Skip to main content

Neonatal Transfusion Testing, Manufacturing, Standards, and Storage

  • Chapter
  • First Online:
Book cover Neonatal Transfusion Practices

Abstract

The neonatal population is a heavily transfused group, particularly very-low-birth weight infants (<1500 g) and extremely low birth weight infants (<1000 g). A neonate is defined as an infant during the period between birth and 4 months. Preterm neonates, defined as infants born before the 37th week of gestation, are one of the most frequently transfused populations in tertiary care centers (Wong E. et al. Pediatric transfusion: a physician’s handbook. Bethesda: AABB; 2015). Given the differences in immunologic status, blood volume, physiologic response to hypovolemia, and heterogeneity of the population, the approach to neonatal transfusion is vastly different from that of any other patient group.

This chapter discusses the approaches to blood processing, storage, and distribution and directly addresses special considerations for the modification of blood and blood components for neonates. In particular, obstacles pertaining to neonate size, blood volume, and safety of modified products will be elucidated.

In order to understand basic approaches and special requests in this setting, neonatal standards and physiology must first be defined within the subgroup. Full-term neonates have a mean cord blood hemoglobin (Hgb) level of 16.9 ± 1.6 g/dL. Preterm neonates typically are born with lower levels of 15.9 ± 2.4 g/dL (Josephson C, Meyer J Neonatal and pediatric transfusion practice. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 571–597, 2014). During the first few weeks of life, newborns experience a physiologic decline in Hgb levels to as low as 7.0 g/dL seen in extremely low birth rate infants (Josephson C, Meyer J Neonatal and pediatric transfusion practice. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 571–597, 2014; Brugnara C, Platt OS. The neonatal erythrocyte and its disorders. In: Nathan DG, Orkin SH, editors. Nathan and Oskis hematology of infancy and childhood. 7th ed. Philadelphia: WB Saunders; 21–66, 2009). Many factors including frequent blood draw and attenuated erythropoietin production can lead to anemia in the newborn. Current guidelines recommend transfusion for symptomatic anemia with a Hgb <7 and low reticulocyte count (Doyle JJ. The role of erythropoietin in anemia of prematurity. Semin Perinatol; 20–7, 1997; Doyle Semin Perinatol 21:20–27, 1997). Transfusion is recommended at higher hemoglobin levels, <10 g/dL to <12 g/dL, in symptomatic infants on supplemental oxygen, those requiring continuous positive airway pressure (CPAP), significant apnea, bradycardia, tachycardia, or tachypnea and low weight gain. Infants on extracorporeal membrane oxygenation (ECMO) or with congenital cyanotic heart disease may have an even higher hemoglobin threshold at <15 g/dL (Wong E. et al. Pediatric transfusion: a physician’s handbook. Bethesda: AABB; 2015).In the event that transfusion is needed, it is appropriate to treat based on a target Hgb rather than volume replacement of estimated volume lost. However, some Hgb thresholds are based on the presence of respiratory support and postnatal age. Given the need for smaller volumes, the neonatal patient often requires smaller doses of components dispensed as aliquots. Furthermore, given the immaturity of the immune system, particularly in the premature neonate, pretransfusion testing and secondary processing steps must be adjusted to provide the best and safest product (Josephson C, Meyer J. Neonatal and pediatric transfusion practice. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 571–597, 2014; Wang-Rodriguez et al. Transfusion. 40(1):25–34, 2000). The remainder of this chapter will address such adjustments in the manufacturing, storage, processing, and distribution in accordance with standards set by the American Association of Blood Banks (AABB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AABB, ARC, ABC, ASBP. Circular of information for the use of human blood and blood components. 2013.

    Google Scholar 

  2. AABB. Information piece: alternatives to transfusable single-donor plasma components. 2014.

    Google Scholar 

  3. AABB, Clinical Transfusion Medicine Committee; Heddle NM, Boeckh M, Grossman B, Jacobson J, Kleinman S, Tobian AAR, Webert K, Wong ECC, Roback JD. AABB Committee Report: reducing transfusion-transmitted cytomegalovirus infections. Transfusion. 2016.

    Google Scholar 

  4. Abonnenc M, Sonego G, Kaiser-Guignard J, et al. In vitro evaluation of pathogen-inactivated buffy coat-derived platelet concentrates during storage: psoralen-based photochemical treatment step-by-step. Blood Transfus. 2015;13(2):255–64.

    PubMed  PubMed Central  Google Scholar 

  5. Bandarenko N, editor. Blood transfusion therapy: a physician’s handbook. 11th ed. Bethesda: AABB; 2014.

    Google Scholar 

  6. Blajchman MA, Goldman M, Freedman JJ, Sher GD. Proceedings of a consensus conference: prevention of post-transfusion CMV in the era of universal leukoreduction. Transfus Med Rev. 2001;15:1–20.

    Article  CAS  PubMed  Google Scholar 

  7. Brecher ME, Means N, et al. Evaluation of automated of an automated culture system for detecting bacterial contamination of platelets: an analysis with 15 contaminating organisms. Transfusion. 2001;41:477–82.

    Article  CAS  PubMed  Google Scholar 

  8. Brugnara C, Platt OS. The neonatal erythrocyte and its disorders. In: Nathan DG, Orkin SH, editors. Nathan and Oskis hematology of infancy and childhood. 7th ed. Philadelphia: WB Saunders; 2009. p. 21–66.

    Google Scholar 

  9. Burghardt D. Component preparation and storage. In: Hillyer C, Strauss RG, Luban N, editors. Handbook of pediatric transfusion medicine. London: Elsevier; 2004. p. 11–25.

    Chapter  Google Scholar 

  10. Callum JL, Karkouti K, Yulia L. Cryoprecipitate: the current state of knowledge. Transfus Med Rev. 2009;23:177–88.

    Article  PubMed  Google Scholar 

  11. Cancelas JA, Dumont LJ, Maes LA, Rugg N, Herschel L, Whitley PH, Szczepiokowski ZM, Siegel AH, Hess JR, Zia M. Additive solution-7 reduces the red blood cell cold storage lesion. Transfusion. 2015;55:491–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ciavarella D, Snyder E. Clinical use of blood transfusion devices. Transfus Med Rev. 1988;2:95.

    Article  CAS  PubMed  Google Scholar 

  13. Cohn CS, Stubbs J, Schwartz J, Francis R, Goss C, Cushing M, Shaz B, Mair D, Brantigan B, Heaton WA. A comparison of adverse reaction rates for PAS C versus plasma platelet units. Transfusion. 2014;54:1927–34.

    Article  PubMed  Google Scholar 

  14. DePalma L. Red cell alloantibody formations in the neonate and infant: considerations for current immunohematologic practice. Immunohematology. 1992;8:33–7.

    CAS  PubMed  Google Scholar 

  15. Diab YA, Wong ECC, Luban NLC. Massive transfusion in children and neonates. Br J Haematol. 2013;161:15–26.

    Article  PubMed  Google Scholar 

  16. Downes K, Shulman I. Pretransfusion testing. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 367–90.

    Google Scholar 

  17. Doyle JJ. The role of erythropoietin in anemia of prematurity. Semin Perinatol. 1997;21:20–7.

    Article  CAS  PubMed  Google Scholar 

  18. Dumont LJ, Gulliksson H, van der Meer PF, et al. Interruption of agitation of platelet concentrates: a multicenter in vitro study by the BEST collaborative on the effects of shipping platelets. Transfusion. 2007;47:1666–73.

    Article  CAS  PubMed  Google Scholar 

  19. Dumont L, Papari M, Aronson C, Dumont D. Whole-blood collection and component processing. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 135–65.

    Google Scholar 

  20. Dunbar N. Hospital storage, monitoring, pretransfusion processing, distribution, and inventory management of blood components. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 213–29.

    Google Scholar 

  21. D’Alessandro A, Hansen KC, Silliman CC, Moore EE, Kelher M, Banerjee A. Metabolomics of AS-5 RBC supernatants following routine storage. Vox sanguinis. 2015;108(2):131–40.

    Google Scholar 

  22. European Committee (Partial Agreement) on Blood Transfusion (CD-PTS): Guide to the Preparation, Use and Quality Assurance of Blood Components. 14th ed. Strasbourg: Council of Europe; 2008.

    Google Scholar 

  23. Fergusson D, Hébert PC, Lee SK, Walker CR, Barrington KJ, Joseph L, Blajchman MA, Shapiro S. Clinical outcomes following institution of universal leukoreduction of blood transfusions for premature infants. JAMA. 2003;289(15):1950–6.

    Article  PubMed  Google Scholar 

  24. Fergusson DA, Hébert P, Hogan DL, LeBel L, Rouvinez-Bouali N, Smyth JA, Sankaran K, Tinmouth A, Blajchman MA, Kovacs L, Lachance C, Lee S, Walker CR, Hutton B, Ducharme R, Balchin K, Ramsay T, Ford JC, Kakadekar A, Ramesh K, Shapiro S. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial. JAMA. 2012;308(14):1443–51.

    Article  CAS  PubMed  Google Scholar 

  25. Galel S. Infectious disease screening. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 179–212.

    Google Scholar 

  26. Gokhale SG, Gokhale SS. Transfusion-associated graft versus host disease (TAGVHD)–with reference to neonatal period. J Matern Fetal Neonatal Med. 2015;28(6):700–4. Epub 2014 Jul 1.

    Article  CAS  PubMed  Google Scholar 

  27. Gruenwald CE, McCrindle BW, Crawford-Lean L, et al. Reconstituted fresh whole blood improves clinical outcomes compared with stored component blood therapy for neonates undergoing cardiopulmonary bypass for cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg. 2008;136(6):1442–9.

    Article  PubMed  Google Scholar 

  28. Gulliksson H. Platelets from platelet-rich-plasma versus buffy-coat-derived platelets: what is the difference? Revista Brasileira de Hematologia e Hemoterapia. 2012;34(2):76–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hathaway WE, Githens JH, Blackburn WR, Fulginiti V, Kempe CH. Aplastic anemia, histiocytosis and erythroderma in immunologically deficient children. Probable human runt disease. N Engl J Med. 1965;273(18):953–8.

    Article  CAS  PubMed  Google Scholar 

  30. Hiroshi A, Junichi H, Mitsuaki A, Hisami I. Platelet additive solution: electrolytes. Transfus Apher Sci. 2011;44(3):277–81.

    Article  Google Scholar 

  31. Ho M. Epidemiology of cytomegalovirus infections. Rev Inf Dis. 1990;12 Suppl 7:S701–10.

    Article  Google Scholar 

  32. Högman CF, Knutson F, Lööf H. Storage of whole blood before separation: the effect of temperature on red cell 2,3 DPG and the accumulation of lactate. Transfusion. 1999;39(5):492–7.

    Article  PubMed  Google Scholar 

  33. Jain R, Jarosz C. Safety and efficacy of AS-1 red blood cell use in neonates. Transfus Apher Sci. 2001;24:111–5.

    Article  CAS  PubMed  Google Scholar 

  34. Jobes DR, Sesok-Pizzini D, Friedman D.Reduced Transfusion Requirement With Use of Fresh Whole Blood in Pediatric Cardiac Surgical Procedures.Ann Thorac Surg. 2015; 99:1706–12.

    Google Scholar 

  35. Josephson CD, Caliendo AM, Easley KA, et al. Blood transfusion and breast milk transmission of cytomegalovirus in very low-birth-weight infants: a prospective cohort study. JAMA Pediatr. 2014;168(11):1054–62.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Josephson C, Meyer J. Neonatal and pediatric transfusion practice. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 571–97.

    Google Scholar 

  37. Klein HG, Dodd RY, et al. Current status of microbial contamination of blood components: summary of a conference. Transfusion. 1997;37:95–101.

    Article  CAS  PubMed  Google Scholar 

  38. Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, Blackstone EH. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med. 2008;358(12):1229–39.

    Article  CAS  PubMed  Google Scholar 

  39. Kopolovic I, Ostro J, Tsubota H, et al. A systematic review of transfusion-associated graft-versus-host disease. Blood. 2015;126(3):406–14.

    Article  CAS  PubMed  Google Scholar 

  40. Larsson LG, Welsh VJ, Ladd DJ. Acute intravascular hemolysis secondary to out of group platelet transfusion. Transfusion. 2000;40:902–6.

    Article  CAS  PubMed  Google Scholar 

  41. Lee D, Slagle T, Jackson T, Evans C. Reducing blood donor exposures in low birth weight infants by the use of older, unwashed packed red blood cells. J Pediatr. 1995;126(2):280–6.

    Article  CAS  PubMed  Google Scholar 

  42. Lelubre C, Piagnerelli M, Vincent JL. Association between duration of storage of transfused red blood cells and morbidity and mortality in adult patients: myth or reality? Transfusion. 2009;49:1384–94.

    Article  PubMed  Google Scholar 

  43. Lin L, Dikeman R, Molini B, Lukehart SA, Lane R, Dupuis K, Metzel P, Corash L. Photochemical treatment of platelet concentrates with amotosalen and long-wavelength ultraviolet light inactivates a broad spectrum of pathogenic bacteria. Transfusion. 2004;44:1496–504.

    Article  CAS  PubMed  Google Scholar 

  44. Liu E, Mannino F, Lane T. Prospective, randomized trial of the safety and efficacy of a limited donor exposure transfusion program for premature neonates. J Pediatr. 1994;125(1):92–6.

    Article  CAS  PubMed  Google Scholar 

  45. Luban NLC, Strauss RG, Hume HA. Commentary on the safety of red blood cells preserved in extended storage media for neonatal transfusions. Transfusion. 1991;31:229–35.

    Article  CAS  PubMed  Google Scholar 

  46. Luban NLC. Irradiation for neonatal and pediatric transfusion. In: Herman J, Manno C, editors. Pediatric transfusion therapy. Bethesda: AABB; 2002. p. 147–69.

    Google Scholar 

  47. Ludvigsen C, Swanson JL, Thompson TR, McCullogh J. The failure of neonates to form red cell alloantibodies in response to multiple transfusions. Am J Clin Pathol. 1987;87:250–1.

    Article  PubMed  Google Scholar 

  48. Mangel J, Goldman M, Garcia C, Spurll G. Reduction of donor exposures in premature infants by the use of designated adenine-saline preserved split red blood cell packs. J Perinatol. 2001;21(6):363–7.

    Article  CAS  PubMed  Google Scholar 

  49. Manno CS, Hedberg KW, Kim HC, Bunin GR, Nicolson S, Jobes D, Schwartz E, Norwood WI. Comparison of the hemostatic effects of fresh whole blood, stored whole blood and components after open heart surgery in children. Blood. 1991;77(5):930–6.

    CAS  PubMed  Google Scholar 

  50. Masilamani K, van der Voort J. The management of acute hyperkalaemia in neonates and children. Arch Dis Child. 2012;97(4):376–80. doi:10.1136/archdischild-2011-300623. Epub 2011 Sep 13.

    Article  PubMed  Google Scholar 

  51. Mazzei C, Papovsky M, Kopko P.Noninfectious Complications of Blood Transfusion. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical Manual. 18th edition.Bethesda: AABB; 2014. p. 665–96.

    Google Scholar 

  52. McDonald TB, Berkowitz RA. Massive transfusion in children. In: Jeffries LC, Brecher ME, editors. Massive transfusion. Bethesda: AABB; 1994. p. 97–119.

    Google Scholar 

  53. McMilan KD, Johnson RL. HLA-homozygosity and the risk of related-donor transfusion-associated graft versus host disease. Transfus Med Rev. 1993;7:37–41.

    Article  Google Scholar 

  54. Mendrone A, Fabrone A, Langhi D, et al. Is there justification for universal leukoreduction? Rev Bras Hematol Hemoter. 2014;36(4):237.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Metcalfe P, Williamson LM, Reutelingsperger CP, Swann I, Ouwehand WH, Goodall AH. Activation during storage of therapeutic platelets affects deterioration during storage: a comparative flow cytometric study of different production methods. Br J Haematol. 1997;98(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  56. Mohan P, Brocklehurst P. Granulocyte transfusions for neonates with confirmed or suspected sepsis and neutropaenia. Cochrane Database Syst Rev. 2003:CD003956.

    Google Scholar 

  57. Mok YH, Lee JH, Cheifetz IM. Neonatal extracorporeal membrane oxygenation: update on management strategies and long-term outcomes. Adv Neonatal Care. 2016;16(1):26–36.

    Article  PubMed  Google Scholar 

  58. Moroff G, Holme S, George VM, Heaton WA. Effect on platelet properties of exposure to temperatures below 20 degrees C for short periods during storage at 20 to 24 degrees C. Transfusion. 1994;34(4):317–21.

    Article  CAS  PubMed  Google Scholar 

  59. Mou S, Giroir B, Molitor-Kirsch E. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. N Engl J Med. 2004;351:1635–44.

    Article  CAS  PubMed  Google Scholar 

  60. Murphy K, O'Brien P, O'Donnell J. Acquired protein s deficiency in thrombotic thrombocytopenic purpura patients receiving solvent/detergent plasma exchange. Br J Haematol. 2003;122:518–9.

    Article  PubMed  Google Scholar 

  61. Naiman JL, Punnett HH, Lischner HW, Destine ML, Arey JB. Possible graft-versus-host reaction after intrauterine transfusion for Rh erythroblastosis fetalis. N Engl J Med. 1969;281(13):697–701.

    Article  CAS  PubMed  Google Scholar 

  62. Nance ST, Meny G. Compatibility issues in neonatal and pediatric transfusion. In: Herman J, Manno C, editors. Pediatric transfusion therapy. Bethesda: AABB; 2002.

    Google Scholar 

  63. Nomani AZ, Nabi Z, Rashid H, Janjua J, Nomani H, Majeed A, Chaudry SR, Mazhar AS. Osmotic nephrosis with mannitol: review article. Ren Fail. 2014;36(7):1169–76. Epub 2014 Jun 18.

    Article  CAS  PubMed  Google Scholar 

  64. Ohto H, Anderson KC. Posttransfusion graft-versus-host disease in Japanese newborns. Transfusion. 1996;36(2):117–23. Review.

    Article  CAS  PubMed  Google Scholar 

  65. Ooley P, editor. Standards for blood banks and transfusion services. 30th ed. Bethesda: AABB, 2016.

    Google Scholar 

  66. Pietersz RN, deKorte D, Reesink HW, et al. Storage of whole blood for up to 24 hours at ambient temperature prior to component preparation. Vox Sang. 1989;56:145–50.

    Article  CAS  PubMed  Google Scholar 

  67. Pettilä V, Westbrook AJ, Nichol AD, Bailey MJ, Wood EM, Syres G, Phillips LE, Street A, French C, Murray L, Orford N, Santamaria JD, Bellomo R, Cooper DJ, Blood Observational Study Investigators for ANZICS Clinical Trials Group. Age of red blood cells and mortality in the critically ill. Crit Care. 2011;15(2):R116. Epub 2011 Apr 15.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Petz LD, Calhoun L, Yam P, et al. Transfusion associated graft-versus-host disease in immunocompetent patients. Report of a fatal case associated with transfusion of blood from a second degree relative, and a survey of predisposing factors. Transfusion. 1993;33:742–50.

    Article  CAS  PubMed  Google Scholar 

  69. Roback J. Preparation of blood components to reduce cytomegalovirus and other infectious risks. In: Hillyer C, Strauss RG, Luban N, editors. Handbook of pediatric transfusion medicine. London: Elsevier; 2004. p. 93–9.

    Chapter  Google Scholar 

  70. Roback JD, Bray RA, Hillyer CD. Longitudinal monitoring of WBC subsets in packed RBC units after filtration: implications for transfusion transmission of infections. Transfusion. 2000;40:500–6.

    Article  CAS  PubMed  Google Scholar 

  71. Rock G, Poon A, Haddad S, Romans R, St Louis P. Nutricel as an additive solution for neonatal transfusion. Transf Sci. 1999;20:29–36.

    Article  CAS  Google Scholar 

  72. Roseff SD, Luban NL, Manno CS. Guidelines for assessing appropriateness of pediatric transfusion. Transfusion. 2002;42:1398–413.

    Article  PubMed  Google Scholar 

  73. Roseff SD. Pediatric blood collection and transfusion technology. In Herman JK, Manno CS, eds. Pediatric Transfusion Therapy. Bethesda, MD: AABB Press; 2002:217–47.

    Google Scholar 

  74. Samuel LH, Anderson G, Mintz PD. Rejuvenation of irradiated AS-1 red cells. Transfusion. 1997;37:25–8.

    Article  CAS  PubMed  Google Scholar 

  75. Sandler S, Ramasethu J. Washed and/or volume-reduced blood components. In: Hillyer C, Strauss RG, Luban N, editors. Handbook of pediatric transfusion medicine. London: Elsevier; 2004. p. 113–20.

    Chapter  Google Scholar 

  76. Schoenfield H, Muhm M, Doepfmer UR, et al. The functional integrity in volume reduced platelet concentrates. Anesth Analg. 2005;100:78–81.

    Article  Google Scholar 

  77. Serrano K, Chen D, Hansen AL, et al. The effect of timing of gamma-irradiation on hemolysis and potassium release in leukoreduced red cell con- © 2014 International Society of Blood Transfusion Vox Sanguinis (2015) 108, 141–150 Effect of irradiation on K+ levels 149 concentrates stored in SAGM. Vox Sang. 2014;106:379–81.

    Article  CAS  PubMed  Google Scholar 

  78. Simone ER. Adenine and blood banking. Transfusion. 1977;17:317–25.

    Article  Google Scholar 

  79. Smith D, Lu Q, Yuan S, Goldfinger D, Fernando LP, Ziman A. Survey of current practice for prevention of transfusion-transmitted cytomegalovirus in the United States: leucoreduction vs. cytomegalovirus-seronegative. Vox Sang. 2010;98:29–36.

    Article  CAS  PubMed  Google Scholar 

  80. Smith SW. Blood Component Collection by Apheresis. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, eds. Technical Manual. 18th edition. Bethesda: AABB; 2014. p.167–78.

    Google Scholar 

  81. Snyder EL, Hezzey A, Katz AJ, Bock J. Occurrence of the release reaction during preparation and storage of platelet concentrates. Vox Sang. 1981;41(3):172–7.

    Article  CAS  PubMed  Google Scholar 

  82. Strauss RG, Burmeister LF, Johnson K, James T, Miller J, Cordle DG, Bell EF, Ludwig GA. AS-1 red cells for neonatal transfusions: a randomized trial assessing donor exposure and safety. Transfusion. 1996;36(10):873–8.

    Article  CAS  PubMed  Google Scholar 

  83. Strauss RG, Burmeister LF, Johnson K, Cress G, Cordle D. Feasibility and safety of AS-3 red blood cells for neonatal transfusions. J Pediatr. 2000;136(2):215–9.

    Article  CAS  PubMed  Google Scholar 

  84. Strauss RG. Data driven blood banking practices for neonatal RBC transfusions. Transfusion. 2000;40(12):1528–40.

    Article  CAS  PubMed  Google Scholar 

  85. Strauss RG. Additive solutions and product age in neonatal red blood cell transfusion. In: Herman J, Manno C, editors. Pediatric transfusion therapy. Bethesda: AABB; 2002. p. 129–45.

    Google Scholar 

  86. Stroncek D. Neonatal alloimmune neutropenia and alloimmune thrombocytopenia. In: Herman J, Manno C, editors. Pediatric transfusion therapy. Bethesda: AABB; 2002. p. 109–27.

    Google Scholar 

  87. Tobian AAR, Fuller AK, Uglik K, et al. The impact of platelet additive solution apheresis platelets on allergic transfusion reactions and corrected count increment. Transfusion. 2014;54(6):1523–9.

    Article  CAS  PubMed  Google Scholar 

  88. Tuchschmid P, Mieth D, Burger R, Duc G. Potential hazard of hypoalbuminemia in newborn babies after exchange transfusions with ADSOL red blood cell concentrates. Pediatrics. 1990;85(2):234–5.

