Skip to main content

Interactions Between the Basal Ganglia and the Cerebellum and Role in Neurological Disorders

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

The cerebellum and the basal ganglia are critically important for motor control, and their cooperation is crucial to generate the motor signals necessary for proper motor execution and coordination. For decades, direct and functionally relevant communication between these structures was thought to be unlikely due to the lack of corroborating anatomical or functional data. More recent novel methodologies have uncovered the presence of a pathway connecting the output of the basal ganglia to the cerebellum and a disynaptic connection from the cerebellum to the input of the basal ganglia via the thalamus in both rodents and primates. In particular, the disynaptic connection allows for a rapid communication between the cerebellum and the basal ganglia and is capable of modulating synaptic plasticity between the basal ganglia and the motor cortex. These mechanistic insights have helped determine how aberrant activity in the cerebellum can dynamically affect the basal ganglia. Cerebellar-induced dystonia is a clear example in which erratic cerebellar burst firing significantly alters normal basal ganglia activity causing dystonia. Further understanding of this impaired interaction will promote the development of novel therapeutic approaches to target defective networks in multiple pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanese A, Bhatia K, Bressman SB et al (2013) Phenomenology and classification of dystonia: a consensus update. Mov Disord 28(7):863–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381. doi:10.1146/annurev.ne.09.030186.002041

    Article  PubMed  Google Scholar 

  • Allen JC, Lindenmayer GE, Schwartz A (1970) An allosteric explanation for ouabain-induced time-dependent inhibition of sodium, potassium-adenosine triphosphatase. Arch Biochem Biophys 141(1):322–328

    Article  PubMed  Google Scholar 

  • Antal M, Beneduce BM, Regehr WG (2014) The substantia nigra conveys target-dependent excitatory and inhibitory outputs from the basal ganglia to the thalamus. J Neurosci 34(23):8032–8042

    Article  PubMed  PubMed Central  Google Scholar 

  • Bareš M, Apps R, Kikinis Z et al (2015) Proceedings of the workshop on cerebellum, basal ganglia and cortical connections unmasked in health and disorder held in Brno, Czech Republic, October 17th, 2013. Cerebellum 14(2):142–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Batini C, Compoint C, Buisseret-Delmas C et al (1992) Cerebellar nuclei and the nucleocortical projections in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry. J Comp Neurol 315(1):74–84. doi:10.1002/cne.903150106

    Article  PubMed  Google Scholar 

  • Bevan MD, Booth PA, Eaton SA et al (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 18(22):9438–9452

    PubMed  Google Scholar 

  • Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20(3):261–270. doi:10.1007/s11065-010-9143-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 107(18):8452–8456. doi:10.1073/pnas.1000496107

    Article  PubMed  PubMed Central  Google Scholar 

  • Bostan AC, Dum RP, Strick PL (2013) Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 17(5):241–254. doi:10.1016/j.tics.2013.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Brashear A, Dobyns WB, de Carvalho Aguiar P et al (2007) The phenotypic spectrum of rapid-onset dystonia–parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 130(3):828–835

    Article  PubMed  Google Scholar 

  • Brashear A, Cook JF, Hill DF et al (2012) Psychiatric disorders in rapid-onset dystonia-parkinsonism. Neurology 79(11):1168–1173

    Article  PubMed  PubMed Central  Google Scholar 

  • Bratus NV, Moroz VM (1978) Responses of cat cerebellar cortex neurons to stimulation of the caudate nucleus, globus pallidus and substantia nigra. Neirofiziologiia 10(4):375–384

    PubMed  Google Scholar 

  • Brown LL, Lorden JF (1989) Regional cerebral glucose utilization reveals widespread abnormalities in the motor system of the rat mutant dystonic. J Neurosci 9(11):4033–4041

    PubMed  Google Scholar 

  • y Cajal SR (1888) Estructura de los centros neviosos de las aves. Rev Trimest Histol Norm y Patol 1:1–10

    Google Scholar 

  • y Cajal SR (1889) Sur l’origine et la direction des prolongations nerveuses de la couche moleculaire du cervelet. Int Monatsschr Anat Physiol 6:158–174

