Principles of Early Vertebrate Forebrain Formation



The formation of the vertebrate central nervous system begins at the onset of gastrulation with the specification of the neuroectoderm or neural plate. This flat sheet of neuroepithelial cells is further patterned along its main axes as it undergoes a complex morphogenetic reorganisation to give rise to the priomordia of the brain and the spinal cord. In this chapter, we provide a basic overview of the regulatory networks that couple patterning and morphogenesis of the forebrain primordium, which arises from the most anterior part of the neural plate and comprises the telencephalic, retinal, hypothalamic and diencephalic fields. We will describe that, as it occurs in other regions of the developing embryo, morphogenesis and specification of the forebrain primordium is coordinated by a constantly evolving combination of a reduced number of signalling pathways and transcription factors, which together form highly interconnected gene regulatory networks. We will also discuss the still fragmentary information showing that the expression levels of the components of these networks is fine-tuned by different species of non-translated RNAs, which further contribute to originate forebrain complexity from a limited number of key genes.


Transcription factors Transcriptional networks Morphogens Cell signalling Forebrain Eye Retina Telencephalon Cell cohesion Patterning microRNA 



Work in our lab is supported by grants from the Spanish Government MINECO (BFU2014-55918-P to F.C.; BFU-2013-43213-P and BFU2014-55738-REDT to P.B.), the European Commission (CIG321788 to F.C. and P.B.); the Comunidad Autonoma de Madrid (CAM; S2010/BMD-2315 to P.B.); the CIBERER, ISCIII to P.B. and by an Institutional Grant from the Fundación Ramon Areces.


  1. Acampora, D., Mazan, S., Lallemand, Y., Avantaggiato, V., Maury, M., Simeone, A., et al. (1995). Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development, 121, 3279–3290.PubMedGoogle Scholar
  2. Adijanto, J., Castorino, J. J., Wang, Z. X., Maminishkis, A., Grunwald, G. B., & Philp, N. J. (2012). Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. The Journal of Biological Chemistry, 287, 20491–20503.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andoniadou, C. L., & Martinez-Barbera, J. P. (2013). Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cellular and Molecular Life Sciences: CMLS, 70, 3739–3752.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Araya, C., Tawk, M., Girdler, G. C., Costa, M., Carmona-Fontaine, C., & Clarke, J. D. (2014). Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo. Neural Development, 9, 9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beccari, L., Conte, I., Cisneros, E., & Bovolenta, P. (2012). Sox2-mediated differential activation of Six3.2 contributes to forebrain patterning. Development, 139, 151–164.CrossRefPubMedGoogle Scholar
  6. Beccari, L., Marco-Ferreres, R., & Bovolenta, P. (2013). The logic of gene regulatory networks in early vertebrate forebrain patterning. Mechanisms of Development, 130, 95–111.CrossRefPubMedGoogle Scholar
  7. Beccari, L., Marco-Ferreres, R., Tabanera, N., Manfredi, A., Souren, M., Wittbrodt, B., et al. (2015). A trans-regulatory code for the forebrain expression of Six3.2 in the medaka fish. The Journal of Biological Chemistry.Google Scholar
  8. Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35, 215–217.CrossRefPubMedGoogle Scholar
  9. Bhinge, A., Poschmann, J., Namboori, S. C., Tian, X., Jia Hui Loh, S., Traczyk, A., et al. (2014). MiR-135b is a direct PAX6 target and specifies human neuroectoderm by inhibiting TGF-beta/BMP signaling. The EMBO Journal, 33, 1271–1283.Google Scholar
  10. Bielen, H., & Houart, C. (2012). BMP signaling protects telencephalic fate by repressing eye identity and its Cxcr4-dependent morphogenesis. Developmental Cell, 23, 812–822.CrossRefPubMedGoogle Scholar
  11. Blaess, S., Szabo, N., Haddad-Tovolli, R., Zhou, X., & Alvarez-Bolado, G. (2014). Sonic hedgehog signaling in the development of the mouse hypothalamus. Frontiers in Neuroanatomy, 8, 156.PubMedGoogle Scholar
