Cortico-Striatal, Cognitive-Motor Interactions Underlying Complex Movement Control Deficits

  • Aaron KucinskiEmail author
  • Martin Sarter
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)


The cognitive control of complex movement relies on intricate interactions between the basal ganglia and distinct cortical regions. Cholinergic-driven attention is a particularly vital cognitive component for guiding complex movements which require the detection and integration of external cues indicating, for example, dynamic surfaces, as well as interoceptive cues used to monitor gait, posture, and step placement. Reduced attention and loss of cortical acetylcholine in Parkinson’s Disease (PD) patients are associated with a groupof levodopa-unresponsive movement impairments such as postural instability, motor control deficits, and a propensity for falls. We developed an animal model, including a behavioral test system (The Michigan Complex Motor Control Task, MCMCT), for the assessment of complex movement and fall propensity in rats. The MCMCT was designed to tax the ability to rapidly correct movement errors while traversing dynamic surfaces (rotating square rods). Our findings indicated that rats with loss of cortical acetylcholine and dopamine terminals in the dorsomedial “associative” striatum suffered from deficiencies of complex movement control, including a high propensity for falls. We hypothesized that secondary to striatal dysfunction, attentional resources can no longer be recruited to compensate for diminished striatal control of complex movement, thereby “unmasking” impaired striatal control of movement and yielding falls. In addition, dopamine lesions that extended into the dorsolateral (sensorimotor) striatum caused falls triggered by long and frequent freezing episodes, modeling freezing of gait-associated falls. Using these lesion models, we elucidate how attentional control deficits and/or reduced motor vigor and impaired motor sequencing from striatal dopamine loss contribute to fall propensity in order to provide a detailed understanding of the cognitive-motor operations that guide complex movement.


Acetylcholine Dopamine Attentional control Parkinson’s disease Gait 



Supported by NINDS Grant P50NS091856 (Morris K. Udall Center for Excellence in Parkinson’s Disease Research).


  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375PubMedCrossRefGoogle Scholar
  2. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146PubMedCrossRefGoogle Scholar
  3. Allcock LM, Rowan EN, Steen IN, Wesnes K, Kenny RA, Burn DJ (2009) Impaired attention predicts falling in Parkinson’s disease. Parkinsonism Relat Disord 15(2):110–115. doi: 10.1016/j.parkreldis.2008.03.010 PubMedCrossRefGoogle Scholar
  4. Amboni M, Barone P, Hausdorff JM (2013) Cognitive contributions to gait and falls: evidence and implications. Mov Disord 28(11):1520–1533. doi: 10.1002/mds.25674 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Apostol G, Abi-Saab W, Kratochvil CJ et al (2012) Efficacy and safety of the novel alpha(4)beta(2) neuronal nicotinic receptor partial agonist ABT-089 in adults with attention-deficit/hyperactivity disorder: a randomized, double-blind, placebo-controlled crossover study. Psychopharmacology (Berl) 219(3):715–725. doi: 10.1007/s00213-011-2393-2 CrossRefGoogle Scholar
  6. Aracri P, Amadeo A, Pasini ME et al (2013) Regulation of glutamate release by heteromeric nicotinic receptors in layer V of the secondary motor region (Fr2) in the dorsomedial shoulder of prefrontal cortex in mouse. Synapse 67(6):338–357. doi: 10.1002/syn.21655 PubMedCrossRefGoogle Scholar
  7. Arneric SP, Holladay M, Williams M (2007) Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem Pharmacol 74(8):1092–1101. doi: 10.1016/j.bcp.2007.06.033 PubMedCrossRefGoogle Scholar
