 249–254.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Pellegrino, M. W., & Hajnal, A. (2012). The transcription factor VAB-23 links vulval cell fate specification and morphogenesis. Worm, 1(3), 170–175.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Pellegrino, M. W., et al. (2011). LIN-39 and the EGFR/RAS/MAPK pathway regulate C. elegans vulval morphogenesis via the VAB-23 zinc finger protein. Development, 138, 4649–4660.PubMedCrossRefGoogle Scholar
  144. Pénigault, J.-B., & Félix, M.-A. (2011a). Evolution of a system sensitive to stochastic noise: P3. p cell fate in caenorhabditis. Developmental Biology, 357, 419–427.PubMedCrossRefGoogle Scholar
  145. Pénigault, J.-B., & Félix, M.-A. (2011b). High sensitivity of C. elegans vulval precursor cells to the dose of posterior Wnts. Developmental Biology, 357, 428–438.PubMedCrossRefGoogle Scholar
  146. Phillips, B. T., et al. (2007). Reciprocal asymmetry of SYS-1/β-catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3231–3236.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Photos, A., Gutierrez, A., & Sommer, R. J. (2006). Sem-4/spalt and egl-17/FGF have a conserved role in sex myoblast specification and migration in P. pacificus and C. elegans. Developmental Biology, 293(1), 142–153.PubMedCrossRefGoogle Scholar
  148. Rajakumar, V., & Chamberlin, H. M. (2007). The Pax2/5/8 gene egl-38 coordinates organogenesis of the C. elegans egg-laying system. Developmental Biology, 301, 240–253.PubMedCrossRefGoogle Scholar
  149. Ranawade, A.V., Cumbo, P., & Gupta, B. P. (2013). Caenorhabditis elegans histone deacetylase hda-1 Is required for morphogenesis of the vulva and lin-12/notch-mediated specification of uterine cell fates. G3, 3, 1363–1374.Google Scholar
  150. Rasmussen, J. P., et al. (2008). Notch signaling and morphogenesis of single-cell tubes in the C. elegans digestive tract. Developmental Cell, 14(4), 559–569.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Ririe, T. O., Fernandes, J. S., & Sternberg, P. W. (2008). The Caenorhabditis elegans vulva: a post-embryonic gene regulatory network controlling organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20095–20099.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Rocheleau, C. E., et al. (2002). A lin-45 raf enhancer screen identifies eor-1, eor-2 and unusual alleles of Ras pathway genes in Caenorhabditis elegans. Genetics, 161(1), 121–131.PubMedPubMedCentralGoogle Scholar
  153. Rocheleau, C. E., et al. (2005). Caenorhabditis elegans CNK-1 promotes Raf activation but is not essential for Ras/Raf signaling. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11757–11762.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Ruvkun, G., & Giusto, J. (1989). The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature, 338(6213), 313–319.PubMedCrossRefGoogle Scholar
  155. Saffer, A. M., et al. (2011). The Caenorhabditis elegans synthetic multivulva genes prevent ras pathway activation by tightly repressing global ectopic expression of lin-3 EGF. PLoS Genetics, 7(12), e1002418.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Sapir, A., et al. (2007). AFF-1, a FOS-1-regulated fusogen, mediates fusion of the anchor cell in C. elegans. Developmental Cell, 12(5), 683–698.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sawa, H., & Korswagen, H. C. (2013). Wnt signaling in C. elegans. WormBook.Google Scholar
  158. Schindler, A. J., & Sherwood, D. R. (2011). The transcription factor HLH-2/E/Daughterless regulates anchor cell invasion across basement membrane in C. elegans. Developmental Biology, 357, 380–391.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Schindler, A. J., & Sherwood, D. R. (2013). Morphogenesis of the Caenorhabditis elegans vulva. WIREs Dev Biol, 2, 75–95.CrossRefGoogle Scholar
  160. Schmid, T., & Hajnal, A. (2015). Signal transduction during C. elegans vulval development: A NeverEnding story. Current Opinion in Genetics & Development, 32, 1–9.CrossRefGoogle Scholar
  161. Seydoux, G., Salvage, C., & Greenwald, I. (1993). Isolation and characterization of mutations causing abnormal eversion of the vulva in Caenorhabditis elegans. Developmental Biology, 157(2), 423–436.PubMedCrossRefGoogle Scholar