    Google Scholar 

  • Calderon DP, Fremont R, Kraenzlin F et al (2011) The neural substrates of rapid-onset Dystonia-Parkinsonism. Nat Neurosci 14(3):357–365. doi:10.1038/nn.2753

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Fremont R, Arteaga-Bracho EE et al (2014) Short latency cerebellar modulation of the basal ganglia. Nat Neurosci 17(12):1767–1775. doi:10.1038/nn.3868

    Article  PubMed  PubMed Central  Google Scholar 

  • Chevalier G, Deniau JM (1982) Inhibitory nigral influence on cerebellar evoked responses in the rat ventromedial thalamic nucleus. Exp Brain Res 48(3):369–376

    Article  PubMed  Google Scholar 

  • Cohen AJ, Leckman JF (1992) Sensory phenomena associated with Gilles de la Tourette’s syndrome. J Clin Psychiatry 53(9):319–323

    PubMed  Google Scholar 

  • Coxe W, Snider R (1956) Some relationships of caudate nucleus to cerebellum. Fed Proc 15(1):42

    Google Scholar 

  • Dalton JC Jr (1861) On the cerebellum, as the centre of co-ordination of the voluntary movements. Am J Med Sci 41(81):83–88

    Article  Google Scholar 

  • de Carvalho Aguiar P, Sweadner KJ, Penniston JT et al (2004) Mutations in the Na+/K+-ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43(2):169–175. doi:10.1016/j.neuron.2004.06.028

    Article  PubMed  Google Scholar 

  • DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34(3):414–427

    PubMed  Google Scholar 

  • DeLong MR (1972) Activity of basal ganglia neurons during movement. Brain Res 40(1):127–135

    Article  PubMed  Google Scholar 

  • DeLong MR (1973) Putamen: activity of single units during slow and rapid arm movements. Science 179(4079):1240–1242

    Article  PubMed  Google Scholar 

  • DeLong MR (1983) The neurophysiologic basis of abnormal movements in basal ganglia disorders. Neurobehav Toxicol Teratol 5(6):611–616

    PubMed  Google Scholar 

  • Deniau JM, Kita H, Kitai ST. 1992. Patterns of termination of cerebellar and basal ganglia efferents in the rat thalamus. Strictly segregated and partly overlapping projections. Neuroscience letters 144: 202–6

    Google Scholar 

  • Dizon MJ, Khodakhah K (2011) The role of interneurons in shaping Purkinje cell responses in the cerebellar cortex. J Neurosci 31(29):10463–10473. doi:10.1523/JNEUROSCI.1350-11.2011

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobyns WB, Ozelius LJ, Kramer PL et al (1993) Rapid-onset dystonia-parkinsonism. Neurology 43(12):2596–2602

    Article  PubMed  Google Scholar 

  • Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12(7–8):961–974

    Article  PubMed  Google Scholar 

  • Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10(6):732–739

    Article  PubMed  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966a) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182(2):268–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966b) The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res 1(1):82–101

    PubMed  Google Scholar 

  • Eidelberg D, Moeller JR, Antonini A et al (1998) Functional brain networks in DYT1 dystonia. Ann Neurol 44(3):303–312. doi:10.1002/ana.410440304

    Article  PubMed  Google Scholar 

  • Ferreira C, Poretti A, Cohen J et al (2014) Novel TUBB4A mutations and expansion of the neuroimaging phenotype of hypomyelination with atrophy of the basal ganglia and cerebellum (H‐ABC). Am J Med Genet Part A 164(7):1802–1807

    Article  Google Scholar 

  • Fine EJ, Ionita CC, Lohr L (2002) The history of the development of the cerebellar examination. Semin Neurol 22(4):375–384. doi:10.1055/s-2002-36759

    Article  PubMed  Google Scholar 

  • Flourens MJP (1824) Recherches expérimentales sur les propriétés et les fonctions du système nerveux, dans les animaux vertébrés. Bailliere, Paris

    Google Scholar 

  • Fremont R, Calderon DP, Maleki S et al (2014) Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci 34(35):11723–11732. doi:10.1523/JNEUROSCI.1409-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Fremont R, Tewari A, Khodakhah K (2015) Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of rapid onset dystonia-parkinsonism. Neurobiol Dis 82:200–212. doi:10.1016/j.nbd.2015.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerfen CR, Young WS 3rd (1988) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res 460(1):161–167