  8. Bain EE, Robieson W, Pritchett Y et al (2013) A randomized, double-blind, placebo-controlled phase 2 study of alpha4beta2 agonist ABT-894 in adults with ADHD. Neuropsychopharmacology 38(3):405–413. doi: 10.1038/npp.2012.194 PubMedCrossRefGoogle Scholar
  9. Balash Y, Peretz C, Leibovich G et al (2005) Falls in outpatients with Parkinson’s disease: frequency, impact and identifying factors. J Neurol 252(11):1310–1315. doi: 10.1007/s00415-005-0855-3 PubMedCrossRefGoogle Scholar
  10. Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35(1):48–69. doi: 10.1038/npp.2009.131 PubMedCrossRefGoogle Scholar
  11. Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199(1):43–52. doi: 10.1016/j.bbr.2008.10.034 PubMedCrossRefGoogle Scholar
  12. Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 27;24(43):9541–52Google Scholar
  13. Baunez C, Robbins TW (1999) Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat. Neuroscience 92(4):1343–1356PubMedCrossRefGoogle Scholar
  14. Bhutani N, Sureshbabu R, Farooqui AA, Behari M, Goyal V, Murthy A (2013) Queuing of concurrent movement plans by basal ganglia. J. Neurosci 12;33(24):9985-97. doi: 10.1523/JNEUROSCI.4934-12.2013Google Scholar
  15. Bohnen NI, Albin RL (2009) Cholinergic denervation occurs early in Parkinson disease. Neurology 73(4):256–257. doi: 10.1212/WNL.0b013e3181b0bd3d PubMedCrossRefGoogle Scholar
  16. Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221(2):564–573. doi: 10.1016/j.bbr.2009.12.048 PubMedCrossRefGoogle Scholar
  17. Bohnen NI, Kaufer DI, Ivanco LS et al (2003) Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 60(12):1745–1748. doi: 10.1001/archneur.60.12.1745 PubMedCrossRefGoogle Scholar
  18. Bohnen NI, Muller ML, Koeppe RA et al (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73(20):1670–1676. doi: 10.1212/WNL.0b013e3181c1ded6 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bohnen NI, Albin RL, Muller ML, Chou K (2011) Advances in therapeutic options for gait and balance in Parkinson’s disease. US Neurol 7(2):100–108PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bohnen NI, Albin RL, Muller ML et al (2015) Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson disease and evidence of interaction effects. JAMA Neurol 72(2):194–200. doi: 10.1001/jamaneurol.2014.2757 PubMedCrossRefGoogle Scholar
  21. Bosboom JL, Stoffers D, Wolters E (2004) Cognitive dysfunction and dementia in Parkinson’s disease. J Neural Transm 111(10–11):1303–1315. doi: 10.1007/s00702-004-0168-1 PubMedCrossRefGoogle Scholar
  22. Bridenbaugh SA, Kressig RW (2011) Laboratory review: the role of gait analysis in seniors’ mobility and fall prevention. Gerontology 57(3):256–264. doi: 10.1159/000322194 PubMedCrossRefGoogle Scholar
  23. Bucci DJ, Holland PC, Gallagher M (1998) Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J Neurosci 18(19):8038–8046PubMedGoogle Scholar
  24. Cameron IG, Watanabe M, Pari G, Munoz DP (2010) Executive impairment in Parkinson’s disease: response automaticity and task switching. Neuropsychologia 48(7):1948–1957. doi: 10.1016/j.neuropsychologia.2010.03.015 PubMedCrossRefGoogle Scholar
  25. Chee R, Murphy A, Danoudis M et al (2009) Gait freezing in Parkinson’s disease and the stride length sequence effect interaction. Brain 132(Pt 8):2151–2160. doi: 10.1093/brain/awp053 PubMedCrossRefGoogle Scholar
  26. Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13(7):277–280PubMedCrossRefGoogle Scholar
  27. Cole MH, Silburn PA, Wood JM et al (2011) Falls in Parkinson’s disease: evidence for altered stepping strategies on compliant surfaces. Parkinsonism Relat Disord 17(8):610–616. doi: 10.1016/j.parkreldis.2011.05.019 PubMedCrossRefGoogle Scholar
  28. Cools R, Barker RA, Sahakian BJ et al (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11(12):1136–1143PubMedCrossRefGoogle Scholar