  162. Sharma-Kishore, R., et al. (1999). Formation of the vulva in Caenorhabditis elegans: A paradigm for organogenesis. Development, 126, 691–699.PubMedGoogle Scholar
  163. Shaye, D. D., & Greenwald, I. (2005). LIN-12/Notch trafficking and regulation of DSL ligand activity during vulval induction in Caenorhabditis elegans. Development, 132, 5081–5092.PubMedCrossRefGoogle Scholar
  164. Shemer, G., Kishore, R., & Podbilewicz, B. (2000). Ring formation drives invagination of the vulva in Caenorhabditis elegans: Ras, cell fusion, and cell migration determine structural fates. Developmental Biology, 221, 233–248.PubMedCrossRefGoogle Scholar
  165. Shemer, G., & Podbilewicz, B. (2002). LIN-39/Hox triggers cell division and represses EFF-1/fusogen-dependent vulval cell fusion. Genes & Development, 16, 3136–3141.CrossRefGoogle Scholar
  166. Shemer, G., et al. (2004). EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Current Biology, 14(17), 1587–1591.PubMedCrossRefGoogle Scholar
  167. Sherlekar, A. L., & Lints, R. (2014). Nematode tango milonguero—the C. elegans male’s search for the hermaphrodite vulva. Seminars in Cell & Developmental Biology, 33, 34–41.CrossRefGoogle Scholar
  168. Sherwood, D. R., et al. (2005). FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. Cell, 121(6), 951–962.PubMedCrossRefGoogle Scholar
  169. Sigrist, C. B., & Sommer, R. J. (1999). Vulva formation in pristionchus pacificus relies on continuous gonadal induction. Development Genes and Evolution, 209(8), 451–459.PubMedCrossRefGoogle Scholar
  170. Simske, J. S., & Kim, S. K. (1995). Sequential signalling during Caenorhabditis elegans vulval induction. Nature, 375(6527), 142–146.PubMedCrossRefGoogle Scholar
  171. Singh, N., & Han, M. (1995). Sur-2, a novel gene, functions late in the let-60 ras-mediated signaling pathway during Caenorhabditis elegans vulval induction. Genes & Development, 9, 2251–2265.CrossRefGoogle Scholar
  172. Skorobogata, O., Escobar-Restrepo, J. M., & Rocheleau, C. E. (2014). An AGEF-1/Arf GTPase/AP-1 ensemble antagonizes LET-23 EGFR basolateral localization and signaling during C. elegans vulva induction. PLoS Genetics, 10(10), e1004728.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Skorobogata, O., & Rocheleau, C. E. (2012). RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans. PLoS ONE, 7(4), e36489.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Sommer, R. J. (2005). Evolution of development in nematodes related to C. elegans, in WormBook. T.C.e.R.C. WormBook.Google Scholar
  175. Sommer, R. J., & Sternberg, P. W. (1996). Apoptosis and change of competence limit the size of the vulva equivalence group in Pristionchus pacificus: a genetic analysis. Current Biology, 6(1), 52–59.PubMedCrossRefGoogle Scholar
  176. Sommer, R. J., et al. (1998). The pristionchus HOX gene Ppa-lin-39 inhibits programmed cell death to specify the vulva equivalence group and is not required during vulval induction. Development, 125(19), 3865–3873.PubMedGoogle Scholar
  177. Spencer, A. G., et al. (2001). A RHO GTPase-mediated pathway is required during P cell migration in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 98(23), 13132–13137.CrossRefGoogle Scholar
  178. Sternberg, P. W. (2005). Vulval development (pp. 1–28). WormBook.Google Scholar
  179. Sternberg, P. W., & Horvitz, H. R. (1986). Pattern formation during vulval development in C. elegans. Cell, 44(5), 761–772.PubMedCrossRefGoogle Scholar
  180. Sternberg, P. W., & Horvitz, H. R. (1989). The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. Cell, 58(4), 679–693.PubMedCrossRefGoogle Scholar
  181. Stetak, A., Gutierrez, P., & Hajnal, A. (2008). Tissue-specific functions of the Caenorhabditis elegans p120 Ras GTPase activating protein GAP-3. Developmental Biology, 323(2), 166–176.PubMedCrossRefGoogle Scholar
  182. Stetak, A., et al. (2006). Cell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development. The EMBO Journal, 25(11), 2347–2357.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Sulston, J. E., & Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology, 56, 110–156.PubMedCrossRefGoogle Scholar