    Article  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432

    Article  PubMed  Google Scholar 

  • Ghaemi M, Raethjen J, Hilker R et al (2002) Monosymptomatic resting tremor and Parkinson’s disease: a multitracer positron emission tomographic study. Mov Disord 17(4):782–788. doi:10.1002/mds.10125

    Article  PubMed  Google Scholar 

  • Ghez C, Thach W (2000) The cerebellum. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  • Guehl D, Pessiglione M, Francois C et al (2003) Tremor-related activity of neurons in the ‘motor’ thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. Eur J Neurosci 17(11):2388–2400

    Article  PubMed  Google Scholar 

  • Gulledge AT, Dasari S, Onoue K et al (2013) A sodium-pump-mediated after hyperpolarization in pyramidal neurons. J Neurosci 33(32):13025–13041. doi:10.1523/JNEUROSCI.0220-13.2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Hablitz JJ, Wray DV (1977) Modulation of cerebellar electrical and unit activity by low-frequency stimulation of caudate nucleus in chronic cats. Exp Neurol 55(1):289–294

    Article  PubMed  Google Scholar 

  • Heimburger RF (1967) Dentatectomy in the treatment of dyskinetic disorders. Confin Neurol 29(2):101–106

    Article  PubMed  Google Scholar 

  • Heimer L, Wilson R (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi centennial symposium proceedings. Raven Press, New York, pp 177–193

    Google Scholar 

  • Heiney SA, Kim J, Augustine GJ et al (2014) Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci 34(6):2321–2330. doi:10.1523/JNEUROSCI.4547-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinzen EL, Arzimanoglou A, Brashear A et al (2014) Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 13(5):503–514. doi:10.1016/S1474-4422(14)70011-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilker R, Voges J, Weisenbach S et al (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 24(1):7–16. doi:10.1097/01.WCB.0000092831.44769.09

    Article  PubMed  Google Scholar 

  • Hoshi E, Tremblay L, Feger J et al (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8(11):1491–1493. doi:10.1038/nn1544

    Article  PubMed  Google Scholar 

  • Ichinohe N, Mori F, Shoumura K (2000) A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res 880(1–2):191–197

    Article  PubMed  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Ito M, Yoshida M, Obata K, Kawai N, Udo M (1970) Inhibitory control of intracerebellar nuclei by the purkinje cell axons. Exp Brain Res 10(1):64–80

    Article  PubMed  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. doi:10.1136/jnnp.2007.131045

    Article  PubMed  Google Scholar 

  • Jansen J, Brodal A (1940) Experimental studies on the intrinsic fibers of the cerebellum II. The cortico-nuclear projection. Cerebellum 10(2):126–180; discussion 123–181

    Google Scholar 

  • Jeljeli M, Strazielle C, Caston J et al (2000) Effects of centrolateral or medial thalamic lesions on motor coordination and spatial orientation in rats. Neurosci Res 38(2):155–164

    Article  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10(10):3421–3438

    PubMed  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23(23):8432–8444

    PubMed  Google Scholar 

  • Krystkowiak P, Martinat P, Defebvre L et al (1998) Dystonia after striatopallidal and thalamic stroke: clinicoradiological correlations and pathophysiological mechanisms. J Neurol Neurosurg Psychiatry 65(5):703–708

    Article  PubMed  PubMed Central  Google Scholar 

  • Larson PS (2014) Deep brain stimulation for movement disorders. Neurotherapeutics 11(3):465–474. doi:10.1007/s13311-014-0274-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Larumbe R, Vaamonde J, Artieda J et al (1993) Reflex blepharospasm associated with bilateral basal ganglia lesion. Mov Disord 8(2):198–200. doi:10.1002/mds.870080215

    Article  PubMed  Google Scholar 

  • LeDoux MS, Lorden JF (1998) Abnormal cerebellar output in the genetically dystonic rat. Adv Neurol 78:63–78

    PubMed  Google Scholar 

  • Lenz FA, Tasker RR, Kwan HC et al (1988) Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3-6 Hz component of parkinsonian tremor. J Neurosci 8(3):754–764