  29. Cools R, Lewis SJ, Clark L et al (2007) L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32(1):180–189. doi: 10.1038/sj.npp.1301153 PubMedCrossRefGoogle Scholar
  30. Cowie D, Limousin P, Peters A et al (2012) Doorway-provoked freezing of gait in Parkinson’s disease. Mov Disord 27(4):492–499. doi: 10.1002/mds.23990 PubMedCrossRefGoogle Scholar
  31. Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28(7):771–784. doi: 10.1016/j.neubiorev.2004.09.006 PubMedCrossRefGoogle Scholar
  32. Darvas M, Palmiter RD (2009) Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc Natl Acad Sci U S A 106(34):14664–14669. doi: 10.1073/pnas.0907299106 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Decamp E, Schneider JS (2009) Interaction between nicotinic and dopaminergic therapies on cognition in a chronic Parkinson model. Brain Res 1262:109–114. doi: 10.1016/j.brainres.2009.01.028 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dellinger AM, Stevens JA (2006) The injury problem among older adults: mortality, morbidity and costs. J Safety Res 37(5):519–522. doi: 10.1016/j.jsr.2006.10.001 PubMedCrossRefGoogle Scholar
  35. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285PubMedCrossRefGoogle Scholar
  36. Devan BD, McDonald RJ, White NM (1999) Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis. Behav Brain Res 100(1-2):5–14Google Scholar
  37. Dezfouli A, Balleine BW (2012) Habits, action sequences and reinforcement learning. Eur J Neurosci 35(7):1036–1051. doi: 10.1111/j.1460-9568.2012.08050.x PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dirnberger G, Jahanshahi M (2013) Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol 7(2):193–224. doi: 10.1111/jnp.12028 PubMedCrossRefGoogle Scholar
  39. Domenger D, Schwarting RK (2008) Effects of neostriatal 6-OHDA lesion on performance in a rat sequential reaction time task. Neurosci Lett 444(3):212–216. doi: 10.1016/j.neulet.2008.08.048 PubMedCrossRefGoogle Scholar
  40. Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244(1):2–8PubMedCrossRefGoogle Scholar
  41. Fasano A, Plotnik M, Bove F et al (2012) The neurobiology of falls. Neurol Sci 33(6):1215–1223. doi: 10.1007/s10072-012-1126-6 PubMedCrossRefGoogle Scholar
  42. Gerfen CR, Engber TM, Mahan LC et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432PubMedCrossRefGoogle Scholar
  43. Giladi N, Hausdorff JM (2006) The role of mental function in the pathogenesis of freezing of gait in Parkinson’s disease. J Neurol Sci 248(1–2):173–176. doi: 10.1016/j.jns.2006.05.015 PubMedCrossRefGoogle Scholar
  44. Grimbergen YA, Munneke M, Bloem BR (2004) Falls in Parkinson’s disease. Curr Opin Neurol 17(4):405–415PubMedCrossRefGoogle Scholar
  45. Guillem K, Bloem B, Poorthuis RB et al (2011) Nicotinic acetylcholine receptor beta2 subunits in the medial prefrontal cortex control attention. Science 333(6044):888–891. doi: 10.1126/science.1207079 PubMedCrossRefGoogle Scholar
  46. Guthrie M, Leblois A, Garenne A, Boraud T (2013) Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. J Neurophysiol 109(12):3025-40. doi: 10.1152/jn.00026.2013Google Scholar
  47. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382PubMedGoogle Scholar
  48. Hallett M (2008) The intrinsic and extrinsic aspects of freezing of gait. Mov Disord 23(Suppl 2):S439–S443. doi: 10.1002/mds.21836 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Haruno M, Kawato M (2006) Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning. Neural Netw 19(8):1242–1254. doi: 10.1016/j.neunet.2006.06.007 PubMedCrossRefGoogle Scholar
  50. Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36(1):52–73. doi: 10.1038/npp.2010.104 PubMedCrossRefGoogle Scholar
  51. Hauber W, Schmidt WJ (1994) Differential effects of lesions of the dorsomedial and dorsolateral caudate-putamen on reaction time performance in rats. Behav Brain Res 60(2):211–215PubMedCrossRefGoogle Scholar