  12. Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: New functions of secreted Frizzled-related proteins in development and disease. Journal of Cell Science, 121, 737–746.CrossRefPubMedGoogle Scholar
  13. Braun, M. M., Etheridge, A., Bernard, A., Robertson, C. P., & Roelink, H. (2003). Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development, 130, 5579–5587.CrossRefPubMedGoogle Scholar
  14. Brown, K. E., Keller, P. J., Ramialison, M., Rembold, M., Stelzer, E. H., Loosli, F., & Wittbrodt, J. (2010). Nlcam modulates midline convergence during anterior neural plate morphogenesis. Developmental Biology, 339, 14–25.CrossRefPubMedGoogle Scholar
  15. Buckley, C., & Clarke, J. (2014). Establishing the plane of symmetry for lumen formation and bilateral brain formation in the zebrafish neural rod. Seminars in Cell & Developmental Biology, 31, 100–105.CrossRefGoogle Scholar
  16. Cavodeassi, F. (2014). Integration of anterior neural plate patterning and morphogenesis by the Wnt signaling pathway. Developmental Neurobiology, 74, 759–771.CrossRefPubMedGoogle Scholar
  17. Cavodeassi, F., Carreira-Barbosa, F., Young, R. M., Concha, M. L., Allende, M. L., Houart, C., et al. (2005). Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron, 47, 43–56.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cavodeassi, F., & Houart, C. (2012). Brain regionalization: Of signaling centers and boundaries. Developmental Neurobiology, 72, 218–233.CrossRefPubMedGoogle Scholar
  19. Cavodeassi, F., Ivanovitch, K., & Wilson, S. W. (2013). Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development, 140, 4193–4202.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ciruna, B., Jenny, A., Lee, D., Mlodzik, M., & Schier, A. F. (2006). Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature, 439, 220–224.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Clarke, J. (2009). Role of polarized cell divisions in zebrafish neural tube formation. Current Opinion in Neurobiology, 19, 134–138.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Conte, I., Banfi, S., & Bovolenta, P. (2013). Non-coding RNAs in the development of sensory organs and related diseases. Cellular and Molecular Life Sciences: CMLS, 70, 4141–4155.CrossRefPubMedGoogle Scholar
  23. Conte, I., Carrella, S., Avellino, R., Karali, M., Marco-Ferreres, R., Bovolenta, P., et al. (2010). miR-204 is required for lens and retinal development via Meis2 targeting. Proceedings of the National Academy of Sciences USA, 107, 15491–15496.CrossRefGoogle Scholar
  24. Conte, I., Merella, S., Garcia-Manteiga, J. M., Migliore, C., Lazarevic, D., Carrella, S., et al. (2014). The combination of transcriptomics and informatics identifies pathways targeted by miR-204 during neurogenesis and axon guidance. Nucleic Acids Research, 42, 7793–7806.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Diaz, N. F., Cruz-Resendiz, M. S., Flores-Herrera, H., Garcia-Lopez, G., & Molina-Hernandez, A. (2014). MicroRNAs in central nervous system development. Reviews in the Neurosciences, 25, 675–686.PubMedGoogle Scholar
  26. Du, Z. W., Ma, L. X., Phillips, C., & Zhang, S. C. (2013). miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development, 140, 2611–2618.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., et al. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472, 51–56.CrossRefPubMedGoogle Scholar
  28. Erwin, D. H., & Davidson, E. H. (2009). The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics, 10, 141–148.CrossRefPubMedGoogle Scholar
  29. Esteve, P., & Bovolenta, P. (2006). Secreted inducers in vertebrate eye development: More functions for old morphogens. Current Opinion in Neurobiology, 16, 13–19.CrossRefPubMedGoogle Scholar
  30. Esteve, P., Lopez-Rios, J., & Bovolenta, P. (2004). SFRP1 is required for the proper establishment of the eye field in the medaka fish. Mechanisms of Development, 121, 687–701.CrossRefPubMedGoogle Scholar
  31. Esteve, P., Sandonis, A., Cardozo, M., Malapeira, J., Ibanez, C., Crespo, I., et al. (2011a). SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nature Neuroscience, 14, 562–569.CrossRefPubMedGoogle Scholar
  32. Esteve, P., Sandonis, A., Ibanez, C., Shimono, A., Guerrero, I., & Bovolenta, P. (2011b). Secreted frizzled-related proteins are required for Wnt/beta-catenin signalling activation in the vertebrate optic cup. Development, 138, 4179–4184.CrossRefPubMedGoogle Scholar
