Skip to main content

Cortico-Striatal, Cognitive-Motor Interactions Underlying Complex Movement Control Deficits

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

The cognitive control of complex movement relies on intricate interactions between the basal ganglia and distinct cortical regions. Cholinergic-driven attention is a particularly vital cognitive component for guiding complex movements which require the detection and integration of external cues indicating, for example, dynamic surfaces, as well as interoceptive cues used to monitor gait, posture, and step placement. Reduced attention and loss of cortical acetylcholine in Parkinson’s Disease (PD) patients are associated with a groupof levodopa-unresponsive movement impairments such as postural instability, motor control deficits, and a propensity for falls. We developed an animal model, including a behavioral test system (The Michigan Complex Motor Control Task, MCMCT), for the assessment of complex movement and fall propensity in rats. The MCMCT was designed to tax the ability to rapidly correct movement errors while traversing dynamic surfaces (rotating square rods). Our findings indicated that rats with loss of cortical acetylcholine and dopamine terminals in the dorsomedial “associative” striatum suffered from deficiencies of complex movement control, including a high propensity for falls. We hypothesized that secondary to striatal dysfunction, attentional resources can no longer be recruited to compensate for diminished striatal control of complex movement, thereby “unmasking” impaired striatal control of movement and yielding falls. In addition, dopamine lesions that extended into the dorsolateral (sensorimotor) striatum caused falls triggered by long and frequent freezing episodes, modeling freezing of gait-associated falls. Using these lesion models, we elucidate how attentional control deficits and/or reduced motor vigor and impaired motor sequencing from striatal dopamine loss contribute to fall propensity in order to provide a detailed understanding of the cognitive-motor operations that guide complex movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  PubMed  Google Scholar 

  • Allcock LM, Rowan EN, Steen IN, Wesnes K, Kenny RA, Burn DJ (2009) Impaired attention predicts falling in Parkinson’s disease. Parkinsonism Relat Disord 15(2):110–115. doi:10.1016/j.parkreldis.2008.03.010

    Article  PubMed  Google Scholar 

  • Amboni M, Barone P, Hausdorff JM (2013) Cognitive contributions to gait and falls: evidence and implications. Mov Disord 28(11):1520–1533. doi:10.1002/mds.25674

    Article  PubMed  PubMed Central  Google Scholar 

  • Apostol G, Abi-Saab W, Kratochvil CJ et al (2012) Efficacy and safety of the novel alpha(4)beta(2) neuronal nicotinic receptor partial agonist ABT-089 in adults with attention-deficit/hyperactivity disorder: a randomized, double-blind, placebo-controlled crossover study. Psychopharmacology (Berl) 219(3):715–725. doi:10.1007/s00213-011-2393-2

    Article  Google Scholar 

  • Aracri P, Amadeo A, Pasini ME et al (2013) Regulation of glutamate release by heteromeric nicotinic receptors in layer V of the secondary motor region (Fr2) in the dorsomedial shoulder of prefrontal cortex in mouse. Synapse 67(6):338–357. doi:10.1002/syn.21655

    Article  PubMed  Google Scholar 

  • Arneric SP, Holladay M, Williams M (2007) Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem Pharmacol 74(8):1092–1101. doi:10.1016/j.bcp.2007.06.033

    Article  PubMed  Google Scholar 

  • Bain EE, Robieson W, Pritchett Y et al (2013) A randomized, double-blind, placebo-controlled phase 2 study of alpha4beta2 agonist ABT-894 in adults with ADHD. Neuropsychopharmacology 38(3):405–413. doi:10.1038/npp.2012.194

    Article  PubMed  Google Scholar 

  • Balash Y, Peretz C, Leibovich G et al (2005) Falls in outpatients with Parkinson’s disease: frequency, impact and identifying factors. J Neurol 252(11):1310–1315. doi:10.1007/s00415-005-0855-3

    Article  PubMed  Google Scholar 

  • Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35(1):48–69. doi:10.1038/npp.2009.131