  52. Hausdorff JM, Doniger GM, Springer S, Yogev G, Simon ES, Giladi N (2006) A common cognitive profile in elderly fallers and in patients with Parkinson’s disease: the prominence of impaired executive function and attention. Exp Aging Res 32(4):411–429. doi: 10.1080/03610730600875817 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hikosaka O, Isoda M (2010) Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci 14(4):154–161. doi: 10.1016/j.tics.2010.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Holtzer R, Friedman R, Lipton RB et al (2007) The relationship between specific cognitive functions and falls in aging. Neuropsychology 21(5):540–548. doi: 10.1037/0894-4105.21.5.540 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Howe WM, Ji J, Parikh V et al (2010) Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35(6):1391–1401. doi: 10.1038/npp.2010.9 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Howe WM, Berry AS, Francois J et al (2013) Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci 33(20):8742–8752PubMedPubMedCentralCrossRefGoogle Scholar
  57. Huang LZ, Campos C, Ly J et al (2011) Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned Parkinsonian rats. Neuropharmacology 60(6):861–868. doi: 10.1016/j.neuropharm.2010.12.032 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huot P, Johnston TH, Koprich JB et al (2013) The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 65(1):171–222. doi: 10.1124/pr.111.005678 PubMedCrossRefGoogle Scholar
  59. Iravani MM, McCreary AC, Jenner P (2012) Striatal plasticity in Parkinson’s disease and L-dopa induced dyskinesia. Parkinsonism Relat Disord 18(Suppl 1):S123–S125. doi: 10.1016/S1353-8020(11)70038-4 PubMedCrossRefGoogle Scholar
  60. Kim TI, McCall JG, Jung YH et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129):211–216. doi: 10.1126/science.1232437 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Koller WC, Glatt S, Vetere-Overfield B et al (1989) Falls and Parkinson’s disease. Clin Neuropharmacol 12(2):98–105PubMedCrossRefGoogle Scholar
  62. Kucinski A, Sarter M (2015) Modeling Parkinson’s disease falls associated with brainstem cholinergic systems decline. Behav Neurosci 129(2):96–104. doi: 10.1037/bne0000048 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kucinski A, Paolone G, Bradshaw M et al (2013) Modeling fall propensity in Parkinson’s disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation. J Neurosci 33(42):16522–16539. doi: 10.1523/JNEUROSCI.2545-13.2013 PubMedCrossRefGoogle Scholar
  64. Kucinski A, Albin RL, Lustig C et al (2015) Modeling falls in Parkinson’s disease: slow gait, freezing episodes and falls in rats with extensive striatal dopamine loss. Behav Brain Res 282:155–164. doi: 10.1016/j.bbr.2015.01.012 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kurz I, Berezowski E, Melzer I (2013) Frontal plane instability following rapid voluntary stepping: effects of age and a concurrent cognitive task. J Gerontol A Biol Sci Med Sci 68(11):1402–1408. doi: 10.1093/gerona/glt040 PubMedCrossRefGoogle Scholar
  66. Lambe EK, Picciotto MR, Aghajanian GK (2003) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28(2):216–225. doi: 10.1038/sj.npp.1300032 PubMedCrossRefGoogle Scholar
  67. LaPointe LL, Stierwalt JA, Maitland CG (2010) Talking while walking: cognitive loading and injurious falls in Parkinson’s disease. Int J Speech Lang Pathol 12(5):455–459. doi: 10.3109/17549507.2010.486446 PubMedCrossRefGoogle Scholar
  68. Lex B, Hauber W (2010) The role of dopamine in the prelimbic cortex and the dorsomedial striatum in instrumental conditioning. Cereb Cortex 20(4):873–883. doi: 10.1093/cercor/bhp151 PubMedCrossRefGoogle Scholar