    PubMed  Google Scholar 

  • Li CL, Parker LO (1969) Effect of dentate stimulation on neuronal activity in the globus pallidus. Exp Neurol 24(2):298–309

    Article  PubMed  Google Scholar 

  • Lisberger SG, Fuchs AF (1978) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41(3):733–763

    PubMed  Google Scholar 

  • Liu HG, Ma Y, Meng DW et al (2013) A rat model of hemidystonia induced by 3-nitropropionic acid. PLoS One 8(10):e79199. doi:10.1371/journal.pone.0079199

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohmann K, Klein C (2013) Genetics of dystonia: what’s known? What’s new? What’s next? Mov Disord 28(7):899–905. doi:10.1002/mds.25536

    Article  PubMed  Google Scholar 

  • Lohmann K, Wilcox RA, Winkler S et al (2013) Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol 73(4):537–545. doi:10.1002/ana.23829

    Article  PubMed  Google Scholar 

  • MacLeod NK, James TA (1984) Regulation of cerebello-cortical transmission in the rat ventromedial thalamic nucleus. Exp Brain Res 55(3):535–552

    PubMed  Google Scholar 

  • Manetto C, Lidsky T (1988) Striatal influences on paravermal cerebellar activity. Exp Brain Res 73(1):53–60

    Article  PubMed  Google Scholar 

  • Manni E, Petrosini L (2004) A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5(3):241–249. doi:10.1038/nrn1347

    Article  PubMed  Google Scholar 

  • Martinu K, Monchi O (2013) Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson’s disease: pathophysiology or compensation? Behav Neurosci 127(2):222–236. doi:10.1037/a0031226

    Article  PubMed  Google Scholar 

  • Medina JF (2011) The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Curr Opin Neurobiol 21(4):616–622. doi:10.1016/j.conb.2011.05.025

    Article  PubMed  PubMed Central  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31(2–3):236–250

    Article  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425

    Article  PubMed  Google Scholar 

  • Moers-Hornikx VM, Vles JS, Tan SK et al (2011) Cerebellar nuclei are activated by high-frequency stimulation of the subthalamic nucleus. Neurosci Lett 496(2):111–115. doi:10.1016/j.neulet.2011.03.094

    Article  PubMed  Google Scholar 

  • Moroz V, Bures J (1982) Cerebellar unit activity and the movement disruption induced by caudate stimulation in rats. Gen Physiol Biophys 1:71–84

    Google Scholar 

  • Moroz V, Bureš J (1984) Effects of lateralized reaching and cerebellar stimulation on unit activity of motor cortex and caudate nucleus in rats. Exp Neurol 84(1):47–57

    Article  PubMed  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43(2):111–117

    Article  PubMed  Google Scholar 

  • Narabayashi H, Maeda T, Yokochi F (1987) Long-term follow-up study of nucleus ventralis intermedius and ventrolateralis thalamotomy using a microelectrode technique in parkinsonism. Appl Neurophysiol 50(1–6):330–337

    PubMed  Google Scholar 

  • Nashold BS Jr, Slaughter DG (1969) Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg 31(2):172–186. doi:10.3171/jns.1969.31.2.0172

    Article  PubMed  Google Scholar 

  • Neychev VK, Fan X, Mitev VI et al (2008) The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain 131(Pt 9):2499–2509. doi:10.1093/brain/awn168

    Article  PubMed  PubMed Central  Google Scholar 

  • Neychev VK, Gross RE, Lehericy S et al (2011) The functional neuroanatomy of dystonia. Neurobiol Dis 42(2):185–201. doi:10.1016/j.nbd.2011.01.026

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieoullon A, Dusticier N (1980) Changes in dopamine release in caudate nuclei and substantia nigrae after electrical stimulation of the posterior interposate nucleus of cat cerebellum. Neurosci Lett 17(1–2):167–172

    Article  PubMed  Google Scholar 

  • Nieoullon A, Cheramy A, Glowinski J (1978) Release of dopamine in both caudate nuclei and both substantia nigrae in response to unilateral stimulation of cerebellar nuclei in the cat. Brain Res 148(1):143–152

    Article  PubMed  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer, Berlin

    Book  Google Scholar 

  • Palfi S, Ferrante RJ, Brouillet E et al (1996) Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J Neurosci 16(9):3019–3025