    Article  PubMed  Google Scholar 

  • Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199(1):43–52. doi:10.1016/j.bbr.2008.10.034

    Article  PubMed  Google Scholar 

  • Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 27;24(43):9541–52

    Google Scholar 

  • Baunez C, Robbins TW (1999) Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat. Neuroscience 92(4):1343–1356

    Article  PubMed  Google Scholar 

  • Bhutani N, Sureshbabu R, Farooqui AA, Behari M, Goyal V, Murthy A (2013) Queuing of concurrent movement plans by basal ganglia. J. Neurosci 12;33(24):9985-97. doi: 10.1523/JNEUROSCI.4934-12.2013

    Google Scholar 

  • Bohnen NI, Albin RL (2009) Cholinergic denervation occurs early in Parkinson disease. Neurology 73(4):256–257. doi:10.1212/WNL.0b013e3181b0bd3d

    Article  PubMed  Google Scholar 

  • Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221(2):564–573. doi:10.1016/j.bbr.2009.12.048

    Article  PubMed  Google Scholar 

  • Bohnen NI, Kaufer DI, Ivanco LS et al (2003) Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 60(12):1745–1748. doi:10.1001/archneur.60.12.1745

    Article  PubMed  Google Scholar 

  • Bohnen NI, Muller ML, Koeppe RA et al (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73(20):1670–1676. doi:10.1212/WNL.0b013e3181c1ded6

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohnen NI, Albin RL, Muller ML, Chou K (2011) Advances in therapeutic options for gait and balance in Parkinson’s disease. US Neurol 7(2):100–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohnen NI, Albin RL, Muller ML et al (2015) Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson disease and evidence of interaction effects. JAMA Neurol 72(2):194–200. doi:10.1001/jamaneurol.2014.2757

    Article  PubMed  Google Scholar 

  • Bosboom JL, Stoffers D, Wolters E (2004) Cognitive dysfunction and dementia in Parkinson’s disease. J Neural Transm 111(10–11):1303–1315. doi:10.1007/s00702-004-0168-1

    Article  PubMed  Google Scholar 

  • Bridenbaugh SA, Kressig RW (2011) Laboratory review: the role of gait analysis in seniors’ mobility and fall prevention. Gerontology 57(3):256–264. doi:10.1159/000322194

    Article  PubMed  Google Scholar 

  • Bucci DJ, Holland PC, Gallagher M (1998) Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J Neurosci 18(19):8038–8046

    PubMed  Google Scholar 

  • Cameron IG, Watanabe M, Pari G, Munoz DP (2010) Executive impairment in Parkinson’s disease: response automaticity and task switching. Neuropsychologia 48(7):1948–1957. doi:10.1016/j.neuropsychologia.2010.03.015

    Article  PubMed  Google Scholar 

  • Chee R, Murphy A, Danoudis M et al (2009) Gait freezing in Parkinson’s disease and the stride length sequence effect interaction. Brain 132(Pt 8):2151–2160. doi:10.1093/brain/awp053

    Article  PubMed  Google Scholar 

  • Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13(7):277–280

    Article  PubMed  Google Scholar 

  • Cole MH, Silburn PA, Wood JM et al (2011) Falls in Parkinson’s disease: evidence for altered stepping strategies on compliant surfaces. Parkinsonism Relat Disord 17(8):610–616. doi:10.1016/j.parkreldis.2011.05.019

    Article  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ et al (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11(12):1136–1143

    Article  PubMed  Google Scholar 

  • Cools R, Lewis SJ, Clark L et al (2007) L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32(1):180–189. doi:10.1038/sj.npp.1301153

    Article  PubMed  Google Scholar 

  • Cowie D, Limousin P, Peters A et al (2012) Doorway-provoked freezing of gait in Parkinson’s disease. Mov Disord 27(4):492–499. doi:10.1002/mds.23990

    Article  PubMed  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28(7):771–784. doi:10.1016/j.neubiorev.2004.09.006