  69. Logan GD, Van Zandt T, Verbruggen F et al (2014) On the ability to inhibit thought and action: general and special theories of an act of control. Psychol Rev 121(1):66–95. doi: 10.1037/a0035230 PubMedCrossRefGoogle Scholar
  70. Luiten PG, Gaykema RP, Traber J et al (1987) Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin. Brain Res 413(2):229–250, doi:0006-8993(87)91014-6.Google Scholar
  71. Lustig C, Matell MS, Meck WH (2005) Not “just” a coincidence: frontal–striatal interactions in working memory and interval timing. Memory.13(3–4):441–8Google Scholar
  72. Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59(3):625–640PubMedCrossRefGoogle Scholar
  73. Mailly P, Aliane V, Groenewegen HJ et al (2013) The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci 33(13):5718–5727. doi: 10.1523/JNEUROSCI.5248-12.2013 PubMedCrossRefGoogle Scholar
  74. Marchese R, Bove M, Abbruzzese G (2003) Effect of cognitive and motor tasks on postural stability in Parkinson’s disease: a posturographic study. Mov Disord 18(6):652–658. doi: 10.1002/mds.10418 PubMedCrossRefGoogle Scholar
  75. Matsumoto N, Hanakawa T, Maki S et al (1999) Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J Neurophysiol 82(2):978–998PubMedGoogle Scholar
  76. Mazzoni P, Hristova A, Krakauer JW (2007) Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci 27(27):7105–7116. doi: 10.1523/JNEUROSCI.0264-07.2007 PubMedCrossRefGoogle Scholar
  77. McCall JG, Kim TI, Shin G et al (2013) Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 8(12):2413–2428. doi: 10.1038/nprot.2013.158 PubMedPubMedCentralCrossRefGoogle Scholar
  78. McGaughy J, Kaiser T, Sarter M (1996) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav Neurosci 110(2):247–265PubMedCrossRefGoogle Scholar
  79. McNeely ME, Earhart GM (2013) Medication and subthalamic nucleus deep brain stimulation similarly improve balance and complex gait in Parkinson disease. Parkinsonism Relat Disord 19(1):86–91. doi: 10.1016/j.parkreldis.2012.07.013 PubMedCrossRefGoogle Scholar
  80. McNeely ME, Duncan RP, Earhart GM (2012) Medication improves balance and complex gait performance in Parkinson disease. Gait Posture 36(1):144–148. doi: 10.1016/j.gaitpost.2012.02.009 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Michalowska M, Fiszer U, Krygowska-Wajs A, Owczarek K (2005) Falls in Parkinson’s disease. Causes and impact on patients’ quality of life. Funct Neurol 20(4):163–168PubMedGoogle Scholar
  82. Monsell S (2003) Task switching. Trends Cogn Sci 7(3):134–140PubMedCrossRefGoogle Scholar
  83. Morris ME, Iansek R, Matyas TA, Summers JJ (1994) The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 117(Pt 5):1169–1181PubMedCrossRefGoogle Scholar
  84. Muir JL, Dunnett SB, Robbins TW et al (1992) Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task. Exp Brain Res 89(3):611–622PubMedCrossRefGoogle Scholar
  85. Nagamatsu LS, Munkacsy M, Liu-Ambrose T et al (2013) Altered visual-spatial attention to task-irrelevant information is associated with falls risk in older adults. Neuropsychologia 51(14):3025–3032. doi: 10.1016/j.neuropsychologia.2013.10.002 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Nakano I, Hirano A (1984) Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol 15(5):415–418. doi: 10.1002/ana.410150503 PubMedCrossRefGoogle Scholar
  87. Nieuwboer A, Feys P, de Weerdt W et al (1997) Is using a cue the clue to the treatment of freezing in Parkinson’s disease? Physiother Res Int 2(3):125–132; discussion 124–133PubMedCrossRefGoogle Scholar
  88. Ostlund SB, Winterbauer NE, Balleine BW (2009) Evidence of action sequence chunking in goal-directed instrumental conditioning and its dependence on the dorsomedial prefrontal cortex. J Neurosci 29(25):8280–8287. doi: 10.1523/JNEUROSCI.1176-09.2009 PubMedCrossRefGoogle Scholar