  33. Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838.CrossRefPubMedGoogle Scholar
  34. Glinka, A., Wu, W., Delius, H., Monaghan, A. P., Blumenstock, C., & Niehrs, C. (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature, 391, 357–362.CrossRefPubMedGoogle Scholar
  35. Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.CrossRefPubMedGoogle Scholar
  36. Hirata, T., Nakazawa, M., Muraoka, O., Nakayama, R., Suda, Y., & Hibi, M. (2006). Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions. Development, 133, 3993–4004.CrossRefPubMedGoogle Scholar
  37. Houart, C., Caneparo, L., Heisenberg, C., Barth, K., Take-Uchi, M., & Wilson, S. (2002). Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron, 35, 255–265.CrossRefPubMedGoogle Scholar
  38. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., & Zamore, P. D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293, 834–838.CrossRefPubMedGoogle Scholar
  39. Ivanovitch, K., Cavodeassi, F., & Wilson, S. W. (2013). Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Developmental Cell, 27, 293–305.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jeong, J. Y., Einhorn, Z., Mathur, P., Chen, L., Lee, S., Kawakami, K., et al. (2007). Patterning the zebrafish diencephalon by the conserved zinc-finger protein Fezl. Development, 134, 127–136.CrossRefPubMedGoogle Scholar
  41. Kapsimali, M., Kloosterman, W. P., de Bruijn, E., Rosa, F., Plasterk, R. H., & Wilson, S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biology, 8, R173.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kaspi, H., Chapnik, E., Levy, M., Beck, G., Hornstein, E., & Soen, Y. (2013). Brief report: miR-290-295 regulate embryonic stem cell differentiation propensities by repressing Pax6. Stem Cells, 31, 2266–2272.CrossRefPubMedGoogle Scholar
  43. Kawase-Koga, Y., Otaegi, G., & Sun, T. (2009). Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 238, 2800–2812.CrossRefGoogle Scholar
  44. Kiecker, C., & Lumsden, A. (2012). The role of organizers in patterning the nervous system. Annual Review of Neuroscience, 35, 347–367.CrossRefPubMedGoogle Scholar
  45. Kim, N. H., Kim, H. S., Kim, N. G., Lee, I., Choi, H. S., Li, X. Y., et al. (2011). p53 and microRNA-34 are suppressors of canonical Wnt signaling. Science Signaling, 4, ra71.Google Scholar
  46. Kobayashi, D., Kobayashi, M., Matsumoto, K., Ogura, T., Nakafuku, M., & Shimamura, K. (2002). Early subdivisions in the neural plate define distinct competence for inductive signals. Development, 129, 83–93.PubMedGoogle Scholar
  47. Kobayashi, K., Luo, M., Zhang, Y., Wilkes, D. C., Ge, G., Grieskamp, T., et al. (2009). Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nature Cell Biology, 11, 46–55.CrossRefPubMedGoogle Scholar
  48. Kudoh, T., Concha, M. L., Houart, C., Dawid, I. B., & Wilson, S. W. (2004). Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development, 131, 3581–3592.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kutejova, E., Briscoe, J., & Kicheva, A. (2009). Temporal dynamics of patterning by morphogen gradients. Current Opinion in Genetics & Development, 19, 315–322.CrossRefGoogle Scholar
  50. Lagutin, O. V., Zhu, C. C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., et al. (2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes & Development, 17, 368–379.CrossRefGoogle Scholar
  51. Lee, H. X., Ambrosio, A. L., Reversade, B., & De Robertis, E. M. (2006). Embryonic dorsal-ventral signaling: Secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell, 124, 147–159.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.CrossRefPubMedGoogle Scholar
  53. Lee, Y., Jeon, K., Lee, J. T., Kim, S., & Kim, V. N. (2002). MicroRNA maturation: Stepwise processing and subcellular localization. The EMBO Journal, 21, 4663–4670.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., & Bally-Cuif, L. (2008). MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nature Neuroscience, 11, 641–648.CrossRefPubMedGoogle Scholar
  55. Li, J. Y., Lao, Z., & Joyner, A. L. (2005). New regulatory interactions and cellular responses in the isthmic organizer region revealed by altering Gbx2 expression. Development, 132, 1971–1981.CrossRefPubMedGoogle Scholar