  184. Sulston, J. E., & White, J. G. (1980). Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Developmental Biology, 78(2), 577–597.PubMedCrossRefGoogle Scholar
  185. Sun, X., & Hong, P. (2007). Computational modeling of Caenorhabditis elegans vulval induction. Bioinformatics, 23(13), i499–i507.PubMedCrossRefGoogle Scholar
  186. Sundaram, M. V. (2005a). The love–hate relationship between ras and notch. Genes & Development, 19, 1825–1839.CrossRefGoogle Scholar
  187. Sundaram, M. V. (2005b). The love-hate relationship between Ras and Notch. Genes & Development, 19(16), 1825–1839.CrossRefGoogle Scholar
  188. Sundaram, M. V. (2013). Canonical RTK-Ras-ERK signaling and related alternative pathways. WormBook.Google Scholar
  189. Takács-Vellai, K., et al. (2007). Transcriptional control of notch signaling by a HOX and a PBX/EXD protein during vulval development in C. elegans. Developmental Biology, 302(2), 661–669.PubMedCrossRefGoogle Scholar
  190. Takeshita, H., & Sawa, H. (2005). Asymmetric cortical and nuclear localizations of WRM-1/β-catenin during asymmetric cell division in C. elegans. Genes & Development, 19, 1743–1748.CrossRefGoogle Scholar
  191. Tan, R. Z., et al. (2013). Deconvolving the roles of Wnt ligands and receptors in sensing and amplification. Molecular Systems Biology, 9(1).Google Scholar
  192. Tan, P. B., Lackner, M. R., & Kim, S. K. (1998). MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell, 93(4), 569–580.PubMedCrossRefGoogle Scholar
  193. Tian, H., et al. (2008). Wnt signaling induces vulva development in the nematode pristionchus pacificus. Current Biology, 18(2), 142–146.PubMedCrossRefGoogle Scholar
  194. Tiensuu, T., et al. (2005). lin-1 has both positive and negative functions in specifying multiple cell fates induced by Ras/MAP kinase signaling in C. elegans. Developmental Biology, 286, 338–351.Google Scholar
  195. Tihanyi, B., et al. (2010). The C. elegans Hox gene ceh-13 regulates cell migration and fusion in a non-colinear way. Implications for the early evolution of Hox clusters. BMC Developmental Biology, 10, 78.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Ting, J. J., et al. (2014). Intense sperm-mediated sexual conflict promotes reproductive isolation in Caenorhabditis nematodes. PLoS Biology, 12(7), e1001915.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Trent, C., Tsung, N., & Horvitz, H. R. (1983). Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics, 104, 619–647.PubMedPubMedCentralGoogle Scholar
  198. Tuck, S., & Greenwald, I. (1995). Lin-25, a gene required for vulval induction in Caenorhabditis elegans. Genes & Development, 9, 341–357.CrossRefGoogle Scholar
  199. Vadla, B., et al. (2012). lin-28 controls the succession of cell fate choices via two distinct activities. PLoS Genetics, 8(3), e1002588.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Verghese, E., et al. (2011). The tailless ortholog nhr-67 functions in the development of the C. elegans ventral uterus. Developmental Biology, 356, 516–528.PubMedCrossRefGoogle Scholar
  201. Wagmaister, J. A., Gleason, J. E., & Eisenmann, D. M. (2006a). Transcriptional upregulation of the C. elegans hox gene lin-39 during vulval cell fate specification. Mechanisms of Development, 123(2), 135–150.PubMedCrossRefGoogle Scholar
  202. Wagmaister, J. A., et al. (2006b). Identification of cis-regulatory elements from the C. elegans hox gene lin-39 required for embryonic expression and for regulation by the transcription factors LIN-1, LIN-31 and LIN-39. Developmental Biology, 297(2), 550–565.PubMedCrossRefGoogle Scholar
  203. Walston, T., et al. (2006) mig-5/Dsh controls cell fate determination and cell migration in C. elegans. Developmental Biology, 298, 485–497.Google Scholar
  204. Wang, Z., Chi, Q., & Sherwood, D. R. (2014). MIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans. Development, 141, 1–12.Google Scholar
  205. Wang, M., & Sternberg, P. W. (1999). Competence and Commitment of Caenorhabditis elegans vulval precursor cells. Developmental Biology, 212, 12–24.PubMedCrossRefGoogle Scholar