  89. Paolone G, Angelakos CC, Meyer PJ et al (2013) Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. J Neurosci 33(19):8321–8335. doi: 10.1523/JNEUROSCI.0709-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Parikh V, Kozak R, Martinez V et al (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56(1):141–154. doi:S0896-6273(07)00674-5Google Scholar
  91. Parikh V, Man K, Decker MW et al (2008) Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. J Neurosci 28(14):3769–3780. doi: 10.1523/JNEUROSCI.5251-07.2008 PubMedCrossRefGoogle Scholar
  92. Parikh V, Ji J, Decker MW, Sarter M (2010) Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 30(9):3518–3530. doi: 10.1523/JNEUROSCI.5712-09.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pickel VM, Beckley SC, Joh TH, Reis DJ (1981) Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res 30;225(2):373–85Google Scholar
  94. Plotnik M, Giladi N, Dagan Y et al (2011) Postural instability and fall risk in Parkinson’s disease: impaired dual tasking, pacing, and bilateral coordination of gait during the “ON” medication state. Exp Brain Res 210(3–4):529–538. doi: 10.1007/s00221-011-2551-0 PubMedCrossRefGoogle Scholar
  95. Plotnik M, Giladi N, Hausdorff JM (2012) Is freezing of gait in Parkinson’s disease a result of multiple gait impairments? Implications for treatment. Parkinsons Dis 2012:459321. doi: 10.1155/2012/459321 PubMedPubMedCentralGoogle Scholar
  96. Possin KL, Kang GA, Guo C et al (2013) Rivastigmine is associated with restoration of left frontal brain activity in Parkinson’s disease. Mov Disord 28(10):1384–1390. doi: 10.1002/mds.25575 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Quik M, O’Leary K, Tanner CM (2008) Nicotine and Parkinson’s disease: implications for therapy. Mov Disord 23(12):1641–1652. doi: 10.1002/mds.21900 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Redgrave P, Rodriguez M, Smith Y et al (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11(11):760–772. doi: 10.1038/nrn2915 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rogers RD, Baunez C, Everitt BJ et al (2001) Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behav Neurosci 115(4):799–811PubMedCrossRefGoogle Scholar
  100. Samejima K, Doya K (2007) Multiple representations of belief states and action values in corticobasal ganglia loops. Ann N Y Acad Sci 1104:213–228. doi: 10.1196/annals.1390.024 PubMedCrossRefGoogle Scholar
  101. Schneider JS, Tinker JP, Van Velson M et al (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 290(2):731–739PubMedGoogle Scholar
  102. Schneider JS, Tinker JP, Menzaghi F et al (2003) The subtype-selective nicotinic acetylcholine receptor agonist SIB-1553A improves both attention and memory components of a spatial working memory task in chronic low dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J Pharmacol Exp Ther 306(1):401–406. doi: 10.1124/jpet.103.051912 PubMedCrossRefGoogle Scholar
  103. Schneider JS, Pioli EY, Jianzhong Y et al (2013) Levodopa improves motor deficits but can further disrupt cognition in a macaque Parkinson model. Mov Disord 28(5):663–667. doi: 10.1002/mds.25258 PubMedCrossRefGoogle Scholar
  104. Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1(3):199–207. doi: 10.1038/35044563 PubMedCrossRefGoogle Scholar
  105. Sethi K (2008) Levodopa unresponsive symptoms in Parkinson disease. Mov Disord 23(Suppl 3):S521–S533. doi: 10.1002/mds.22049 PubMedCrossRefGoogle Scholar
  106. Shimada H, Hirano S, Shinotoh H et al (2009) Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73(4):273–278. doi: 10.1212/WNL.0b013e3181ab2b58 PubMedCrossRefGoogle Scholar
  107. Shine JM, Naismith SL, Lewis SJ (2011) The pathophysiological mechanisms underlying freezing of gait in Parkinson’s disease. J Clin Neurosci 18(9):1154–1157. doi: 10.1016/j.jocn.2011.02.007 PubMedCrossRefGoogle Scholar
  108. Spildooren J, Vercruysse S, Desloovere K et al (2010) Freezing of gait in Parkinson’s disease: the impact of dual-tasking and turning. Mov Disord 25(15):2563–2570. doi: 10.1002/mds.23327 PubMedCrossRefGoogle Scholar
  109. St Peters M, Demeter E, Lustig C et al (2011) Enhanced control of attention by stimulating mesolimbic-corticopetal cholinergic circuitry. J Neurosci 31(26):9760–9771. doi: 10.1523/JNEUROSCI.1902-11.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Stark E, Koos T, Buzsaki G (2012) Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J Neurophysiol 108(1):349–363. doi: 10.1152/jn.00153.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Strafella AP, Ko JH, Grant J, Fraraccio M, Monchi O (2005) Corticostriatal functional interactions in Parkinson’s disease: A rtms/[11C]raclopride PET study. Eur J Neurosci 22(11):2946–52Google Scholar
  112. Tombu M, Jolicoeur P (2003) A central capacity sharing model of dual-task performance. J Exp Psychol Hum Percept Perform 29(1):3–18PubMedCrossRefGoogle Scholar
  113. Turchi J, Sarter M (1997) Cortical acetylcholine and processing capacity: effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. Brain Res Cogn Brain Res 6(2):147–158PubMedCrossRefGoogle Scholar
  114. Uemura K, Yamada M, Nagai K et al (2012) Fear of falling is associated with prolonged anticipatory postural adjustment during gait initiation under dual-task conditions in older adults. Gait Posture 35(2):282–286. doi: 10.1016/j.gaitpost.2011.09.100 PubMedCrossRefGoogle Scholar
  115. Voorn P, Vanderschuren LJ, Groenewegen HJ et al (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27(8):468–474. doi: 10.1016/j.tins.2004.06.006 PubMedCrossRefGoogle Scholar
  116. Wall NR, De La Parra M, Callaway EM, Kreitzer AC (2013) Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 24;79(2):347-60. doi: 10.1016/j.neuron.2013.05.014
  117. Winter DA, Patla AE, Frank JS et al (1990) Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther 70(6):340–347PubMedGoogle Scholar
  118. Wood BH, Bilclough JA, Bowron A et al (2002) Incidence and prediction of falls in Parkinson’s disease: a prospective multidisciplinary study. J Neurol Neurosurg Psychiatry 72(6):721–725PubMedPubMedCentralCrossRefGoogle Scholar
  119. Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16(1):1–14PubMedCrossRefGoogle Scholar
  120. Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128(Pt 10):2250–2259. doi: 10.1093/brain/awh569 PubMedCrossRefGoogle Scholar
  121. Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19(1):181–189PubMedCrossRefGoogle Scholar
  122. Yin HH (2014) Action, time and the basal ganglia. Philos Trans R Soc Lond B Biol Sci 369(1637): 20120473. doi: 10.1098/rstb.2012.0473
  123. Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23(3):329–342. doi: 10.1002/mds.21720; quiz 472PubMedCrossRefGoogle Scholar
  124. Yogev-Seligmann G, Giladi N, Gruendlinger L et al (2013) The contribution of postural control and bilateral coordination to the impact of dual tasking on gait. Exp Brain Res 226(1):81–93. doi: 10.1007/s00221-013-3412-9 PubMedCrossRefGoogle Scholar
  125. Zaborszky L, Alheid GF, Beinfeld MC et al (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14(2):427–453PubMedCrossRefGoogle Scholar
  126. Zaborszky L, Csordas A, Mosca K et al (2015) Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex 25(1):118–137PubMedCrossRefGoogle Scholar
  127. Zhang D, Mallela A, Sohn D et al (2013) Nicotinic receptor agonists reduce L-DOPA-induced dyskinesias in a monkey model of Parkinson’s disease. J Pharmacol Exp Ther 347(1):225–234. doi: 10.1124/jpet.113.207639 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Psychology and Neuroscience ProgramUniversity of MichiganAnn ArborUSA

Personalised recommendations