    Article  PubMed  Google Scholar 

  • Darvas M, Palmiter RD (2009) Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc Natl Acad Sci U S A 106(34):14664–14669. doi:10.1073/pnas.0907299106

    Article  PubMed  PubMed Central  Google Scholar 

  • Decamp E, Schneider JS (2009) Interaction between nicotinic and dopaminergic therapies on cognition in a chronic Parkinson model. Brain Res 1262:109–114. doi:10.1016/j.brainres.2009.01.028

    Article  PubMed  PubMed Central  Google Scholar 

  • Dellinger AM, Stevens JA (2006) The injury problem among older adults: mortality, morbidity and costs. J Safety Res 37(5):519–522. doi:10.1016/j.jsr.2006.10.001

    Article  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    Article  PubMed  Google Scholar 

  • Devan BD, McDonald RJ, White NM (1999) Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis. Behav Brain Res 100(1-2):5–14

    Google Scholar 

  • Dezfouli A, Balleine BW (2012) Habits, action sequences and reinforcement learning. Eur J Neurosci 35(7):1036–1051. doi:10.1111/j.1460-9568.2012.08050.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirnberger G, Jahanshahi M (2013) Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol 7(2):193–224. doi:10.1111/jnp.12028

    Article  PubMed  Google Scholar 

  • Domenger D, Schwarting RK (2008) Effects of neostriatal 6-OHDA lesion on performance in a rat sequential reaction time task. Neurosci Lett 444(3):212–216. doi:10.1016/j.neulet.2008.08.048

    Article  PubMed  Google Scholar 

  • Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244(1):2–8

    Article  PubMed  Google Scholar 

  • Fasano A, Plotnik M, Bove F et al (2012) The neurobiology of falls. Neurol Sci 33(6):1215–1223. doi:10.1007/s10072-012-1126-6

    Article  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432

    Article  PubMed  Google Scholar 

  • Giladi N, Hausdorff JM (2006) The role of mental function in the pathogenesis of freezing of gait in Parkinson’s disease. J Neurol Sci 248(1–2):173–176. doi:10.1016/j.jns.2006.05.015

    Article  PubMed  Google Scholar 

  • Grimbergen YA, Munneke M, Bloem BR (2004) Falls in Parkinson’s disease. Curr Opin Neurol 17(4):405–415

    Article  PubMed  Google Scholar 

  • Guillem K, Bloem B, Poorthuis RB et al (2011) Nicotinic acetylcholine receptor beta2 subunits in the medial prefrontal cortex control attention. Science 333(6044):888–891. doi:10.1126/science.1207079

    Article  PubMed  Google Scholar 

  • Guthrie M, Leblois A, Garenne A, Boraud T (2013) Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. J Neurophysiol 109(12):3025-40. doi: 10.1152/jn.00026.2013

    Google Scholar 

  • Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382

    PubMed  Google Scholar 

  • Hallett M (2008) The intrinsic and extrinsic aspects of freezing of gait. Mov Disord 23(Suppl 2):S439–S443. doi:10.1002/mds.21836

    Article  PubMed  PubMed Central  Google Scholar 

  • Haruno M, Kawato M (2006) Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning. Neural Netw 19(8):1242–1254. doi:10.1016/j.neunet.2006.06.007

    Article  PubMed  Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36(1):52–73. doi:10.1038/npp.2010.104

    Article  PubMed  Google Scholar 

  • Hauber W, Schmidt WJ (1994) Differential effects of lesions of the dorsomedial and dorsolateral caudate-putamen on reaction time performance in rats. Behav Brain Res 60(2):211–215

    Article  PubMed  Google Scholar 

  • Hausdorff JM, Doniger GM, Springer S, Yogev G, Simon ES, Giladi N (2006) A common cognitive profile in elderly fallers and in patients with Parkinson’s disease: the prominence of impaired executive function and attention. Exp Aging Res 32(4):411–429. doi:10.1080/03610730600875817