  206. Wang, M., & Sternberg, P. W. (2000). Patterning of the C. elegans 1° vulval lineage by RAS and Wnt pathways. Development, 127, 5047–5058.PubMedGoogle Scholar
  207. Weinstein, N., & Mendoza, L. (2013). A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans. Frontiers in Genetics 4, 112.Google Scholar
  208. Weinstein, N., et al. (2015). A model of the regulatory network involved in the control of the cell cycle and cell differentiation in the Caenorhabditis elegans vulva. BMC Bioinformatics, 16(1), 1–21.CrossRefGoogle Scholar
  209. Wen, C., Metzstein, M. M., & Greenwald, I. (1997). SUP-17, a Caenorhabditis elegans ADAM protein related to drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development, 124, 4759–4767.PubMedGoogle Scholar
  210. Westlund, B., et al. (1999). Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in notch-pathway signaling. Proceedings of the National Academy of Sciences of the United States of America, 96, 2497–2502.PubMedPubMedCentralCrossRefGoogle Scholar
  211. White, J. G., et al. (1986). The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 314(1165), 1–340.Google Scholar
  212. Wilkinson, H. A., Fitzgerald, K., & Greenwald, I. (1994). Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision. Cell, 79(7), 1187–1198.PubMedCrossRefGoogle Scholar
  213. Worby, C., & Margolis, B. (2000). Positive versus negative signaling of LET-23: Regulation through the adaptor protein, SEM-5. Science STKE, 2000(63), pe2.Google Scholar
  214. Wu, Y., Han, M., & Guan, K.-L. (1995). MEK-2, a Caenorhabditis elegans MAP kinase kinase, functions in Ras-mediated vulval induction and other developmental events. Genes & Development, 9, 742–755.CrossRefGoogle Scholar
  215. Xie, L., Overbeek, P. A., & Reneker, L. W. (2006). Ras signaling is essential for lens cell proliferation and lens growth during development. Developmental Biology, 298(2), 403–414.PubMedCrossRefGoogle Scholar
  216. Yamamoto, Y., Takeshita, H., & Sawa, H. (2011). Multiple Wnts redundantly control polarity orientation in Caenorhabditis elegans epithelial stem cells. PLoS Genetics, 7(10), e1002308.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Yi, B., & Sommer, R. J. (2007). The pax-3 gene is involved in vulva formation in pristionchus pacificus and is a target of the Hox gene lin-39. Development, 134(17), 3111–3119.PubMedCrossRefGoogle Scholar
  218. Yoder, J. H., et al. (2004). Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR 1 kinase and PP2A phosphatase. 23, 111–119.Google Scholar
  219. Yoo, A. S., Bais, C., & Greenwald, I. (2004). Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science, 303(5658), 663–666.PubMedCrossRefGoogle Scholar
  220. Yoo, A. S., & Greenwald, I. (2005). LIN-12/notch activation leads to MicroRNA-mediated down-regulation of Vav in C. elegans. Science, 310(5752), 1330–1333.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Zand, T. P., Reiner, D. J., & Der, C. J. (2011). Ras effector switching promotes divergent cell fates in C. elegans vulval patterning. Developmental Cell, 20(1), 84–96.PubMedPubMedCentralCrossRefGoogle Scholar
  222. Zhang, X., & Greenwald, I. (2011a). Spatial regulation of lag-2 transcription during vulval precursor cell fate patterning in Caenorhabditis elegans. Genetics, 188, 847–858.PubMedPubMedCentralCrossRefGoogle Scholar
  223. Zhang, X., & Greenwald, I. (2011b). Spatial regulation of lag-2 transcription during vulval precursor cell fate patterning in Caenorhabditis elegans. Genetics, 188(4), 847–858.PubMedPubMedCentralCrossRefGoogle Scholar
  224. Zhang, M., et al. (2008). A self-regulating feed-forward circuit controlling C. elegans egg-laying behavior. Current Biology, 18(19), 1445–1455.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Ziel, J. W., et al. (2009). UNC-6 (Netrin) orients the invasive membrane of the anchor cell in C. elegans. Nature Cell Biology, 11(2), 183–189.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ABACUS-Centro de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPNLa Marquesa, OcoyoacacMexico
  2. 2.Department of BiologyTechnion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations