Cognitive and Perceptual Impairments in Parkinson’s Disease Arising from Dysfunction of the Cortex and Basal Ganglia

  • Deepti Putcha
  • Abhishek Jaywant
  • Alice Cronin-Golomb
Chapter
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)

Abstract

Cognitive and perceptual impairments in Parkinson’s disease (PD) contribute substantially to reduced quality of life and implicate the dysfunction of multiple systems including widespread cortical regions and the basal ganglia. Common impairments in attention, executive function, and visuospatial function reflect a disruption of neuronal circuits between the striatum and prefrontal and parietal cortices. In this chapter, we focus mainly on visuospatial cognition and perception, areas of recent growth in research. We include discussion of disparities in visuospatial and perceptual performance by PD subgroups, defined by characteristics of motor symptom onset: body side of initial symptom (left, right) and type of initial symptom (tremor, non-tremor). We describe how some of the visuocognitive impairments seen in PD may be related to changes in basic visual abilities and in visual perception, and how basal ganglia-mediated motor dysfunction, and cortical dysfunction affecting visual perception, may be associated with changes in action observation (perception–action coupling). Cognitive and perceptual impairments directly affect quality of life in PD and contribute to disability by exacerbating the tendency toward gait dysfunction and falls, especially under dual-task (cognitive–motor) conditions. Interventions are being developed that target the cognitive symptoms of PD, including cognitive and attentional training and the use of noninvasive brain stimulation techniques. Understanding the etiology and course of cognitive and perceptual symptoms will inform the further rational development of interventions to ease the burden experienced by those with PD.

Keywords

Cognition Perception Non-motor Visual spatial processing Striatum Prefrontal cortex Parietal cortex Rehabilitation Cortical networks Neurodegenerative diseases 

Notes

Acknowledgments

We thank the collaborators on our studies of Parkinson’s disease cited in this chapter, including Melissa Amick, Erica Appleman, Bo Cao, Ying-hui Chou, Uraina Clark, Sigurros Davidsdottir, Joseph DeGutis, Mirella Diaz-Santos, Terry Ellis, Xavier Gallart-Palau, Giorgio Ganis, Grover C. Gilmore, Amy Janes, Cheng-Chieh Lin, Samantha Mauro, Ivy Miller, Giovanni Musto, Sandy Neargarder, Daniel Norton, Tatiana Riedel, Xiaolin Ren, Megan Risi, Maya Rosen, Robert Ross, Serge Roy, Marie Saint-Hilaire, Robert Salazar, Elliot Saltzman, Haline Schendan, Daniel Seichepine, David Somers, Karina Stavitsky Gilbert, Chantal Stern, Cathi Thomas, Arash Yazdanbakhsh, and Daniel Young, and we remember with gratitude the contributions of our late colleague, Robert Wagenaar. This work was supported by grants from the National Institute of Neurological Disorders and Stroke, including RO1 NS067128 to A.C.G. and a Ruth L. Kirschstein National Research Service Award (F31 NS078919) to A.J.

References

  1. Alegre M, Rodriguez-Oroz MC, Valencia M et al (2010) Changes in subthalamic activity during movement observation in Parkinson’s disease: is the mirror system mirrored in the basal ganglia? Clin Neurophysiol 121:414–425PubMedCrossRefGoogle Scholar
  2. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271PubMedCrossRefGoogle Scholar
  3. Alonso-Recio L, Serrano JM, Martin P (2014) Selective attention and facial expression recognition in patients with Parkinson’s disease. Arch Clin Neuropsychol 29(4):374–384PubMedCrossRefGoogle Scholar
  4. Alves G, Larsen JP, Emre M et al (2006) Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Mov Disord 21(8):1123–1130PubMedCrossRefGoogle Scholar
  5. Amick MM, Cronin-Golomb A, Gilmore GC (2003) Visual processing of rapidly presented stimuli is normalized in Parkinson’s disease when proximal stimulus strength is enhanced. Vision Res 43:2827–2835PubMedCrossRefGoogle Scholar
  6. Amick MM, Grace J, Chou KL (2006a) Body side of motor symptom onset in Parkinson’s disease is associated with memory performance. J Int Neuropsychol Soc 12(5):736–740. doi: 10.1017/S1355617706060875 PubMedCrossRefGoogle Scholar
  7. Amick MM, Schendan HE, Ganis G et al (2006b) Frontostriatal circuits are necessary for visuomotor transformation: mental rotation in Parkinson’s disease. Neuropsychologia 44:339–349PubMedCrossRefGoogle Scholar
  8. Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18(3):251–270. doi: 10.1177/1073858411403316 PubMedCrossRefGoogle Scholar
  9. Antonini A, Vontobel P, Psylla M, Gunther I, Maguire PR, Missimer J, Leenders KL (1995) Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol 52(12):1183–1190Google Scholar
  10. Appleman ER, Stavitsky K, Cronin-Golomb A (2011) Relation of subjective quality of life to motor symptom profile in Parkinson’s disease. Parkinsons Dis 2011:472830. doi: 10.4061/2011/472830 PubMedPubMedCentralGoogle Scholar
  11. Archibald NK, Clarke MP, Mosimann UP et al (2009) The retina in Parkinson’s disease. Brain 132:1128–1145PubMedCrossRefGoogle Scholar
  12. Archibald NK, Clarke MP, Mosimann UP et al (2011) Visual symptoms in Parkinson’s disease and Parkinson’s disease dementia. Mov Disord 26(3):2387–2395PubMedCrossRefGoogle Scholar
  13. Arieli A, Sterkin A, Grinvald A et al (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273(5283):1868–1871PubMedCrossRefGoogle Scholar
  14. Armstrong RA (2008) Visual signs and symptoms of Parkinson’s disease. Clin Exp Optom 91(2):129–138PubMedCrossRefGoogle Scholar
  15. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177. doi: 10.1016/j.tics.2004.02.010 PubMedCrossRefGoogle Scholar
  16. Backman L, Nyberg L, Soveri A et al (2011) Effects of working-memory training on striatal dopamine release. Science 333(6043):718. doi: 10.1126/science.1204978 PubMedCrossRefGoogle Scholar
  17. Baddeley A, Della Sala S (1996) Working memory and executive control. Philos Trans R Soc Lond B Biol Sci 351(1346):1397–1403; discussion 1394–1403PubMedCrossRefGoogle Scholar
  18. Balasubramanian R, Gan L (2014) Development of retinal amacrine cells and their dendritic stratification. Curr Opthalmol Rep 2:100–106CrossRefGoogle Scholar
  19. Barnes KA, Cohen AL, Power JD et al (2010) Identifying basal ganglia divisions in individuals using resting-state functional connectivity MRI. Front Syst Neurosci 4:18. doi: 10.3389/fnsys.2010.00018 PubMedPubMedCentralGoogle Scholar
  20. Barone P, Aarsland D, Burn D et al (2011) Cognitive impairment in nondemented Parkinson’s disease. Mov Disord 26(14):2483–2495. doi: 10.1002/mds.23919 PubMedCrossRefGoogle Scholar
  21. Bodis-Wollner I (2003) Neuropsychological and perceptual deficits in Parkinson’s disease. Parkinsonism Relat Disord 9:S83–S89PubMedCrossRefGoogle Scholar
  22. Bodis-Wollner I, Glazman S, Yerram S (2013) Fovea and foveation in Parkinson’s disease. Behav Neurosci 127(2):139–150. doi: 10.1037/a0031225
  23. Bodis-Wollner I, Marx MS, Mitra S et al (1987) Visual dysfunction in Parkinson’s disease: loss in spatiotemporal contrast sensitivity. Brain 110:1675–1698PubMedCrossRefGoogle Scholar
  24. Boggio PS, Ferrucci R, Rigonatti SP et al (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249(1):31–38PubMedCrossRefGoogle Scholar
  25. Bohnen NI, Minoshima S, Giordani B et al (1999) Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia. Neurology 52(3):541–546PubMedCrossRefGoogle Scholar
  26. Bond M, Rogers G, Peters J et al (2012) The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health Technol Assess 16(21):1–470. doi: 10.3310/hta16210 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AG, Wolters EC, Van Royen EA (1997) [123I] FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol, Neurosurg Psychiatry 62(2):133–140Google Scholar
  28. Braak H, Ghebremedhin E, Rub U et al (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134PubMedCrossRefGoogle Scholar
  29. Braak H, Bohl JR, Muller CM et al (2006) Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 21(12):2042–2051PubMedCrossRefGoogle Scholar
  30. Bruck A, Kurki T, Kaasinen V et al (2004) Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment. J Neurol Neurosurg Psychiatry 75(10):1467–1469PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bulens C, Meerwaldt JD, Van der Wildt GJ et al (2004) Effect of levodopa treatment on contrast sensitivity in Parkinson’s disease. Ann Neurol 22(3):365–369CrossRefGoogle Scholar
  32. Calleo J, Burrows C, Levin H et al (2012) Cognitive rehabilitation for executive dysfunction in Parkinson’s disease: application and current directions. Parkinsons Dis 2012:512892. doi: 10.1155/2012/512892 PubMedGoogle Scholar
  33. Carbon M, Marie RM (2003) Functional imaging of cognition in Parkinson’s disease. Curr Opin Neurol 16(4):475–480PubMedGoogle Scholar
  34. Carbon M, Reetz K, Ghilardi MF et al (2010) Early Parkinson’s disease: longitudinal changes in brain activity during sequence learning. Neurobiol Dis 37(2):455–460PubMedCrossRefGoogle Scholar
  35. Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973PubMedCrossRefGoogle Scholar
  36. Castello-Branco M, Mendes M, Silva F et al (2009) Motion integration deficits are independent of magnocellular impairment in Parkinson’s disease. Neuropsychologia 47:314–320CrossRefGoogle Scholar
  37. Castiello U, Ansuini C, Bulgheroni M et al (2009) Visuomotor priming effects in Parkinson’s disease patients depend on the match between the observed and the executed action. Neuropsychologia 47:835–842PubMedCrossRefGoogle Scholar
  38. Chan F, Armstrong IT, Pari G et al (2005) Deficits in saccadic eye-movement control in Parkinson’s disease. Neuropsychologia 43(5):784–796PubMedCrossRefGoogle Scholar
  39. Chaudhuri KR, Schapira AHV (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8:464–474PubMedCrossRefGoogle Scholar
  40. Chaudhuri KR, Odin P, Antonini A et al (2011) Parkinson’s disease: the non-motor issues. Parkinsonism Relat Disord 17(10):717–723PubMedCrossRefGoogle Scholar
  41. Chikama M, McFarland NR, Amaral DG et al (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17(24):9686–9705PubMedGoogle Scholar
  42. Chokron S, Bartolomeo P (1997) Patterns of dissociation between left hemineglect and deviation of the egocentric reference. Neuropsychologia 35(11):1503–1508PubMedCrossRefGoogle Scholar
  43. Chou KL, Cronin-Golomb A (2013) Feeling the need … the need for speed (of processing training) in Parkinson disease. Neurology 81(15):1278–1279PubMedCrossRefGoogle Scholar
  44. Christopher L, Marras C, Duff-Canning S et al (2014) Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain 137(Pt 2):565–575PubMedCrossRefGoogle Scholar
  45. Clark U, Neargarder S, Cronin-Golomb A (2008) Specific impairments in the recognition of emotional facial expressions in Parkinson’s disease. Neuropsychologia 46:2300–2309PubMedPubMedCentralCrossRefGoogle Scholar
  46. Clark US, Neargarder S, Cronin-Golomb A (2010) Visual exploration of emotional facial expressions in Parkinson’s disease. Neuropsychologia 48(7):1901–1913Google Scholar
  47. Cochrane CJ, Ebmeier KP (2013) Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 80(9):857–864. doi: 10.1212/WNL.0b013e318284070c PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cooper JA, Sagar HJ, Jordan N et al (1991) Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain 114(Pt 5):2095–2122PubMedCrossRefGoogle Scholar
  49. Cronin-Golomb A (2010) Parkinson’s disease as a disconnection syndrome. Neuropsychol Rev 20:191–208PubMedPubMedCentralCrossRefGoogle Scholar
  50. Cronin-Golomb A (2013) Emergence of nonmotor symptoms as the focus of research and treatment of Parkinson’s disease: introduction to the special section on nonmotor dysfunctions in Parkinson’s disease. Behav Neurosci 127(2):135–138. doi: 10.1037/a0032142
  51. Davidsdottir S, Cronin-Golomb A, Lee A (2005) Visual and spatial symptoms in Parkinson’s disease. Vision Res 45(10):1285–1296PubMedCrossRefGoogle Scholar
  52. Davidsdottir S, Wagenaar R, Young D et al (2008) Impact of optic flow perception and egocentric coordinates on veering in Parkinson’s disease. Brain 131(11):2882–2893PubMedPubMedCentralCrossRefGoogle Scholar
  53. DeGutis J, Grosso M, VanVleet T, Esterman M, Pistorino L, Cronin-Golomb A (2016) Sustained attention training reduces spatial bias in Parkinson’s disease: a pilot case series. Neurocase 22:179–186PubMedCrossRefGoogle Scholar
  54. Diaz-Santos M, Cao B, Mauro SA, Yazdanbakhsh A, Neargarder S, Cronin-Golomb A (2015a) Effect of visual cues on the resolution of perceptual ambiguity in Parkinson’s disease and normal aging. J Int Neuropsychol Soc 21(2):146–155. doi: 10.1017/S1355617715000065
  55. Diaz-Santos M, Cao B, Yazdanbakhsh A, Norton DJ, Neargarder S, Cronin-Golomb A (2015b) Perceptual, cognitive, and personality rigidity in Parkinson’s disease. Neuropsychologia 69:183–193. doi: 10.1016/j.neuropsychologia.2015.01.044
  56. Diederich NJ, Stebbins G, Schiltz C et al (2014) Are patients with Parkinson’s disease blind to blindsight? Brain 137:1838–1849PubMedPubMedCentralCrossRefGoogle Scholar
  57. DiMartino A, Scheres A, Margulies DS et al (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18(12):2735–2747CrossRefGoogle Scholar
  58. Dirnberger G, Jahanshahi M (2013) Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol 7:192–224CrossRefGoogle Scholar
  59. Djaldetti N, Ziv I, Melamed E (2006) The mystery of motor asymmetry in Parkinson’s disease. Lancet Neurol 5:796–802PubMedCrossRefGoogle Scholar
  60. Doruk D, Gray Z, Bravo GL et al (2014) Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett 582:27–31PubMedCrossRefGoogle Scholar
  61. Dosenbach NU, Visscher KM, Palmer ED et al (2006) A core system for the implementation of task sets. Neuron 50(5):799–812PubMedPubMedCentralCrossRefGoogle Scholar
  62. Duffy CJ (2009) Visual motion processing in aging and Alzheimer’s disease: neuronal mechanisms and behavior from monkeys to man. Ann N Y Acad Sci 1170:736–744PubMedCrossRefGoogle Scholar
  63. Dujardin K, Degreef JF, Rogelet P et al (1999) Impairment of the supervisory attentional system in early untreated patients with Parkinson’s disease. J Neurol 246(9):783–788PubMedCrossRefGoogle Scholar
  64. Dukelow SP, DeSouza JF, Culham JC et al (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000PubMedGoogle Scholar
  65. Durant S, Zanker JM (2012) Variation in the local motion statistics of real-life optic flow scenes. Neural Comput 24(7):1781–1805PubMedCrossRefGoogle Scholar
  66. Ebersbach G, Trottenberg T, Hattig H et al (1996) Directional bias of initial visual exploration: a symptom of neglect in Parkinson’s disease. Brain 119(1):79–87PubMedCrossRefGoogle Scholar
  67. Edwards JD, Hauser RA, O’Connor ML et al (2013) Randomized trial of cognitive speed of processing training in Parkinson disease. Neurology 81(15):1284–1290. doi: 10.1212/WNL.0b013e3182a823ba PubMedPubMedCentralCrossRefGoogle Scholar
  68. Eggers C, Kahraman D, Fink GR et al (2011) Akinetic-rigid and tremor-dominant Parkinson’s disease patients show different patterns of FP-CIT single photon emission computed tomography. Mov Disord 26(3):416–423PubMedCrossRefGoogle Scholar
  69. Eidelberg D (2009) Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci 32(10):548–557PubMedPubMedCentralCrossRefGoogle Scholar
  70. Esterman M, Noonan SK, Rosenberg M et al (2013) In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cereb Cortex 23(11):2712–2723. doi: 10.1093/cercor/bhs261 PubMedCrossRefGoogle Scholar
  71. Ezzati A, Khadjevand F, Zandvakili A et al (2010) Higher-level motion detection deficit in Parkinson’s disease. Brain Res 1320:143–151PubMedCrossRefGoogle Scholar
  72. Fischer E, Bulthoff HH, Logothetis NK et al (2012) Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST. Cereb Cortex 22(4):865–876PubMedCrossRefGoogle Scholar
  73. Foltynie T, Brayne CE, Robbins TW et al (2004) The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 127(Pt 3):550–560PubMedGoogle Scholar
  74. Foster ER, Black KJ, Antenor-Dorsey JV et al (2008) Motor asymmetry and substantia nigra volume are related to spatial delayed response performance in Parkinson disease. Brain Cogn 67(1):1–10PubMedCrossRefGoogle Scholar
  75. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678PubMedPubMedCentralCrossRefGoogle Scholar
  76. Fox MD, Snyder AZ, Vincent JL et al (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56(1):171–184PubMedCrossRefGoogle Scholar
  77. Fregni F, Pascual-Leone A (2007) Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Rev Neurol 3:383–393CrossRefGoogle Scholar
  78. Fudge JL, Breitbart MA, Danish M et al (2005) Insular and gustatory inputs to the caudal ventral striatum in primates. J Comp Neurol 490(2):101–118. doi: 10.1002/cne.20660 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Fuller RL, Van Winkle EP, Anderson KE et al (2013) Dual task performance in Parkinson’s disease: a sensitive predictor of impairment and disability. Parkinsonism Relat Disord 19(3):325–328. doi: 10.1016/j.parkreldis.2012.11.011 PubMedCrossRefGoogle Scholar
  80. Gaenslen A, Swid I, Liepelt-Scarfone I et al (2011) The patients’ perception of prodromal symptoms before the initial diagnosis of Parkinson’s disease. Mov Disord 26(4):653–658PubMedPubMedCentralCrossRefGoogle Scholar
  81. Gaig C, Tolosa E (2009) When does Parkinson’s disease begin? Mov Disord 24(Suppl 2):S656–S664PubMedCrossRefGoogle Scholar
  82. Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119(7):1459–1474PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gasparoli E, Delibori D, Polesello G et al (2002) Clinical predictors in Parkinson’s disease. Neurol Sci 23(Suppl 2):S77–S78. doi: 10.1007/s100720200078 PubMedCrossRefGoogle Scholar
  84. Goetz CG (2011) The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med 1(1):a008862PubMedPubMedCentralCrossRefGoogle Scholar
  85. Gomez-Esteban JC, Tijero B, Ciordia R et al (2010) Factors influencing the symmetry of Parkinson’s disease symptoms. Clin Neurol Neurosurg 112:302–305PubMedCrossRefGoogle Scholar
  86. Gottlob I, Schneider E, Heider W et al (1987) Alteration of visual evoked potentials and electroretinograms in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 66(4):349–357PubMedCrossRefGoogle Scholar
  87. Greicius MD, Krasnow B, Reiss AL et al (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258PubMedCrossRefGoogle Scholar
  88. Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364PubMedCrossRefGoogle Scholar
  89. Harris JP, Atkinson EA, Lee AC, Nithi K, Fowler MS (2003) Hemispace differences in the visual perception of size in left hemiParkinson’s disease. Neuropsychologia 41(7):795–807PubMedCrossRefGoogle Scholar
  90. Helmich RC, Derikx LC, Bakker M et al (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 20(5):1175–1186PubMedCrossRefGoogle Scholar
  91. Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80(3):953–978PubMedGoogle Scholar
  92. Hosokai Y, Nishio Y, Hirayama K et al (2009) Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment. Mov Disord 24(6):854–862. doi: 10.1002/mds.22444 PubMedCrossRefGoogle Scholar
  93. Ibarretxe-Bilbao N, Tolosa E, Junque C et al (2009) MRI and cognitive impairment in Parkinson’s disease. Mov Disord 24(Suppl 2):S748–S753. doi: 10.1002/mds.22670 PubMedCrossRefGoogle Scholar
  94. Ibarretxe-Bilbao N, Junque C, Marti MJ et al (2011) Brain structural MRI correlates of cognitive dysfunctions in Parkinson’s disease. J Neurol Sci 310(1–2):70–74. doi: 10.1016/j.jns.2011.07.054 PubMedCrossRefGoogle Scholar
  95. Iwasaki Y, Kinoshita M, Ikeda K et al (1989) Cognitive function in Parkinson’s disease: in relation to motor symptoms. Int J Neurosci 47(3–4):295–300PubMedCrossRefGoogle Scholar
  96. Jacob EL, Gatto NM, Thompson A et al (2010) Occurrence of depression and anxiety prior to Parkinson’s disease. Parkinsonism Relat Disord 16(9):576–581. doi: 10.1016/j.parkreldis.2010.06.014 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Jaywant A, Ellis TD, Roy S, Lin C-C, Neargarder S, Cronin-Golomb A (2016a) Randomized controlled trial of a home-based action observation intervention to enhance walking in Parkinson’s disease. Arch Phys Med Rehabil 97(5):665–73. doi: 10.1016/j.apmr.2015.12.029 PubMedCrossRefGoogle Scholar
  98. Jaywant A, Shiffrar M, Roy S, Cronin-Golomb A (2016) Impaired perception of biological motion in Parkinson’s disease. Neuropsychology. [Epub ahead of print]. doi: 10.1037/neu0000276Google Scholar
  99. Jaywant A, Wasserman V, Kemppainen M, Cronin-Golomb A (2016c) Perception of communicative and non-communicative motion-defined gestures in Parkinson’s disease. J Int Neuropsychol Soc 22(5):540–50. doi: 10.1017/S1355617716000114 PubMedCrossRefGoogle Scholar
  100. Jubault T, Gagnon J-F, Karama S et al (2011) Patterns of cortical thickness and surface area in early Parkinson’s disease. Neuroimage 55(2):462–467PubMedCrossRefGoogle Scholar
  101. Kan Y, Kawamura M, Hasegawa Y et al (2002) Recognition of emotion from facial, prosodic, and written verbal stimuli in Parkinson’s disease. Cortex 38(4):623–630PubMedCrossRefGoogle Scholar
  102. Karnath HO (1997) Spatial orientation and the representation of space with parietal lobe lesions. Philos Trans R Soc Lond B Biol Sci 352(1360):1411–1419PubMedPubMedCentralCrossRefGoogle Scholar
  103. Karnath HO, Schenkel P, Fischer B (1991) Trunk orientation as the determining factor of the ‘contralateral’deficit in the neglect syndrome and as the physical anchor of the internal representation of body orientation in space. Brain 114(4):1997–2014PubMedCrossRefGoogle Scholar
  104. Kelly VE, Eusterbrock AJ, Shumway-Cook A (2012) A review of dual-task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis 2012:918719. doi: 10.1155/2012/918719 PubMedGoogle Scholar
  105. Kempster PA, Gibb WR, Stern GM, Lees AJ (1989) Asymmetry of substantia nigra neuronal loss in Parkinson’s disease and its relevance to the mechanism of levodopa related motor fluctuations. J Neurol Neurosurg Psychiatry 52(1):72–76Google Scholar
  106. Kim SE, Lee WY, Choe YS et al (1999) SPECT measurement of iodine-123-beta-CIT binding to dopamine and serotonin transporters in Parkinson’s disease: correlation with symptom severity. Neurol Res 21(3):255–261PubMedCrossRefGoogle Scholar
  107. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880. doi: 10.1056/nejm198804073181402 PubMedCrossRefGoogle Scholar
  108. Kounios J, Fleck JI, Green DL et al (2008) The origins of insight in resting-state brain activity. Neuropsychologia 46(1):281–291PubMedCrossRefGoogle Scholar
  109. Kupersmith MJ, Shakin E, Siegel IM et al (1982) Visual system abnormalities in patients with Parkinson’s disease. Arch Neurol 39:284–286PubMedCrossRefGoogle Scholar
  110. Kwak Y, Peltier S, Bohnen NI et al (2010) Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci 4:143. doi: 10.3389/fnsys.2010.00143 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Laudate TM, Neargarder S, Cronin-Golomb A (2013) Line bisection in Parkinson’s disease: Investigation of contributions of visual field, retinal vision and scanning patterns to visuospatial function. Behav Neurosci 127:151–163. doi: 10.1037/a0031618
  112. Laulumaa V, Kuikka JT, Soininen H, Bergstrom K, Lansimies E, Riekkinen P (1993) Imaging of D2 dopamine receptors of patients with Parkinson’s disease using single photon emission computed tomography and lodobenzamide I 123. Arch Neurol 50(5):509–512Google Scholar
  113. Lebedev AV, Westman E, Simmons A et al (2014) Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Front Syst Neurosci 8:45. doi: 10.3389/fnsys.2014.00045 PubMedPubMedCentralGoogle Scholar
  114. Lee AC, Harris JP, Atkinson EA et al (2001) Evidence from a line bisection task for visuospatial neglect in left hemiparkinson’s disease. Vision Res 41(20):2677–2686PubMedCrossRefGoogle Scholar
  115. Leenders KL, Salmon EP, Tyrrell P, Perani D, Brooks DJ, Sager H, Jones T, Marsden CD, Frackowiak RSJ (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47(12):1290–1298Google Scholar
  116. Leh SE, Chakravarty MM, Ptito A (2008) The connectivity of the human pulvinar: a diffusion tensor imaging tractography study. Int J Biomed Imaging 2008:789539. doi: 10.1155/2008/789539 PubMedCrossRefGoogle Scholar
  117. Levin BE, Llabre MM, Reisman S et al (1991) Visuospatial impairment in Parkinson’s disease. Neurology 41(3):365–369PubMedCrossRefGoogle Scholar
  118. Lewis SJ, Cools R, Robbins TW et al (2003a) Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia 41(6):645–654PubMedCrossRefGoogle Scholar
  119. Lewis SJ, Dove A, Robbins TW et al (2003b) Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 23(15):6351–6356. pii:23/15/6351PubMedGoogle Scholar
  120. Lewis SJG, Foltynie T, Blackwell AD et al (2005) Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry 76:343–348PubMedPubMedCentralCrossRefGoogle Scholar
  121. Lewis MM, Du G, Sen S et al (2011) Differential involvement of striato- and cerebello-thalamo-cortical pathways in tremor- and akinetic/rigid-predominant Parkinson’s disease. Neuroscience 177:230–239. doi: 10.1016/j.neuroscience.2010.12.060 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Litvan I, Aarsland D, Adler CH et al (2011) MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord 26(10):1814–1824. doi: 10.1002/mds.23823 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Litvan I, Goldman JG, Troster AI et al (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 27(3):349–356. doi: 10.1002/mds.24893 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Lord S, Rochester L, Hetherington V et al (2010) Executive dysfunction and attention contribute to gait interference in ‘off’ state Parkinson’s disease. Gait Posture 31(2):169–174PubMedCrossRefGoogle Scholar
  125. Luque-Moreno C, Lopez-Garcia JC, Diaz-Argandona E (2012) Analysis of sustained attention in patients with Parkinson’s disease being treated with dopamine precursors. Rev Neurol 55(5):257–262PubMedGoogle Scholar
  126. Macdonald PA, Monchi O (2011) Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson’s disease: implications for cognitive function. Parkinsons Dis 2011:572743. doi: 10.4061/2011/572743 PubMedPubMedCentralGoogle Scholar
  127. Marceglia S, Fiorio M, Foffani G et al (2009) Modulation of beta oscillations in the subthalamic area during action observation in Parkinson’s disease. Neuroscience 161(4):1027–1036PubMedCrossRefGoogle Scholar
  128. Marek KL, Seibyl JP, Zoghbi SS et al (1996) [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 46(1):231–237PubMedCrossRefGoogle Scholar
  129. Marttila RJ, Rinne UK (1976) Dementia in Parkinson’s disease. Acta Neurol Scand 54(5):431–441PubMedCrossRefGoogle Scholar
  130. Matthias E, Bublak P, Costa A et al (2009) Attentional and sensory effects of lowered levels of intrinsic alertness. Neuropsychologia 47(14):3255–3264. doi: 10.1016/j.neuropsychologia.2009.08.004 PubMedCrossRefGoogle Scholar
  131. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506PubMedCrossRefGoogle Scholar
  132. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667. doi: 10.1007/s00429-010-0262-0 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Mestre D, Blin O, Serratrice G et al (1990) Spatiotemporal contrast sensitivity differs in normal aging and Parkinson’s disease. Neurology 40(11):1710–1714PubMedCrossRefGoogle Scholar
  134. Miller IN, Neargarder S, Risi MM et al (2013) Frontal and posterior subtypes of neuropsychological deficit in Parkinson’s disease. Behav Neurosci 127(2):175–183. doi: 10.1037/a0031357 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Monchi O, Petrides M, Petre V et al (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21(19):7733–7741PubMedGoogle Scholar
  136. Monchi O, Petrides M, Mejia-Constain B et al (2007) Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain 130(Pt 1):233–244PubMedGoogle Scholar
  137. Moran RJ, Mallet N, Litvak V et al (2011) Alterations in brain connectivity underlying beta oscillations in parkinsonism. PLoS Comput Biol 7(8):e1002124PubMedPubMedCentralCrossRefGoogle Scholar
  138. Moustafa AA, Poletti M (2013) Neural and behavioral substrates of subtypes of Parkinson’s disease. Front Syst Neurosci 7:117. doi: 10.3389/fnsys.2013.00117 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Mure H, Hirano S, Tang CC et al (2011) Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage 54(2):1244–1253. doi: 10.1016/j.neuroimage.2010.09.028 PubMedCrossRefGoogle Scholar
  140. Norton DJ, Jaywant A, Gallart-Palau X, Cronin-Golomb A (2015) Normal discrimination of spatial frequency and contrast across visual hemifields in left-onset Parkinson’s disease: Evidence against perceptual hemifield biases. Vision Res 107:94–100PubMedCrossRefGoogle Scholar
  141. Obeso I, Wilkinson L, Casabona E et al (2011) Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Exp Brain Res 212(3):371–384. doi: 10.1007/s00221-011-2736-6 PubMedCrossRefGoogle Scholar
  142. Ohl FW, Scheich H, Freeman WJ (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412(6848):733–736PubMedCrossRefGoogle Scholar
  143. Pagonabarraga J, Corcuera-Solano I, Vives-Gilabert Y et al (2013) Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson’s disease. PLoS One 8(1):e54980PubMedPubMedCentralCrossRefGoogle Scholar
  144. Papo D (2013) Why should cognitive neuroscientists study the brain’s resting state? Front Hum Neurosci 7:45. doi: 10.3389/fnhum.2013.00045 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Paris AP, Saleta HG, de la Cruz Crespo Maraver M et al (2011) Blind randomized controlled study of the efficacy of cognitive training in Parkinson’s disease. Mov Disord 26(7):1251–1258. doi: 10.1002/mds.23688 PubMedCrossRefGoogle Scholar
  146. Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50(6):743–755PubMedCrossRefGoogle Scholar
  147. Pawela CP, Biswal BB, Hudetz AG et al (2010) Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage 49(3):2467–2478PubMedCrossRefGoogle Scholar
  148. Pieri V, Diederich N, Raman R et al (2000) Decreased color discrimination and contrast sensitivity in Parkinson’s disease. J Neurol Sci 172(1):7–11PubMedCrossRefGoogle Scholar
  149. Pitzalis S, Galletti C, Huang RS et al (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26(30):7962–7973PubMedCrossRefGoogle Scholar
  150. Pitzalis S, Sereno MI, Committeri G et al (2010) Human v6: the medial motion area. Cereb Cortex 20(2):411–424PubMedCrossRefGoogle Scholar
  151. Plotnik M, Dagan Y, Gurevich T et al (2011) Effects of cognitive function on gait and dual tasking abilities in patients with Parkinson’s disease suffering from motor response fluctuations. Exp Brain Res 208(2):169–179. doi: 10.1007/s00221-010-2469-y PubMedCrossRefGoogle Scholar
  152. Poletti M, De Rosa A, Bonuccelli U (2012) Affective symptoms and cognitive functions in Parkinson’s disease. J Neurol Sci 317(1–2):97–102PubMedCrossRefGoogle Scholar
  153. Poliakoff E, Galpin A, Dick J et al (2007) The effect of viewing graspable objects and actions in Parkinson’s disease. Neuroreport 18(5):483–487PubMedCrossRefGoogle Scholar
  154. Postuma RB, Aarsland D, Barone P et al (2012) Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson’s disease. Mov Disord 27(5):617–626PubMedCrossRefGoogle Scholar
  155. Power JD, Barnes KA, Snyder AZ et al (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154PubMedCrossRefGoogle Scholar
  156. Price MJ, Feldman RG, Adelberg D et al (1992) Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 42:887–890PubMedCrossRefGoogle Scholar
  157. Provost JS, Petrides M, Monchi O (2010) Dissociating the role of the caudate nucleus and dorsolateral prefrontal cortex in the monitoring of events within human working memory. Eur J Neurosci 32(5):873–880. doi: 10.1111/j.1460-9568.2010.07333.x PubMedCrossRefGoogle Scholar
  158. Putcha D, Ross RS, Rosen ML et al (2014) Functional correlates of optic flow motion processing in Parkinson’s disease. Front Integr Neurosci 8:57PubMedPubMedCentralCrossRefGoogle Scholar
  159. Putcha D, Ross RS, Cronin-Golomb A, Janes AC, Stern CE (2015) Altered intrinsic functional coupling between core neurocognitive networks in Parkinson’s disease. Neuroimage Clin 7:449–455. doi: 10.1016/j.nicl.2015.01.012
  160. Putcha D, Ross RS, Cronin-Golomb A, Janes AC, Stern CE (2016) Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson’s Disease. J Int Neuropsychol Soc 22(2):205–215. doi: 10.1017/S1355617715000892
  161. Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682PubMedPubMedCentralCrossRefGoogle Scholar
  162. Ravina B, Marek K, Eberly S et al (2012) Dopamine transporter imaging is associated with long-term outcomes in Parkinson’s disease. Mov Disord 27(11):1392–1397. doi: 10.1002/mds.25157 PubMedCrossRefGoogle Scholar
  163. Reid WG, Broe GA, Hely MA et al (1989) The neuropsychology of de novo patients with idiopathic Parkinson’s disease: the effects of age of onset. Int J Neurosci 48(3–4):205–217PubMedCrossRefGoogle Scholar
  164. Richard C, Rousseaux M, Saj A, Honoré J (2004) Straight ahead in spatial neglect: evidence that space is shifted, not rotated. Neurology 63(11):2136–2138PubMedCrossRefGoogle Scholar
  165. Robertson IH, Manly T, Beschin N et al (1997) Auditory sustained attention is a marker of unilateral spatial neglect. Neuropsychologia 35(12):1527–1532PubMedCrossRefGoogle Scholar
  166. Rochester L, Hetherington V, Jones D et al (2004) Attending to the task: interference effects of functional tasks on walking in Parkinson’s disease and the roles of cognition, depression, fatigue, and balance. Arch Phys Med Rehabil 85(10):1578–1585PubMedCrossRefGoogle Scholar
  167. Rogers RD, Monsell S (1995) Costs of a predictable switch between simple cognitive tasks. J Exp Psychol Gen 124(2):207CrossRefGoogle Scholar
  168. Saenz A, Doe de Maindreville A, Henry A et al (2013) Recognition of facial and musical emotions in Parkinson’s disease. Eur J Neurol 20(3):571–577PubMedCrossRefGoogle Scholar
  169. Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev 35(2):146–160PubMedCrossRefGoogle Scholar
  170. Schendan HE, Amick MM, Cronin-Golomb A (2009) Role of a lateralized parietal-basal ganglia circuit in hierarchical pattern perception: evidence from Parkinson’s disease. Behav Neurosci 123(1):125–136PubMedPubMedCentralCrossRefGoogle Scholar
  171. Schendan HE, Tinaz S, Maher SM et al (2013) Frontostriatal and mediotemporal lobe contributions to implicit higher-order spatial sequence learning declines in aging and Parkinson’s disease. Behav Neurosci 127(2):204–221PubMedPubMedCentralCrossRefGoogle Scholar
  172. Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356PubMedPubMedCentralCrossRefGoogle Scholar
  173. Seger CA, Cincotta CM (2005) The roles of the caudate nucleus in human classification learning. J Neurosci 25(11):2941–2951. doi: 10.1523/JNEUROSCI.3401-04.2005 PubMedCrossRefGoogle Scholar
  174. Seger CA, Cincotta CM (2006) Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cereb Cortex 16(11):1546–1555. doi: 10.1093/cercor/bhj092 PubMedCrossRefGoogle Scholar
  175. Seichepine DR, Neargarder S, Miller IN et al (2011) Relation of Parkinson’s disease subtypes to visual activities of daily living. J Int Neuropsychol Soc 17:841–852PubMedPubMedCentralCrossRefGoogle Scholar
  176. Seichepine DR, Neargarder S, Davidsdottir S, Reynolds GO, Cronin-Golomb A (2015) Side and type of initial motor symptom influences visuospatial functioning in Parkinson’s disease. J Parkinsons Dis 5(1):75–83. doi: 10.3233/JPD-140365
  177. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5(3):776–794PubMedGoogle Scholar
  178. Selikhova M, Williams DR, Kempster PA et al (2009) A clinico-pathological study of subtypes in Parkinson’s disease. Brain 132:2947–2957PubMedCrossRefGoogle Scholar
  179. Seppi K, Weintraub D, Coelho M et al (2011) The Movement Disorder Society Evidence-Based Medicine Review Update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord 26(Suppl 3):S42–S80. doi: 10.1002/mds.23884 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Shine JM, Matar E, Ward PB et al (2013) Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136(Pt 12):3671–3681PubMedCrossRefGoogle Scholar
  181. Shine JM, Halliday GM, Gilat M et al (2014) The role of dysfunctional attentional control networks in visual misperceptions in Parkinson’s disease. Hum Brain Mapp 35(5):2206–2219. doi: 10.1002/hbm.22321 PubMedCrossRefGoogle Scholar
  182. Shulman LM (2010) Understanding disability in Parkinson’s disease. Mov Disord 25(Suppl 1):S131–S135. doi: 10.1002/mds.22789 PubMedCrossRefGoogle Scholar
  183. Siepel FJ, Bronnick KS, Booij J et al (2014) Cognitive executive impairment and dopaminergic deficits in de novo Parkinson’s disease. Mov Disord 29(14):1802–1808. doi: 10.1002/mds.26051 PubMedCrossRefGoogle Scholar
  184. Sinforiani E, Banchieri L, Zucchella C et al (2004) Cognitive rehabilitation in Parkinson’s disease. Arch Gerontol Geriatr Suppl 9:387–391. doi: 10.1016/j.archger.2004.04.049 CrossRefGoogle Scholar
  185. Sollinger AB, Goldstein FC, Lah JJ et al (2010) Mild cognitive impairment in Parkinson’s disease: subtypes and motor characteristics. Parkinsonism Relat Disord 16(3):177–180PubMedCrossRefGoogle Scholar
  186. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 105(34):12569–12574PubMedPubMedCentralCrossRefGoogle Scholar
  187. Stepkina DA, Zakharov VV, Yakhno NN (2010) Cognitive impairments in progression of Parkinson’s disease. Neurosci Behav Physiol 40(1):61–67. doi: 10.1007/s11055-009-9223-6 PubMedCrossRefGoogle Scholar
  188. Szczepanski SM, Pinsk MA, Douglas MM, Kastner S, Saalmann YB (2013) Functional and structural architecture of the human dorsal frontoparietal attention network. Proc Natl Acad Sci USA 110(39):15806–15811. doi: 10.1073/pnas.1313903110 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Takakusaki K, Oohinata-Sugimoto J, Saitoh K et al (2004) Role of basal ganglia-brainstem systems in the control of postural muscle tone and locomotion. Prog Brain Res 143:231–237. doi: 10.1016/S0079-6123(03)43023-9 PubMedCrossRefGoogle Scholar
  190. Taylor JP, Rowan EN, Lett D et al (2008) Poor attentional function predicts cognitive decline in patients with non-demented Parkinson’s disease independent of motor phenotype. J Neurol Neurosurg Psychiatry 79:1318–1323PubMedCrossRefGoogle Scholar
  191. Tessitore A, Esposito F, Vitale C et al (2012) Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79:2226–2232PubMedCrossRefGoogle Scholar
  192. Tinaz S, Schendan HE, Stern CE (2008) Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging 29(3):397–407PubMedCrossRefGoogle Scholar
  193. Tinaz S, Courtney MG, Stern CE (2011) Focal cortical and subcortical atrophy in early Parkinson’s disease. Mov Disord 26(3):436–441. doi: 10.1002/mds.23453 PubMedCrossRefGoogle Scholar
  194. Tootell RB, Mendola JD, Hadjikhani NK et al (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17(18):7060–7078PubMedGoogle Scholar
  195. Trick GL, Kaskie B, Steinman SB (1994) Visual impairment in Parkinson’s disease: deficits in orientation and motion discrimination. Optom Vis Sci 71(4):242–245PubMedCrossRefGoogle Scholar
  196. Uc EY, Rizzo M, Anderson SW et al (2005) Visual dysfunction in Parkinson disease without dementia. Neurology 65(12):1907–1913PubMedCrossRefGoogle Scholar
  197. Uddin LQ, Supekar K, Amin H et al (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20(11):2636–2646. doi: 10.1093/cercor/bhq011 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Uitti RJ, Baba Y, Whaley NR et al (2005) Parkinson disease: handedness predicts asymmetry. Neurology 64(11):1925–1930PubMedCrossRefGoogle Scholar
  199. van Eimeren T, Monchi O, Ballanger B et al (2009) Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol 66(7):877–883PubMedPubMedCentralGoogle Scholar
  200. Vaugoyeau M, Azulay JP (2010) Role of sensory information in the control of postural orientation in Parkinson’s disease. J Neurol Sci 289(1–2):66–68PubMedCrossRefGoogle Scholar
  201. Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18(3):191–194PubMedCrossRefGoogle Scholar
  202. Weinberger M, Hutchison WD, Lozano AM et al (2009) Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. J Neurophysiol 101(2):789–802. doi: 10.1152/jn.90837.2008 PubMedCrossRefGoogle Scholar
  203. White OB, Saint-Cyr JA, Tomlinson RD et al (1983) Ocular motor deficits in Parkinson’s disease: II. Control of the saccadic and smooth pursuit systems. Brain 112:1573–1586Google Scholar
  204. Williams-Gray CH, Foltynie T, Brayne CE et al (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130(Pt 7):1787–1798. doi: 10.1093/brain/awm111 PubMedCrossRefGoogle Scholar
  205. Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16(1):1–14PubMedCrossRefGoogle Scholar
  206. Yao H, Shi L, Han F et al (2007) Rapid learning in cortical coding of visual scenes. Nat Neurosci 10(6):772–778PubMedCrossRefGoogle Scholar
  207. Young DE, Wagenaar RC, Lin CC et al (2010) Visuospatial perception and navigation in Parkinson’s disease. Vision Res 50(23):2495–2504PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Deepti Putcha
    • 1
  • Abhishek Jaywant
    • 1
  • Alice Cronin-Golomb
    • 1
  1. 1.Department of Psychological and Brain SciencesBoston UniversityBostonUSA

Personalised recommendations