    Article  PubMed  PubMed Central  Google Scholar 

  • Hikosaka O, Isoda M (2010) Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci 14(4):154–161. doi:10.1016/j.tics.2010.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Holtzer R, Friedman R, Lipton RB et al (2007) The relationship between specific cognitive functions and falls in aging. Neuropsychology 21(5):540–548. doi:10.1037/0894-4105.21.5.540

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe WM, Ji J, Parikh V et al (2010) Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35(6):1391–1401. doi:10.1038/npp.2010.9

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe WM, Berry AS, Francois J et al (2013) Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci 33(20):8742–8752

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang LZ, Campos C, Ly J et al (2011) Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned Parkinsonian rats. Neuropharmacology 60(6):861–868. doi:10.1016/j.neuropharm.2010.12.032

    Article  PubMed  PubMed Central  Google Scholar 

  • Huot P, Johnston TH, Koprich JB et al (2013) The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 65(1):171–222. doi:10.1124/pr.111.005678

    Article  PubMed  Google Scholar 

  • Iravani MM, McCreary AC, Jenner P (2012) Striatal plasticity in Parkinson’s disease and L-dopa induced dyskinesia. Parkinsonism Relat Disord 18(Suppl 1):S123–S125. doi:10.1016/S1353-8020(11)70038-4

    Article  PubMed  Google Scholar 

  • Kim TI, McCall JG, Jung YH et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129):211–216. doi:10.1126/science.1232437

    Article  PubMed  PubMed Central  Google Scholar 

  • Koller WC, Glatt S, Vetere-Overfield B et al (1989) Falls and Parkinson’s disease. Clin Neuropharmacol 12(2):98–105

    Article  PubMed  Google Scholar 

  • Kucinski A, Sarter M (2015) Modeling Parkinson’s disease falls associated with brainstem cholinergic systems decline. Behav Neurosci 129(2):96–104. doi:10.1037/bne0000048

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucinski A, Paolone G, Bradshaw M et al (2013) Modeling fall propensity in Parkinson’s disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation. J Neurosci 33(42):16522–16539. doi:10.1523/JNEUROSCI.2545-13.2013

    Article  PubMed  Google Scholar 

  • Kucinski A, Albin RL, Lustig C et al (2015) Modeling falls in Parkinson’s disease: slow gait, freezing episodes and falls in rats with extensive striatal dopamine loss. Behav Brain Res 282:155–164. doi:10.1016/j.bbr.2015.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurz I, Berezowski E, Melzer I (2013) Frontal plane instability following rapid voluntary stepping: effects of age and a concurrent cognitive task. J Gerontol A Biol Sci Med Sci 68(11):1402–1408. doi:10.1093/gerona/glt040

    Article  PubMed  Google Scholar 

  • Lambe EK, Picciotto MR, Aghajanian GK (2003) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28(2):216–225. doi:10.1038/sj.npp.1300032

    Article  PubMed  Google Scholar 

  • LaPointe LL, Stierwalt JA, Maitland CG (2010) Talking while walking: cognitive loading and injurious falls in Parkinson’s disease. Int J Speech Lang Pathol 12(5):455–459. doi:10.3109/17549507.2010.486446

    Article  PubMed  Google Scholar 

  • Lex B, Hauber W (2010) The role of dopamine in the prelimbic cortex and the dorsomedial striatum in instrumental conditioning. Cereb Cortex 20(4):873–883. doi:10.1093/cercor/bhp151

    Article  PubMed  Google Scholar 

  • Logan GD, Van Zandt T, Verbruggen F et al (2014) On the ability to inhibit thought and action: general and special theories of an act of control. Psychol Rev 121(1):66–95. doi:10.1037/a0035230

    Article  PubMed  Google Scholar 

  • Luiten PG, Gaykema RP, Traber J et al (1987) Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin. Brain Res 413(2):229–250, doi:0006-8993(87)91014-6.

    Google Scholar 

  • Lustig C, Matell MS, Meck WH (2005) Not “just” a coincidence: frontal–striatal interactions in working memory and interval timing. Memory.13(3–4):441–8

    Google Scholar 

  • Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59(3):625–640

    Article  PubMed  Google Scholar 

  • Mailly P, Aliane V, Groenewegen HJ et al (2013) The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci 33(13):5718–5727. doi:10.1523/JNEUROSCI.5248-12.2013

    Article  PubMed  Google Scholar 

  • Marchese R, Bove M, Abbruzzese G (2003) Effect of cognitive and motor tasks on postural stability in Parkinson’s disease: a posturographic study. Mov Disord 18(6):652–658. doi:10.1002/mds.10418

    Article  PubMed  Google Scholar 

  • Matsumoto N, Hanakawa T, Maki S et al (1999) Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J Neurophysiol 82(2):978–998

    PubMed  Google Scholar 

  • Mazzoni P, Hristova A, Krakauer JW (2007) Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci 27(27):7105–7116. doi:10.1523/JNEUROSCI.0264-07.2007

    Article  PubMed  Google Scholar 

  • McCall JG, Kim TI, Shin G et al (2013) Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 8(12):2413–2428. doi:10.1038/nprot.2013.158

    Article  PubMed  PubMed Central  Google Scholar 

  • McGaughy J, Kaiser T, Sarter M (1996) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav Neurosci 110(2):247–265

    Article  PubMed  Google Scholar 

  • McNeely ME, Earhart GM (2013) Medication and subthalamic nucleus deep brain stimulation similarly improve balance and complex gait in Parkinson disease. Parkinsonism Relat Disord 19(1):86–91. doi:10.1016/j.parkreldis.2012.07.013

    Article  PubMed  Google Scholar 

  • McNeely ME, Duncan RP, Earhart GM (2012) Medication improves balance and complex gait performance in Parkinson disease. Gait Posture 36(1):144–148. doi:10.1016/j.gaitpost.2012.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalowska M, Fiszer U, Krygowska-Wajs A, Owczarek K (2005) Falls in Parkinson’s disease. Causes and impact on patients’ quality of life. Funct Neurol 20(4):163–168

    PubMed  Google Scholar 

  • Monsell S (2003) Task switching. Trends Cogn Sci 7(3):134–140

    Article  PubMed  Google Scholar 

  • Morris ME, Iansek R, Matyas TA, Summers JJ (1994) The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 117(Pt 5):1169–1181

    Article  PubMed  Google Scholar 

  • Muir JL, Dunnett SB, Robbins TW et al (1992) Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task. Exp Brain Res 89(3):611–622

    Article  PubMed  Google Scholar 

  • Nagamatsu LS, Munkacsy M, Liu-Ambrose T et al (2013) Altered visual-spatial attention to task-irrelevant information is associated with falls risk in older adults. Neuropsychologia 51(14):3025–3032. doi:10.1016/j.neuropsychologia.2013.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano I, Hirano A (1984) Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol 15(5):415–418. doi:10.1002/ana.410150503

    Article  PubMed  Google Scholar 

  • Nieuwboer A, Feys P, de Weerdt W et al (1997) Is using a cue the clue to the treatment of freezing in Parkinson’s disease? Physiother Res Int 2(3):125–132; discussion 124–133

    Article  PubMed  Google Scholar 

  • Ostlund SB, Winterbauer NE, Balleine BW (2009) Evidence of action sequence chunking in goal-directed instrumental conditioning and its dependence on the dorsomedial prefrontal cortex. J Neurosci 29(25):8280–8287. doi:10.1523/JNEUROSCI.1176-09.2009

    Article  PubMed  Google Scholar 

  • Paolone G, Angelakos CC, Meyer PJ et al (2013) Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. J Neurosci 33(19):8321–8335. doi:10.1523/JNEUROSCI.0709-13.2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Parikh V, Kozak R, Martinez V et al (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56(1):141–154. doi:S0896-6273(07)00674-5

    Google Scholar 

  • Parikh V, Man K, Decker MW et al (2008) Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. J Neurosci 28(14):3769–3780. doi:10.1523/JNEUROSCI.5251-07.2008

    Article  PubMed  Google Scholar 

  • Parikh V, Ji J, Decker MW, Sarter M (2010) Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 30(9):3518–3530. doi:10.1523/JNEUROSCI.5712-09.2010

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickel VM, Beckley SC, Joh TH, Reis DJ (1981) Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res 30;225(2):373–85

    Google Scholar 

  • Plotnik M, Giladi N, Dagan Y et al (2011) Postural instability and fall risk in Parkinson’s disease: impaired dual tasking, pacing, and bilateral coordination of gait during the “ON” medication state. Exp Brain Res 210(3–4):529–538. doi:10.1007/s00221-011-2551-0

    Article  PubMed  Google Scholar 

  • Plotnik M, Giladi N, Hausdorff JM (2012) Is freezing of gait in Parkinson’s disease a result of multiple gait impairments? Implications for treatment. Parkinsons Dis 2012:459321. doi:10.1155/2012/459321

    PubMed  PubMed Central  Google Scholar 

  • Possin KL, Kang GA, Guo C et al (2013) Rivastigmine is associated with restoration of left frontal brain activity in Parkinson’s disease. Mov Disord 28(10):1384–1390. doi:10.1002/mds.25575

    Article  PubMed  PubMed Central  Google Scholar 

  • Quik M, O’Leary K, Tanner CM (2008) Nicotine and Parkinson’s disease: implications for therapy. Mov Disord 23(12):1641–1652. doi:10.1002/mds.21900

    Article  PubMed  PubMed Central  Google Scholar 

  • Redgrave P, Rodriguez M, Smith Y et al (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11(11):760–772. doi:10.1038/nrn2915

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers RD, Baunez C, Everitt BJ et al (2001) Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behav Neurosci 115(4):799–811

    Article  PubMed  Google Scholar 

  • Samejima K, Doya K (2007) Multiple representations of belief states and action values in corticobasal ganglia loops. Ann N Y Acad Sci 1104:213–228. doi:10.1196/annals.1390.024

    Article  PubMed  Google Scholar 

  • Schneider JS, Tinker JP, Van Velson M et al (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 290(2):731–739

    PubMed  Google Scholar 

  • Schneider JS, Tinker JP, Menzaghi F et al (2003) The subtype-selective nicotinic acetylcholine receptor agonist SIB-1553A improves both attention and memory components of a spatial working memory task in chronic low dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J Pharmacol Exp Ther 306(1):401–406. doi:10.1124/jpet.103.051912

    Article  PubMed  Google Scholar 

  • Schneider JS, Pioli EY, Jianzhong Y et al (2013) Levodopa improves motor deficits but can further disrupt cognition in a macaque Parkinson model. Mov Disord 28(5):663–667. doi:10.1002/mds.25258

    Article  PubMed  Google Scholar 

  • Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1(3):199–207. doi:10.1038/35044563

    Article  PubMed  Google Scholar 

  • Sethi K (2008) Levodopa unresponsive symptoms in Parkinson disease. Mov Disord 23(Suppl 3):S521–S533. doi:10.1002/mds.22049

    Article  PubMed  Google Scholar 

  • Shimada H, Hirano S, Shinotoh H et al (2009) Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73(4):273–278. doi:10.1212/WNL.0b013e3181ab2b58

    Article  PubMed  Google Scholar 

  • Shine JM, Naismith SL, Lewis SJ (2011) The pathophysiological mechanisms underlying freezing of gait in Parkinson’s disease. J Clin Neurosci 18(9):1154–1157. doi:10.1016/j.jocn.2011.02.007

    Article  PubMed  Google Scholar 

  • Spildooren J, Vercruysse S, Desloovere K et al (2010) Freezing of gait in Parkinson’s disease: the impact of dual-tasking and turning. Mov Disord 25(15):2563–2570. doi:10.1002/mds.23327

    Article  PubMed  Google Scholar 

  • St Peters M, Demeter E, Lustig C et al (2011) Enhanced control of attention by stimulating mesolimbic-corticopetal cholinergic circuitry. J Neurosci 31(26):9760–9771. doi:10.1523/JNEUROSCI.1902-11.2011

    Article  PubMed  PubMed Central  Google Scholar 

  • Stark E, Koos T, Buzsaki G (2012) Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J Neurophysiol 108(1):349–363. doi:10.1152/jn.00153.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Strafella AP, Ko JH, Grant J, Fraraccio M, Monchi O (2005) Corticostriatal functional interactions in Parkinson’s disease: A rtms/[11C]raclopride PET study. Eur J Neurosci 22(11):2946–52

    Google Scholar 

  • Tombu M, Jolicoeur P (2003) A central capacity sharing model of dual-task performance. J Exp Psychol Hum Percept Perform 29(1):3–18

    Article  PubMed  Google Scholar 

  • Turchi J, Sarter M (1997) Cortical acetylcholine and processing capacity: effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. Brain Res Cogn Brain Res 6(2):147–158

    Article  PubMed  Google Scholar 

  • Uemura K, Yamada M, Nagai K et al (2012) Fear of falling is associated with prolonged anticipatory postural adjustment during gait initiation under dual-task conditions in older adults. Gait Posture 35(2):282–286. doi:10.1016/j.gaitpost.2011.09.100

    Article  PubMed  Google Scholar 

  • Voorn P, Vanderschuren LJ, Groenewegen HJ et al (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27(8):468–474. doi:10.1016/j.tins.2004.06.006

    Article  PubMed  Google Scholar 

  • Wall NR, De La Parra M, Callaway EM, Kreitzer AC (2013) Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 24;79(2):347-60. doi:10.1016/j.neuron.2013.05.014

    Google Scholar 

  • Winter DA, Patla AE, Frank JS et al (1990) Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther 70(6):340–347

    PubMed  Google Scholar 

  • Wood BH, Bilclough JA, Bowron A et al (2002) Incidence and prediction of falls in Parkinson’s disease: a prospective multidisciplinary study. J Neurol Neurosurg Psychiatry 72(6):721–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16(1):1–14

    Article  PubMed  Google Scholar 

  • Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128(Pt 10):2250–2259. doi:10.1093/brain/awh569

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19(1):181–189

    Article  PubMed  Google Scholar 

  • Yin HH (2014) Action, time and the basal ganglia. Philos Trans R Soc Lond B Biol Sci 369(1637): 20120473. doi:10.1098/rstb.2012.0473

    Google Scholar 

  • Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23(3):329–342. doi:10.1002/mds.21720; quiz 472

    Article  PubMed  Google Scholar 

  • Yogev-Seligmann G, Giladi N, Gruendlinger L et al (2013) The contribution of postural control and bilateral coordination to the impact of dual tasking on gait. Exp Brain Res 226(1):81–93. doi:10.1007/s00221-013-3412-9

    Article  PubMed  Google Scholar 

  • Zaborszky L, Alheid GF, Beinfeld MC et al (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14(2):427–453

    Article  PubMed  Google Scholar 

  • Zaborszky L, Csordas A, Mosca K et al (2015) Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex 25(1):118–137

    Article  PubMed  Google Scholar 

  • Zhang D, Mallela A, Sohn D et al (2013) Nicotinic receptor agonists reduce L-DOPA-induced dyskinesias in a monkey model of Parkinson’s disease. J Pharmacol Exp Ther 347(1):225–234. doi:10.1124/jpet.113.207639

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by NINDS Grant P50NS091856 (Morris K. Udall Center for Excellence in Parkinson’s Disease Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Kucinski Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kucinski, A., Sarter, M. (2016). Cortico-Striatal, Cognitive-Motor Interactions Underlying Complex Movement Control Deficits. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_6

Download citation

Publish with us

Policies and ethics