    PubMed  Google Scholar 

  • Paris Fox M, Williams TD (1968) Responses evoked in the cerebellar cortex by stimulation of the caudate nucleus in the cat. J Physiol 198(2):435–449

    Article  Google Scholar 

  • Peall KJ, Waite AJ, Blake DJ et al (2011) Psychiatric disorders, myoclonus dystonia, and the epsilon‐sarcoglycan gene: a systematic review. Mov Disord 26(10):1939–1942

    Article  PubMed  Google Scholar 

  • Perciavalle V, Berretta S, Li VG et al (1987) Basal ganglia influences on the cerebellum of the cat. Arch Ital Biol 125(1):29–35

    PubMed  Google Scholar 

  • Pizoli CE, Jinnah HA, Billingsley ML et al (2002) Abnormal cerebellar signaling induces dystonia in mice. J Neurosci 22(17):7825–7833

    PubMed  Google Scholar 

  • Puglisi F, Vanni V, Ponterio G et al (2013) Torsin A localization in the mouse cerebellar synaptic circuitry. PLoS One 8(6):e68063. doi:10.1371/journal.pone.0068063

    Article  PubMed  PubMed Central  Google Scholar 

  • Rascol O, Sabatini U, Fabre N et al (1997) The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain 120(Pt 1):103–110

    Article  PubMed  Google Scholar 

  • Ratcheson RA, Li CL (1969) Effect of dentate stimulation on neuronal activity in the caudate nucleus. Exp Neurol 25(2):268–281

    Article  PubMed  Google Scholar 

  • Rolando L (1828) Saggio sopra la vera struttura del cervello e sopra le funzioni del sistema nervoso, vol 1 and 2. Presso editore Pietro Marietti libraio in via di Po, Torino

    Google Scholar 

  • Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M. 1994. Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. The Journal of comparative neurology 345: 185–213. doi:10.1002/cne.903450204

    Google Scholar 

  • Sadnicka A, Hoffland BS, Bhatia KP et al (2012) The cerebellum in dystonia—help or hindrance? Clin Neurophysiol 123(1):65–70. doi:10.1016/j.clinph.2011.04.027

    Article  PubMed  Google Scholar 

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23(2):394–401

    Article  PubMed  Google Scholar 

  • Stacy MA (2007) Handbook of dystonia. Neurological disease and therapy, vol 90. Informa Healthcare, New York

    Google Scholar 

  • Starr PA, Turner RS, Rau G et al (2004) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Neurosurg Focus 17(1):E4

    Article  PubMed  Google Scholar 

  • Sutton AC, O’Connor KA, Pilitsis JG et al (2015) Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats. Brain Struct Funct 220(6):3595–3609. doi:10.1007/s00429-014-0876-8

    Article  PubMed  Google Scholar 

  • Sweney MT, Newcomb TM, Swoboda KJ (2015) The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism, CAPOS and beyond. Pediatr Neurol 52(1):56–64. doi:10.1016/j.pediatrneurol.2014.09.015

    Article  PubMed  Google Scholar 

  • Szentagothai J (1983) The modular architectonic principle of neural centers. Rev Physiol Biochem Pharmacol 98:11–61

    PubMed  Google Scholar 

  • Szentagothai J, Rajkovits K (1959) Ueber den ursprung der kletterfasern des kleinhirns. Z Anat Entwicklungsgesch 121(2):130–141

    Article  Google Scholar 

  • Thach WT (1968) Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol 31(5):785–797

    PubMed  Google Scholar 

  • Thach WT (1970) Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol 33(4):537–547

    PubMed  Google Scholar 

  • Thach W (1975) Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res 88(2):233–241

    Article  PubMed  Google Scholar 

  • Turgut M, Akalan N, Bertan V et al (1995) Acquired torticollis as the only presenting symptom in children with posterior fossa tumors. Childs Nerv Syst 11(2):86–88

    Article  PubMed  Google Scholar 

  • Ueki A, Uno M, Anderson M et al (1977) Monosynaptic inhibition of thalamic neurons produced by stimulation of the substantia nigra. Experientia 33(11):1480–1482

    Article  PubMed  Google Scholar 

  • Ulug AM, Vo A, Argyelan M et al (2011) Cerebellothalamocortical pathway abnormalities in torsinA DYT1 knock-in mice. Proc Natl Acad Sci U S A 108(16):6638–6643. doi:10.1073/pnas.1016445108

    Article  PubMed  PubMed Central  Google Scholar 

  • Uno M, Yoshida M (1975) Monosynaptic inhibition of thalamic neurons produced by stimulation of the pallidal nucleus in cats. Brain Res 99(2):377–380

    Article  PubMed  Google Scholar 

  • Uno M, Yoshida M, Hirota I (1970) The mode of cerebello-thalamic relay transmission investigated with intracellular recording from cells of the ventrolateral nucleus of cat’s thalamus. Exp Brain Res 10(2):121–139

    Article  PubMed  Google Scholar 

  • van der Salm SM, van der Meer JN, Nederveen AJ et al (2013) Functional MRI study of response inhibition in myoclonus dystonia. Exp Neurol 247:623–629. doi:10.1016/j.expneurol.2013.02.017

    Article  PubMed  Google Scholar 

  • van Gaalen J, Giunti P, van de Warrenburg BP (2011) Movement disorders in spinocerebellar ataxias. Mov Disord 26(5):792–800. doi:10.1002/mds.23584

    Article  PubMed  Google Scholar 

  • Vidailhet M, Vercueil L, Houeto JL et al (2005) Stimulation du Pallidum Interne dans la Dystonie. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352(5):459–467. doi:10.1056/NEJMoa042187

    Article  PubMed  Google Scholar 

  • Vonsattel JP, Keller C, Cortes Ramirez EP (2011) Huntington’s disease—neuropathology. Handb Clin Neurol 100:83–100. doi:10.1016/B978-0-444-52014-2.00004-5

    Article  PubMed  Google Scholar 

  • Voorn P, Vanderschuren LJ, Groenewegen HJ et al (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27(8):468–474. doi:10.1016/j.tins.2004.06.006

    Article  PubMed  Google Scholar 

  • Voskanian GR, Fanardzhian VV (1983) Cerebellar control of the activity of caudate nucleus neurons. Fiziol Zh SSSR Im I M Sechenova 69(11):1409–1416

    PubMed  Google Scholar 

  • Watabe-Uchida M, Zhu L, Ogawa SK et al (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74(5):858–873. doi:10.1016/j.neuron.2012.03.017

    Article  PubMed  Google Scholar 

  • Wichmann T, DeLong MR, Guridi J et al (2011) Milestones in research on the pathophysiology of Parkinson’s disease. Mov Disord 26(6):1032–1041. doi:10.1002/mds.23695

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Hallett M (2013) The cerebellum in Parkinson’s disease. Brain 136(Pt 3):696–709. doi:10.1093/brain/aws360

    Article  PubMed  Google Scholar 

  • Yamamoto T, Noda T, Miyata M et al (1984) Electrophysiological and morphological studies on thalamic neurons receiving entopedunculo- and cerebello-thalamic projections in the cat. Brain Res 301(2):231–242

    Article  PubMed  Google Scholar 

  • Yang J, Luo C, Song W et al (2014) Diffusion tensor imaging in blepharospasm and blepharospasm-oromandibular dystonia. J Neurol 261(7):1413–1424. doi:10.1007/s00415-014-7359-y

    Article  PubMed  Google Scholar 

  • Zadro I, Brinar VV, Barun B et al (2008) Cervical dystonia due to cerebellar stroke. Mov Disord 23(6):919–920. doi:10.1002/mds.21981

    Article  PubMed  Google Scholar 

  • Zervas NT, Horner FA, Pickren KS (1967) The treatment of dyskinesia by stereotxic dentatectomy. Confin Neurol 29(2):93–100

    Article  PubMed  Google Scholar 

  • Zhao Y, Sharma N, LeDoux MS (2011) The DYT1 carrier state increases energy demand in the olivocerebellar network. Neuroscience 177:183–194. doi:10.1016/j.neuroscience.2011.01.015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diany Paola Calderon M.D.,Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, C.H., Calderon, D.P., Khodakhah, K. (2016). Interactions Between the Basal Ganglia and the Cerebellum and Role in Neurological Disorders. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_7

Download citation

Publish with us

Policies and ethics