  56. Linker, C., & Stern, C. D. (2004). Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development, 131, 5671–5681.CrossRefPubMedGoogle Scholar
  57. Liu, K., Liu, Y., Mo, W., Qiu, R., Wang, X., Wu, J. Y., et al. (2011). MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Research, 39, 2869–2879.CrossRefPubMedGoogle Scholar
  58. Liu, W., Lagutin, O., Swindell, E., Jamrich, M., & Oliver, G. (2010). Neuroretina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. The Journal of Clinical Investigation, 120, 3568–3577.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Longabaugh, W. J., Davidson, E. H., & Bolouri, H. (2005). Computational representation of developmental genetic regulatory networks. Developmental Biology, 283, 1–16.CrossRefPubMedGoogle Scholar
  60. Lopez-Rios, J., Esteve, P., Ruiz, J. M., & Bovolenta, P. (2008). The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate. Neural Development, 3, 19.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lowery, L. A., & Sive, H. (2004). Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mechanisms of Development, 121, 1189–1197.CrossRefPubMedGoogle Scholar
  62. Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Marti, E., & Bovolenta, P. (2002). Sonic hedgehog in CNS development: One signal, multiple outputs. Trends in Neurosciences, 25, 89–96.CrossRefPubMedGoogle Scholar
  64. Martinez-Barbera, J. P., Signore, M., Boyl, P. P., Puelles, E., Acampora, D., Gogoi, R., et al. (2001). Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development, 128, 4789–4800.PubMedGoogle Scholar
  65. Martinez-Morales, J. R. (2015). Toward understanding the evolution of vertebrate gene regulatory networks: Comparative genomics and epigenomic approaches. Briefings in Functional Genomics.Google Scholar
  66. Matsumoto, K., Nishihara, S., Kamimura, M., Shiraishi, T., Otoguro, T., Uehara, M., et al. (2004). The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nature Neuroscience, 7, 605–612.CrossRefPubMedGoogle Scholar
  67. Matsuo, I., Kuratani, S., Kimura, C., Takeda, N., & Aizawa, S. (1995). Mouse Otx2 functions in the formation and patterning of rostral head. Genes & Development, 9, 2646–2658.CrossRefGoogle Scholar
  68. Maurus, D., Heligon, C., Burger-Schwarzler, A., Brandli, A. W., & Kuhl, M. (2005). Noncanonical Wnt-4 signaling and EAF2 are required for eye development in Xenopus laevis. The EMBO Journal, 24, 1181–1191.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., et al. (2012). Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 10, 771–785.CrossRefPubMedGoogle Scholar
  70. Nishimura, T., Honda, H., & Takeichi, M. (2012). Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell, 149, 1084–1097.CrossRefPubMedGoogle Scholar
  71. Nord, A. S., Pattabiraman, K., Visel, A., & Rubenstein, J. L. (2015). Genomic perspectives of transcriptional regulation in forebrain development. Neuron, 85, 27–47.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ohana, R., Weiman-Kelman, B., Raviv, S., Tamm, E. R., Pasmanik-Chor, M., Rinon, A., et al. (2015). MicroRNAs are essential for differentiation of the retinal pigmented epithelium and maturation of adjacent photoreceptors. Development, 142, 2487–2498.CrossRefPubMedGoogle Scholar
  73. Okuda, Y., Ogura, E., Kondoh, H., & Kamachi, Y. (2010). B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. PLoS Genetics, 6, e1000936.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Okuda, Y., Yoda, H., Uchikawa, M., Furutani-Seiki, M., Takeda, H., Kondoh, H., et al. (2006). Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 235, 811–825.CrossRefGoogle Scholar
  75. Ozair, M. Z., Kintner, C., & Brivanlou, A. H. (2013). Neural induction and early patterning in vertebrates. Wiley Interdisciplinary Reviews. Developmental Biology, 2, 479–498.CrossRefPubMedGoogle Scholar
  76. Pera, E. M., Ikeda, A., Eivers, E., & De Robertis, E. M. (2003). Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes & Development, 17, 3023–3028.CrossRefGoogle Scholar
  77. Rao, S., Chun, C., Fan, J., Kofron, J. M., Yang, M. B., Hegde, R. S., et al. (2013). A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature, 494, 243–246.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rembold, M., Loosli, F., Adams, R. J., & Wittbrodt, J. (2006). Individual cell migration serves as the driving force for optic vesicle evagination. Science, 313, 1130–1134.CrossRefPubMedGoogle Scholar
  79. Rhinn, M., Lun, K., Ahrendt, R., Geffarth, M., & Brand, M. (2009). Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal. Neural Development, 4, 12.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Rodriguez-Seguel, E., Alarcon, P., & Gomez-Skarmeta, J. L. (2009). The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. Developmental Biology, 329, 258–268.CrossRefPubMedGoogle Scholar
  81. Rubenstein, J. L., Shimamura, K., Martinez, S., & Puelles, L. (1998). Regionalization of the prosencephalic neural plate. Annual Review of Neuroscience, 21, 445–477.CrossRefPubMedGoogle Scholar
  82. Sanchez-Arrones, L., Ferran, J. L., Rodriguez-Gallardo, L., & Puelles, L. (2009). Incipient forebrain boundaries traced by differential gene expression and fate mapping in the chick neural plate. Developmental Biology, 335, 43–65.CrossRefPubMedGoogle Scholar
  83. Sanuki, R., Onishi, A., Koike, C., Muramatsu, R., Watanabe, S., Muranishi, Y., et al. (2011). miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nature Neuroscience, 14, 1125–1134.CrossRefPubMedGoogle Scholar
  84. Sasai, Y., Eiraku, M., & Suga, H. (2012). In vitro organogenesis in three dimensions: Self-organising stem cells. Development, 139, 4111–4121.CrossRefPubMedGoogle Scholar
  85. Scholpp, S., Foucher, I., Staudt, N., Peukert, D., Lumsden, A., & Houart, C. (2007). Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon. Development, 134, 3167–3176.CrossRefPubMedGoogle Scholar
  86. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., & Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199–208.CrossRefPubMedGoogle Scholar
  87. Shinozaki, K., Yoshida, M., Nakamura, M., Aizawa, S., & Suda, Y. (2004). Emx1 and Emx2 cooperate in initial phase of archipallium development. Mechanisms of Development, 121, 475–489.CrossRefPubMedGoogle Scholar
  88. Sokol, S. Y. (2015). Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Seminars in Cell & Developmental Biology, 42, 78–85.CrossRefGoogle Scholar
  89. Stern, C. D. (2005). Neural induction: Old problem, new findings, yet more questions. Development, 132, 2007–2021.CrossRefPubMedGoogle Scholar
  90. Tang, F., Kaneda, M., O’Carroll, D., Hajkova, P., Barton, S. C., Sun, Y. A., et al. (2007). Maternal microRNAs are essential for mouse zygotic development. Genes & Development, 21, 644–648.CrossRefGoogle Scholar
  91. Tawk, M., Araya, C., Lyons, D. A., Reugels, A. M., Girdler, G. C., Bayley, P. R., et al. (2007). A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature, 446, 797–800.CrossRefPubMedGoogle Scholar
  92. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20, 515–524.CrossRefGoogle Scholar
  93. Viczian, A. S., Solessio, E. C., Lyou, Y., & Zuber, M. E. (2009). Generation of functional eyes from pluripotent cells. PLoS Biology, 7, e1000174.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Vieira, C., Pombero, A., Garcia-Lopez, R., Gimeno, L., Echevarria, D., & Martinez, S. (2010). Molecular mechanisms controlling brain development: An overview of neuroepithelial secondary organizers. The International Journal of Developmental Biology, 54, 7–20.CrossRefPubMedGoogle Scholar
  95. Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., & Plasterk, R. H. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genetics, 35, 217–218.CrossRefPubMedGoogle Scholar
  96. Wilson, S. W., & Houart, C. (2004). Early steps in the development of the forebrain. Developmental Cell, 6, 167–181.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yamaguchi, T. P. (2001). Heads or tails: Wnts and anterior-posterior patterning. Current Biology: CB, 11, R713–R724.CrossRefPubMedGoogle Scholar
  98. Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G., & Harris, W. A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development, 130, 5155–5167.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centro de Biología Molecular “Severo Ochoa”, CSIC-UAMMadridSpain
  2. 2.CIBER de Enfermedades Raras (CIBERER)MadridSpain

Personalised recommendations