    CAS  PubMed  Google Scholar 

  89. U.S. Food and Drug Administration/Center for Drug Evaluation and Research. Guidance for industry: barcode label requirements questions and answers. Silver Springs, 2011.

    Google Scholar 

  90. U.S. Food and Drug Administration/Dept of Health and Human Services. Approval letter. Octaplas. 2013.

    Google Scholar 

  91. U. S. Food and Drug Administration. Summary of safety and effectiveness data: INTERCEPT blood system for platelets. 2014.

    Google Scholar 

  92. van Rossum H, de Kraa N, Thomas M, Holleboom C, Castel A, van Rossum A. Comparison of the direct antiglobulin test and the eluate technique for diagnosing haemolytic disease of the newborn. Pract Lab Med. 2015;3:17–22.

    Article  Google Scholar 

  93. Voak D, Chapman J, Finney RD, et al. Guidelines to gamma irradiation of blood components for the prevention of transfusion associated graft versus host disease. Trans Med. 1996;261–71.

    Google Scholar 

  94. Walker P, Hamilton J. Identification of antibodies to red cell antigens. In: Fung M, Grossman BJ, Hillyer CD, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 391–424.

    Google Scholar 

  95. Walsh S, Murphy J. Neonatal jaundice—are we over-treating? Iran Med J. 2010;103(1):28–9.

    CAS  Google Scholar 

  96. Wang-Rodriguez J, Fry E, Fiebig E, Lee T, Busch M, Mannino F, Lane TA. Immune response to blood transfusion in very-low-birthweight infants. Transfusion. 2000;40(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  97. Wang-Rodriguez J. The fetal/neonatal immune response. In: Herman J, Manno C, editors. Pediatric transfusion therapy. Bethesda: AABB; 2002. p. 1–23.

    Google Scholar 

  98. Winter K, Johnson L, Kwok M, et al. Understanding the effects of gamma-irradiation on potassium levels in red cell concentrates stored in SAG-M for neonatal red cell transfusion. Vox Sang. 2015;108:141–50.

    Article  CAS  PubMed  Google Scholar 

  99. Wollowitz S. Fundamentals of the psoralen-based Helinx technology for inactivation of infectious pathogens and leukocytes in platelets and plasma. Semin Hematol. 2001;38 Suppl 11:4–11.

    Article  CAS  PubMed  Google Scholar 

  100. Wong E, Roseff SD, editors. Pediatric hemotherapy data card. Bethesda: AABB; 2009.

    Google Scholar 

  101. Wong E, Josephson C, Punzalan R, Roseff S, Sesok-Pizzini D, Sloan S, Strauss R, editors. Pediatric transfusion: a physician’s handbook. Bethesda: AABB; 2015.

    Google Scholar 

  102. Yarraton H, Lawrie AS, Mackie IJ, et al. Coagulation factor levels in cryosupernatant prepared from plasma treated with amotosalen hydrochloride (S-59) and ultraviolet A light. Transfusion. 2005;45:1453–8.

    Article  CAS  Google Scholar 

  103. Wu Y, Zou S, Cable R, Dorsey K, Tang Y, Hapip CA, Melmed R, Trouern-Trend J, Wang J-H, Champion M, Fang C, Dodd R. Direct assessment of cytomegalovirus transfusion-transmitted risks after universal leukoreduction. Transfusion. 2010;50:776–86.

    Article  PubMed  Google Scholar 

  104. Zimmermann R, Wintzheimer S, Weisbach V, et al. Influence of prestorage leukoreduction and subsequent irradiation on in vitro red blood cell storage variables of red blood cells in additive solution saline-adenine-glucose-mannitol. Transfusion. 2009;49:75–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah A. Sesok-Pizzini MD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hawkins, J.L., Sesok-Pizzini, D.A. (2017). Neonatal Transfusion Testing, Manufacturing, Standards, and Storage. In: Sesok-Pizzini, D. (eds) Neonatal Transfusion Practices. Springer, Cham. https://doi.org/10.1007/978-3-319-42764-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42764-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42762-1

  • Online ISBN: 978-3-319-42764-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics